Computational Modeling of Brittle Materials Under Dynamic Conditions

Ken Zuo

Dept. of Mechanical and Aerospace Engineering University of Alabama in Huntsville zuo@eng.uah.edu

Outline

Experimental observations

- SCRAM and DCA (Dominant Crack Algorithm) Models:
 - Continuum-level models based on statistical consideration of defects.
- Calculations and data for explosives & ceramics
- Summary/discussions

Main Collaborators: Students: Deganis (Sikorsky), Rice (AMRDEC), Richter (NASA-MSFC); Wang, Evans, Toutanji (UAH); Dienes, Addessio, Lewis (LANL)

> Presented at 2012 Materials Science Symposium, UAH December 5, 2012

Damage and Failure in Brittle Materials (explosives, ceramics, propellants, concrete, *sea ice*, etc.)

Cracking in an Explosive (PBX 9501)

Ceramic Armor under Ballistic Impact

 Ceramic disk: Coors AD 995 (1/2" thick, 4 in diameter)

Casing (3 pieces): Ti-6AI-4V
2 cover plates (1/4 " thick each)
Ring (5" diameter, ¹/₂ " thick)

- Impactor: Lexan rod
 1.5" long , ³/₄ " diameter
- Impact velocity: 1.56 km/s

Can we predict the *location and size* of the failed ceramic?

Computational Modeling

Challenges

- Events taking place at length scales below the grid resolution can have significant effects on the damage and failure
- Challenges:
 - how far do we need to go down in scales (meso/micro scales?)
 - What about the history of *defects*?
 - How do we connect the mechanics/physics of different scales? (e.g., grain-level mechanics)
 - What about convergence and stability of the numerical solution (i.e., ill-posedness/Hadamard instability)?

Models based on statistical consideration of defects (cracks)

- SCRAM
- DCA

Superposition of Strain Rates

Defects idealized in the model

SCRAM: Model for damage, failure and initiation of brittle materials

Impact Initiation Scenario

Shock wave activates shear cracks.

Shock Compression

Shear cracks grow easily in HMX, inhibited by binder.

Shear cracks grind and produce heat.

x Normal to Shear crack

Heat conducted away from sliding interface; temperature **Sub-grid model** rise causes cooking of HMX. $\dot{T} = DT_{xx} + qZe^{-E/kT}$

HMX reaches ignition point (Linan & Williams or IGNC) $T > T_c$

Burned gases open cracks, create initial high-pressure zone. Opening inhibited by inertia, stiffness, and damping. $\ddot{mw} + c\dot{w} + kw = pA$ p = f(M,T)

Burning increases general pressure, accelerating burn in adjoining hot spots.

Cracks coalesce when percolation threshold is exceeded, causing general explosion.

Dominant Crack Algorithm (DCA) Model (Zuo et al., 2006-)

- Damage surface is derived from the instability condition for the critical crack orientation;
- New damage surface has similar features to that in ISOSCM, but removes a discontinuity existed in ISOSCM;
- Crack opening strain is more consistent with physics-- only the tensile principal stresses contribute to the crack opening strain. Material response can be anisotropic.
- Damage evolution (growth rate of the mean crack radius) is given by the energy release rate for the crack along the *critical* (most unstable) orientation.
- Including a nonlinear EOS and porosity growth.

Zuo, et al., (2006, 2008, 2010, 2011, 2012)

Crack strain (damage)

