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Damage and Failure in Brittle Materials 

(explosives, ceramics, propellants, concrete, sea ice, etc.) 



Cracking in an Explosive (PBX 9501) 
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μ1 = 27.5 μm  

μ2 = 229 μm  

size distribution of HMX Grains 

(Bronkhorst et al.) 

Idar et al, 1998 

Heterogeneous:  

     HMX crystals & Polymer Binder 

 

Distribution of HMX grains is random:  

     Bi-modal distribution (229/27.5 mms) 

 

Microcracks in the “pristine” sample: 

     different sizes & orientations 

Binder 

HMX 

Crystal 



Ceramic Armor under Ballistic Impact 

Sectioned Post-

Mortem sample 

Failed 

Ceramic 

Ti Case 

 Ceramic disk: Coors AD 995 (1/2”         

thick, 4 in diameter) 

 

 Casing (3 pieces): Ti-6Al-4V 

2 cover plates (1/4 ” thick each) 

Ring (5” diameter, ½ ” thick) 

 

 Impactor: Lexan rod  

  1.5” long , ¾ ” diameter 

 

 Impact velocity: 1.56 km/s V = 1.56 km/s 

Can we predict the location and size of 

the failed ceramic? Bingert et al 



Computational Modeling 



• Events taking place at length scales below the grid 
resolution can have significant effects on the damage and 
failure 

 

• Challenges:  

– how far do we need to go down in scales (meso/micro 
scales?)  

 

– What about the history of defects? 

 

– How do we connect the mechanics/physics of different 
scales? (e.g., grain-level mechanics) 

 

– What about convergence and stability of the numerical 
solution (i.e., ill-posedness/Hadamard instability)? 

Challenges 



Models based on statistical consideration 

 of defects (cracks) 

 

 SCRAM  

 DCA  

 

 



Defects idealized in the model 

Superposition of Strain Rates 

Statistical averaging 

(probability density function) 
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SCRAM: Model for damage, failure and 

initiation of brittle materials 



Impact Initiation Scenario 

Shock 

Compression 

Sub-grid model 

x Normal to 

Shear crack 
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Crack 

time 



• Damage surface is derived from the instability condition for 
the critical crack orientation; 

 

• New damage surface has similar features to that in ISOSCM, 
but removes a discontinuity existed in ISOSCM; 

 

• Crack opening strain is more consistent with physics-- only 
the tensile principal stresses contribute to the crack 
opening strain. Material response can be anisotropic.  

 

• Damage evolution (growth rate of the mean crack radius) is 
given by the energy release rate for the crack along the 
critical (most unstable) orientation.  

 

• Including a nonlinear EOS and porosity growth. 

Dominant Crack Algorithm (DCA) Model (Zuo et al., 2006- ) 
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Zuo, et al., (2006, 2008, 2010, 2011, 2012) 



Crack strain (damage) 

Total strain is the sum of matrix strain and crack strain: 
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Model calculations and data 

(explosives & ceramics) 



Comparison of the Stress-Strain Responses with Data 

PBX (Plastic- Bonded eXplosive) 9501 

 at two strain rates (0.01/s and 1000/s) 

Model captures the data, including  peak stress, 

failure strain, and strain softening 

Uniaxial (stress) 

Compression 



Calculated particle 

velocity histories 

agree with data 

reasonably well. 

 Comparison with the Multiple-shock Experiment 

      

Explosive 

Measured Calculated 

(mm) 

- Experiment by Mulford et al. of 

LANL 

 

- Composite Impactor: Vistal 

(Al2O3) and Plexiglas (Kel-F); 

 

- Plate thicknesses (mm):  

  11 (Vistal) , 0.8 (Kel-F), 10 (HE); 

 

- Impact velocity: 911 m/s 

EOS! 



