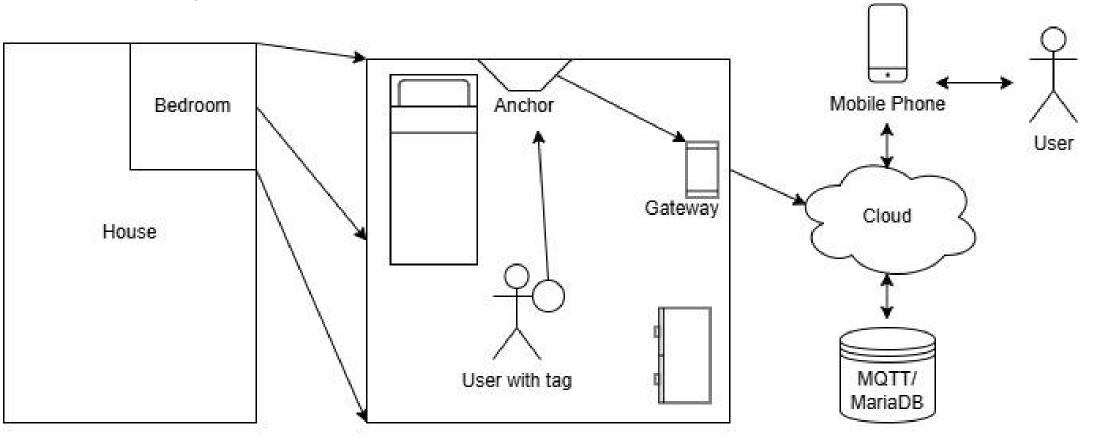


CPE496/498 Capstone Design

Indoor Localization System (ILS)

Team: Min Han, Emily Moody, Ozioma Oriala, Amelia Poulton


Mentor: Dr. Jovanov, Electrical and Computer Engineering Department Sponsor: Susan McGrady, Eighth Street Community

M1

Project Overview

- Assist residences with older adults or functionally disabled individuals, such as those with autism spectrum disorders, in managing daily activities and developing routines.
- Using Bluetooth Low Energy and Ultra Wide Band technologies, these individuals can wear a specialized bracelet in order to stay on task via reminders from an indoor location tracking system, promoting autonomy.

Objectives/Tasks

- Developing a non-intrusive mechanism that provides real-time monitoring by a sensor system
- Creating a mobile application that will allow administrators and users alike to manage their location data and preference
- Provides alerts based on sedentary behavior to remind the user to stay on task and not lounge excessively

Requirements

The system shall detect a precise E1 indoor location of a user.

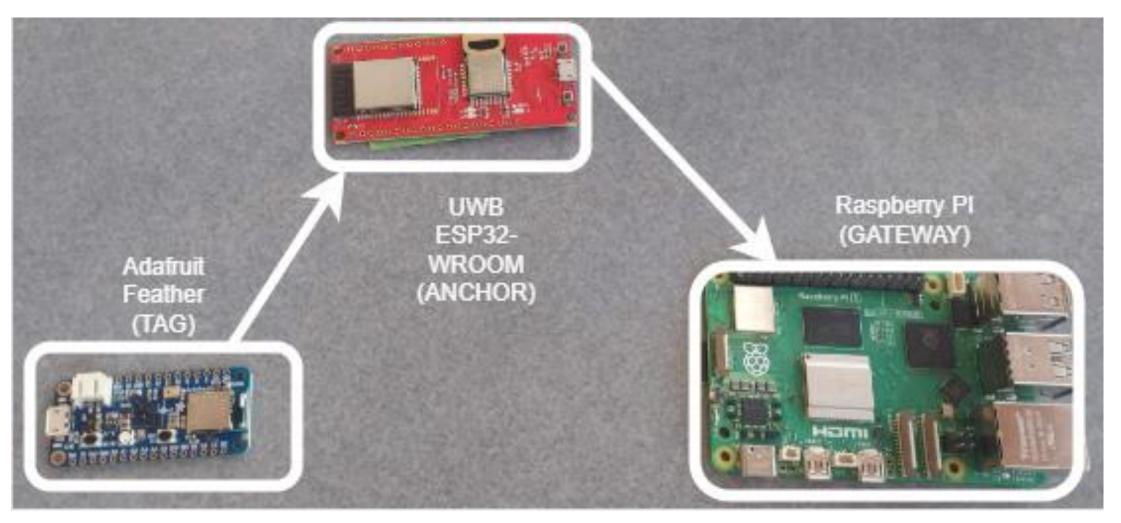
The minimum resolution of indoor position should be 1 m² and displayed in the app.

