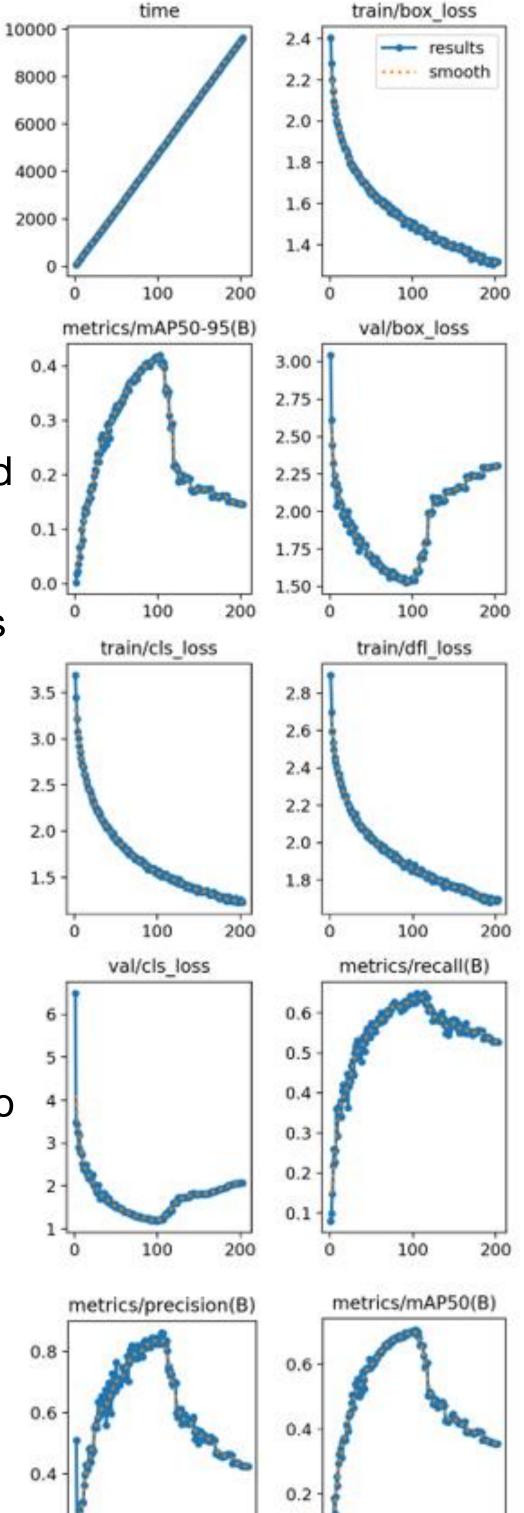


CPE 496/498 Capstone Design Course

Camouflage Reveal Neural Network App (CaReNN)

Nathan Ogden, Lilly Redmond, Olivia Tucker, Christian Boldin, Barrett Peterson Mentor: Dr. David Coe, Associate Professor, Electrical and Computer Engineering, UAH


The Need: Military personnel require improved detection of camouflaged threats in complex environments. Advancements in camouflage make threats hard to detect.

Current Results:

Model Performance: Achieved 70% mAP @ 50% IoU, trained on 5,000+ images across diverse environments.

App Functionality: Has live camera feed and a login page for extra security.

The Solution: CaReNN is a smartphone-based system that identifies camouflaged objects in real-time, using YOLOv8 and operating offline for security purposes and portability.

Status: The CaReNN model is trained to a Mean Average Precision (mAP) of 70% and deployed on the Google Pixel 9 Pro. Object detection is now operational, running in real time using a TensorFlow Lite model for on-device camouflage detection.

Req	i	rei	ne	n	ts
160					IJ

Marketing M1: Detect camouflaged objects in real-time.	Engineering E1: The system must achieve a camouflage detection Mean Average Precision (mAP) of at least 70% at a 50% Intersection over Union (IoU) threshold,	successful proof of concept for deploying camouflage detection models on edge devices, demonstrating the practicality and effectiveness of real-time, on-device object recognition.			
	tested on 500+ objects in diverse environments.	Timing Diagram			
M2: Work effectively in different environment conditions.	E2: Train in 5,000+ images (≥ 640 x 640 resolution).	Inference Time — — Requirement — Direct Inference — Mobile Inference (2/27/2025) — Mobile Inference (Latest)			
functionality	E3: Include live video with ≤1s delay at ≥15 FPS.	800			
	E4: Include a confidence slider for detection sensitivity.				
	E5: Highlight detected objects with bounding boxes.	F 200			
Acknowladaam	onts and References	0 5 10 15 20			

App Deployment: Application installed 0.2 on Google Pixel 9 Pro 0.1

Conclusion: The CaReNN project has successfully developed and integrated an Android Studio application and a trained YOLOv8-based camouflage detection model into a functional realtime detection system. The application now performs on-device inference, enabling live camouflage detection through a smartphone camera feed. Datasets used in training include military-specific personnel in addition to common types of camouflage in an effort to improve the model's performance and relevance in field scenarios. This project serves as a ful proof of concept for

Samples

Acknowledgements and References

The CaReNN Group thanks Dr. David Coe for his mentorship and guidance throughout this project. We also appreciate University of Alabama in Huntsville (UAH) for providing funding in our research.