Total strain is the sum of matrix strain and crack strain: $\mathbf{s} = \mathbf{s} \cdot (\mathbf{\sigma}) + \mathbf{s} \cdot (\mathbf{\sigma} \cdot \overline{\mathbf{c}})$

$$\mathbf{z} - \mathbf{c}_{m}(\mathbf{0}) + \mathbf{c}_{c}(\mathbf{0}, \mathbf{c})$$
Matrix strain:

$$\mathbf{c}_{m}(\mathbf{0}) = \mathbf{C}^{m}\mathbf{\sigma} \qquad \mathbf{C}^{m} = \text{Matrix Compliance}$$
Crack strain:

$$\mathbf{c}_{c}(\mathbf{0}, c) = \sum_{\Omega,c} \Delta \mathbf{\varepsilon}_{c}(\mathbf{0}, c, \mathbf{n})$$
For a crack set:

$$\Delta \mathbf{\varepsilon}_{c}(\mathbf{0}, c, \mathbf{n}) = \beta c^{3} (\mathbf{c}^{o} + \mathbf{c}^{s}) \mathbf{\sigma} n(c, \mathbf{n}, t) \Delta c \Delta \Omega$$

$$\mathbf{v} = \mathbf{v}^{c}$$

$$\mathbf{n}(c, \mathbf{n}, t): \text{ crack number density dist.}$$
Fabric tensors:

$$\mathbf{c}^{o} = \mathbf{b} - v\mathbf{a} \qquad \mathbf{c}^{s} = \mathbf{b} - 2\mathbf{a}$$

$$\mathbf{a} = \mathbf{n} \otimes \mathbf{n} \otimes \mathbf{n} \qquad \mathbf{b} = \mathbf{i}^{\wedge} \mathbf{n} \otimes \mathbf{n} + \mathbf{n} \otimes \mathbf{n}^{\wedge} \mathbf{i}$$

$$\mathbf{Material damage:}$$

$$\mathbf{\varepsilon}_{c}(\mathbf{0}, \overline{c}) = \mathbf{D} \mathbf{\sigma} = (\mathbf{C}^{o} + \mathbf{C}^{s}) \mathbf{\sigma}$$

$$\mathbf{a} dded compliance$$

$$\mathbf{C}^{o} = (2 - v)\beta \int_{\Omega} \int_{\Omega} \int_{c} n(c, \mathbf{n}, t) \mathbf{c}^{o} c^{3} dc d\Omega$$

$$\mathbf{open cracks}$$

$$\mathbf{C}^{s} = \beta \int_{\Omega} \int_{c} \int_{c} n(c, \mathbf{n}, t) \mathbf{c}^{s} c^{3} dc d\Omega$$

Model calculations and data (explosives & ceramics)

Comparison of the Stress-Strain Responses with Data

PBX (Plastic- Bonded eXplosive) 9501 at two strain rates (0.01/s and 1000/s)

Model captures the data, including peak stress, failure strain, and strain softening

Comparison with the Multiple-shock Experiment

- Experiment by Mulford et al. of LANL
- Composite Impactor: Vistal (AI_2O_3) and Plexiglas (Kel-F);
- Plate thicknesses (mm): 11 (Vistal), 0.8 (Kel-F), 10 (HE);

0.1

0.10

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.0

Particle Speed (cm/microseconds)

- Impact velocity: 911 m/s

Calculated particle velocity histories agree with data reasonably well.

Modeling Damage and Failure of Ceramic Armor

Comparison

- Model calculation matches the deformed profile

- Calculated location of failure (maximum porosity) agrees with the post-mortem observation

Mortem sample

Uniaxial Strain – Cyclic loading Tension/Compression- I

Crack growth under Uniaxial strain compression

Rate Effects

Summary/Discussions

• SCRAM: three-dimensional framework for anisotropic damage & failure of *brittle* materials. It also models the *initiation* of chemical reactions (*explosion*) of energetic materials.

• DCA: based on SCRAM model but is significantly simpler. It emphasizes on the growth of dominate (critical) crack. No chemical reactions.

• Many challenges exists both in fundamental understanding of the response of brittle materials under high rate conditions and in the representation in analysis (*continuum-level*) codes.

Extra: Supporting Modeling

ISO-SCM Model (Addessio-Johnson)

- A continuum damage model based on Dienes' SCM work.
- Key assumptions/limitations: distribution of cracks remain isotropic. Damage is also isotropic.
- The size distribution remains exponential (Seaman et al, SRI), with the mean crack size (damage) evolving with loading.
- Simple damage surface based on averaging the instability conditions over all crack orientations. Damage surface is discontinuous at p=0.
- The crack strain is a simple function of stress and mean crack size. Crack opening strain accounted for p<0 (tension) only.