Background

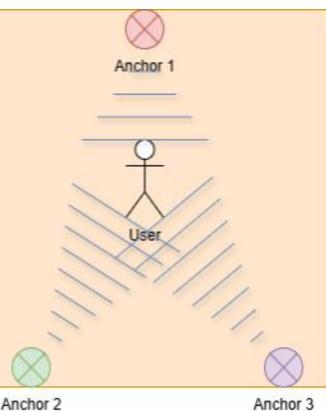
- Commercial products such as the Life360 Tile and the Apple Airtag are limited to tracking one item/person and relies on the proximity to a user's phone.
- Existing papers/journals (epidermal RFID and elderly monitoring) is mostly theoretical and does not contain detailed information about system implementation.
- Rohei, Muhammad Sadiq et al. "Design and Testing of an Epidermal RFID Mechanism in a Smart Indoor Human Tracking System." IEEE Sensors Journal 21 (2021): 5476-5486.
- Kolakowski, Jerzy, et al. "UWB/BLE tracking system for elderly people monitoring." Sensors 20.6 (2020): 1574
- tile. https://www.tile.com/life360 (accessed Jan. 07, 2025).
- APPLE, "AirTag," Apple, 2024. https://www.apple.com/airtag/

System Design

- UWB anchors search for a wearable device tag and determine its relative location in a room
- This location is sent to a database that is storing the user's real time location over time
- The location logs are analyzed and, once determined that the user has been off task, alerts the user on their mobile application


M2	The system shall use a wearable device, and several indoor receivers to determine the location of the user.	E2	The wearable device will contain a sensor and will be integrated with anchored sensors using BLE, UWB, and trilateration.
M3	The wearable device can be in the form of a bracelet or pendant worn by the participant under the class of users	E3	The tag must bedesigned in the form of a bracelet with an adjustable band or a pendant with a length of 16-20 inches.
M4	The system shall use Bluetooth or UWB transmissions from the wearable device to assess indoor localization.	E2	The wearable device will contain a sensor and will be integrated with anchored sensors using BLE, UWB, and trilateration.
M6	The system should use a separate class of users and admins to restrict access to the user's location.	E4 E3	The app contains 2 different views depending on if you are an admin or a user. The tag must be designed in the form of a bracelet with an adjustable band or a pendant with a length of 16-20 inches.
M7	The system shall use an external server to collect monitoring information.	E12 E17	The database can persist the data of 2 users per house and at least 3 administrators. All reports generated will be saved to the database and accessible by residents and admins.
M8	The system shall provide real- time monitoring of users in the system.	E7	The anchors poll the location of the user wearing the sensor every 30 seconds throughout the day.

Results


 BLE and UWB sensor testing has been successfully completed. Integration with Home Assistant and MQTT is in place. The mobile app UI has been implemented. Conclusion

Design Approach

- The user will carry a programmed wearable device that is sending the user's location information to sensors anchored around the room
- This data is then sent to the mobile app where it is displayed to the user.

- BLE and UWB sensor testing has been successfully completed.
- Integration with Home Assistant and MQTT is in place.
- The mobile app UI has been implemented.
- Conclusion: -
- A programmed wearable device sends the user's location to anchored sensors.
- The mobile app receives this data, displays it, and generates reports to help users build healthy habits.
- Future Implications:
 - Enables independent routines for disabled adults while ensuring safety.
 - Reduces caregiver workload with real-time tracking and efficient assistance.
 - Offers greater precision and customization than Life360 and

AirTag. Acknowledgements

We sincerely thank Dr. Jovanov for his guidance and feedback. Special thanks to Susan McGrady for sponsoring and supporting our project.