- Model calculation matches the deformed profile 
R 

z 

cm 

V 

Sectioned Post-

Mortem sample 

Predicted  

(Porosity) 

z 

R Failed Ceramic 

Ti Case 

- Calculated location of failure (maximum porosity) 

agrees with the post-mortem observation 

Comparison 

Modeling Damage and Failure of Ceramic Armor 
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Uniaxial Strain – Cyclic loading 

Tension/Compression- I 

Stress-strain 

Loading:     ABC 

Unloading:  CAD 

   Reloading:  DAC’E 

Evolution of crack size 



Crack growth under 

 Uniaxial strain compression 

Fast  

growth 
slow 

growth 

softening 

Growth 

rate 

- Cracks becomes unstable  

when shear overcomes friction; 

- Damage accumulates over a period; 

- Stabilized as friction (pressure) takes over 

Growth of 

shear Cracks 

stress 



Rate Effects 

Uniaxial strain loading 

strain 

rate 

Stress 



Summary/Discussions 

• SCRAM: three-dimensional framework for anisotropic damage 

& failure of brittle materials. It also models the initiation of 

chemical reactions (explosion) of energetic materials.  

 

• DCA: based on SCRAM model but is significantly simpler. It 

emphasizes on the growth of dominate (critical) crack. No 

chemical reactions. 

 

• Many challenges exists both in fundamental understanding of 

the response of brittle materials under high rate conditions and 

in the representation in analysis (continuum-level) codes.  



Extra: Supporting Modeling 
 

 



ISO-SCM Model (Addessio-Johnson) 

• A continuum damage model based on Dienes’ SCM work.  

 

• Key assumptions/limitations: distribution of cracks remain 
isotropic. Damage is also isotropic. 

 

• The size distribution remains exponential (Seaman et al, 
SRI), with the mean crack size (damage) evolving with 
loading. 

 

• Simple damage surface based on averaging the instability 
conditions over all crack orientations. Damage surface is 
discontinuous at p=0. 

 

• The crack strain is a simple function of stress and mean 
crack size. Crack opening strain accounted for p<0 (tension) 
only. 



Crack Shear and Opening 

- Exponential crack size (radius) distribution (Seaman et al, SRI): 
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Dominant Crack Model (DCA) 
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“Improved”: 
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Comparison of the Damage Surfaces 

F(σ, c) = 0Dam. Surf. 

New damage surface is similar to 

that in ISO-SCM, but it is continuous. 
Tensile 

U. Strain 

Compression. 
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Evolution equation for damage (Crack growth rate) 
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Crack growth is related to the damage function: 

max :c Terminal growth speed 

(Rayleigh wave speed) 

Dynamic crack growth (Freund, 1990): 
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Stress-strain Relationship 

Given a total (applied) strain rate, we need to update stress and damage. 
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Volumetric Response 
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Mie-Gruneisen equation of state 
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The porosity:  

Pressure in the solid: 

2 3( )H s v s v s v sP c d sm m m m  

Nonlinear effect 

Porosity evolution:  
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Vol. Tension/Compression 

Pressure-strain Evolution of damage 

Load:     ABC 

Unload:  CAD 

    Reload:  DAC’E 



Uniaxial (stress) tension and compression 

Stress-strain 

Compression is much 

stronger than tension 

 2/ 2 1 / 2 1c t   m m   



Damage Surface and Stress path 

A 

B 

C 

D 
A’ 

E 

Load:     ABC 

Unload:  CA’D 

    Reload:  DA’CE 

Uniaxial (strain) Tension loading 

c
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Tensile 

shear 

The damage surface is 

continuous; 

 

Size of the damage surface (in 

stress space) shrinks as cracks 

grow; 

 

Stress path is above the damage 

surface, due to rate effects; 

 

Pronounced strain softening right 

after the stress peak. 

 

 



Cyclic loading - II 

Evolution of porosity 

Loading:     ABC 

Unloading:  CAD 

   Reloading:  DAC’E 

Porosity 

growth 

Cracks 

closing/reopening 
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Evolution of crack size 



Large strain (10%) compression:  

Hydrostatic Loading 

Nonlinear 

Terms 

Cracks remain stable due 

to confinement: 

No damage accumulation 

Hydrostatic loading 



Large strain compression:  

Uniaxial strain 

Why? 

Nonlinear 

Terms 
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5.

Multiphase Plasticity Model for Zirconium 

The phase diagram of Zr 
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That the material experiences all three phases 

can have important implications… 