Crack Shear and Opening

- Exponential crack size (radius) distribution (Seaman et al, SRI):

$$n(c, \mathbf{n}, t) = \frac{N_0(\mathbf{n})}{\overline{c}(\mathbf{n}, t)} \exp(-\frac{c}{\overline{c}(\mathbf{n}, t)})$$

 $N_0(\mathbf{n}) = N_0$ Initial crack number density (# per unit vol.); isotropic

 $\overline{c}(\mathbf{n},t)$: Average radius of the cracks with normal (n)

- SCRAM accounts for material anisotropy by allowing each direction has its own mean size: $\overline{c}(\mathbf{n},t)$ depends on the crack normal (n)

- ISO-SCM (Visco-Scram, etc): the cracks remain isotropic:

$$\overline{c}(\mathbf{n},t) = \overline{c}$$
Crack shear strain: $\mathbf{\mathcal{E}}_{c}^{s}(\mathbf{\sigma},\overline{c}) = \beta_{1}d(\overline{c})\mathbf{\sigma}^{d}$ For any p
Crack opening strain: $\mathbf{\mathcal{E}}_{c}^{o}(\mathbf{\sigma},\overline{c}) = (2-\nu)\beta_{1}d(\overline{c})\left(\mathbf{\sigma} - \frac{3}{2}p\mathbf{i}\right)$ For $p < 0$

$$\mathbf{\mathcal{E}}_{c}^{o}(\mathbf{\sigma},\overline{c}) = 0$$
For $p \ge 0$

$$\beta_{1} = \frac{64}{5G}\frac{1-\nu}{2-\nu}; \quad d(\overline{c}) \equiv N_{0}\overline{c}^{3} \text{-damage}$$

Dominant Crack Model (DCA) - Crack Opening strain

 $\sigma_1 > 0; \sigma_3 < 0$

Mixed stress states:

 $\mathbf{f}\sigma_1$

 \times

 $\sigma_{_3}$

Only tensile principal stresses contribute to open strain

Evolution equation for damage (Crack growth rate) Dam. Surf. $F(\sigma, \overline{c}) = 0$

Damage increases for stress state outside the surface $(F(\sigma, \overline{c}) > 0)$: Dynamic crack growth (Freund, 1990):

$$\dot{\overline{c}} = \dot{c}_{\max} \left(1 - \frac{2\gamma}{g(\sigma, \mathbf{n}^c, \overline{c})} \right) \dot{c}_{\max} : \text{ Terminal growth speed}$$
(Rayleigh wave speed)

Damage function is also based on $g(\sigma, \mathbf{n}^c, \overline{c}) : \left(F(\sigma, \overline{c}) \equiv \frac{g(\sigma, \mathbf{n}^c, \overline{c})}{2\gamma} - 1 \right)$

Crack growth is related to the damage function:

$$\dot{\overline{c}} = \dot{c}_{\max} \left(1 - \frac{1}{1 + \langle F(\boldsymbol{\sigma}, \overline{c}) \rangle} \right)$$

Stress-strain Relationship

Given a total (applied) strain rate, we need to update stress and damage.

Recall:

$$\mathbf{\varepsilon} = \left(\mathbf{C}^{m} + \mathbf{D}(\overline{c})\right)\mathbf{\sigma}$$

$$\mathbf{D}(\overline{c}) = \beta^{e} N_{0} \overline{c}^{3} \left(\frac{3}{2-\nu} \mathbf{P}^{d} + \mathbf{P}^{+} \left(\mathbf{P}^{d} + \frac{5}{2} \mathbf{P}^{sp}\right)\mathbf{P}^{+}\right)$$

Rate form:

Damage

$$\dot{\boldsymbol{\varepsilon}} = \mathbf{C}^{m} \dot{\boldsymbol{\sigma}} + \left[\mathbf{D} \left(\overline{c} \right) \dot{\boldsymbol{\sigma}} + \dot{\mathbf{D}} \left(\overline{c} \right) \boldsymbol{\sigma} \right] = \mathbf{C}^{m} \dot{\boldsymbol{\sigma}} + \left[\dot{\boldsymbol{\varepsilon}}^{c} + \dot{\boldsymbol{\varepsilon}}^{gr} \right]$$
(1)

strain rate due to crack growth:

Stationary Crack growth

$$\dot{\boldsymbol{\varepsilon}}_{c}^{gr} = \dot{\mathbf{D}} (\overline{c}) \boldsymbol{\sigma} = \left(3\dot{\overline{c}} / \overline{c} \right) \mathbf{D}(\overline{c}) \boldsymbol{\sigma}$$

Stress rate: $\dot{\sigma} = -\dot{P}\dot{\mathbf{i}} + \dot{\mathbf{s}}$ Deviatoric rate: $\mathbf{P}^{d} \text{Eq.}(1) \Rightarrow \qquad \frac{1}{2G_{s}}\dot{\mathbf{s}} + \mathbf{P}^{d}\mathbf{D}(\overline{c})\left(\dot{\mathbf{s}} - \dot{P}\dot{\mathbf{i}}\right) + \dot{\overline{c}}\frac{3}{\overline{c}}\mathbf{P}^{d}\mathbf{D}(\overline{c})\left(\mathbf{s} - P\dot{\mathbf{i}}\right) = \dot{\mathbf{e}}$ (2a) $\dot{P}2$

Deganis, L.E. and Q.H. Zuo (2011), JAP, 109, 073504

Volumetric Response

Pressure in the porous (voided) material

$$P(\phi, \rho, e) = (1 - \phi)P_s(\rho_s, e_s)$$

Mie-Gruneisen equation of state (Addessio and Johnson, 1990)

The porosity:

$$\phi \equiv \frac{V_v}{V_s + V_v}$$

TZ.

Pressure in the solid: $P_s(\rho_s, e_s) = P_H(\mu_s) \left(1 - \frac{1}{2} \Gamma_s \mu_s \right) + \Gamma_s \rho_s e_s$

Hugoniot Pressure:

$$P_{H}(\mu_{s}) = c_{v}\mu_{s} + d_{v}\mu_{s}^{2} + s_{v}\mu_{s}^{3}$$

Compression ratio:

Nonlinear effect

$$\dot{\phi} = (1 - \phi) \left(\dot{\varepsilon}_{kk}^c + \dot{\varepsilon}_{kk}^{gr} \right)$$

Rate form:

$$\dot{P}(\phi,\rho,e) = -B\dot{\varepsilon}_{kk} + \alpha \left(\dot{\varepsilon}_{kk}^{c} + \dot{\varepsilon}_{kk}^{gr}\right) + \Gamma_{s}\mathbf{s} : \dot{\mathbf{e}}$$
(2b)

TEPLA model:

$$\dot{\phi} = (1 - \phi) \dot{\varepsilon}_{kk}^{p}$$

Vol. Tension/Compression

Pressure-strain

Evolution of damage

Uniaxial (stress) tension and compression

Stress-strain

Compression is much stronger than tension

$$\sigma_c / \sigma_t = 2\sqrt{1 - \nu/2} \left(\sqrt{\mu^2 + 1} + \mu\right)$$

Damage Surface and Stress path

The damage surface is continuous;

Size of the damage surface (in stress space) shrinks as cracks grow;

Stress path is above the damage surface, due to rate effects;

Pronounced strain softening right after the stress peak.

Uniaxial (strain) Tension loading

Cyclic loading - II

Evolution of porosity

Evolution of crack size

Large strain (10%) compression: *Hydrostatic* Loading

Multiphase Plasticity Model for Zirconium

