
The ICESSS Mission

Inner Crustal Europa Seismic and Spectral Surveyor

Science Objective	Instruments					
Characterize Europa's icy shell and any subsurface water as well as the nature of the surface-ice-ocean exchange Characterize and determine the extent of subsurface oceans and their relations to the deeper interior	Ice Penetrating Radar Seismic Probes					
Characterize the deep internal structure, differentiation history and intrinsic magnetic field	Magnetometers Radio Science					
Compare the exospheres, plasma environments and magnetospheric interactions	Radio and Plasma Wave Science Instrument Thermal Emission Imaging System Ion and Neutral Mass Spectrometer Magnetospheric Imaging System					
Determine global surface compositions and chemistry, especially related to habitability	Near Infrared Mapping Spectrometer UV Spectrometer Seismic Probes Ion Neutral Mass Spectrometer Lander with Gas Chromatograph and Mass Spectrometer					
Understand the formation of surface features, including sites of recent or current activity and identify and characterize candidate sites for future in situ exploration	Narrow angle camera Wide angle camera Near Infrared Mapping Spectrometer					

Launch Vehicle

Atlas V 551 with 4615kg capacity

Dry Mass

2006 kg (including 29% contingency)

Propellant Mass

1168kg of Hydrazine and 1252kg of NTO

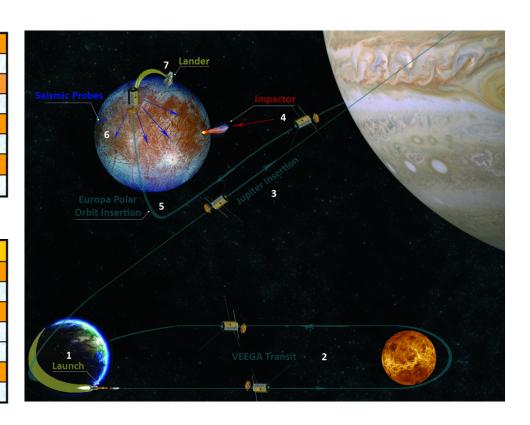
Total Wet Mass

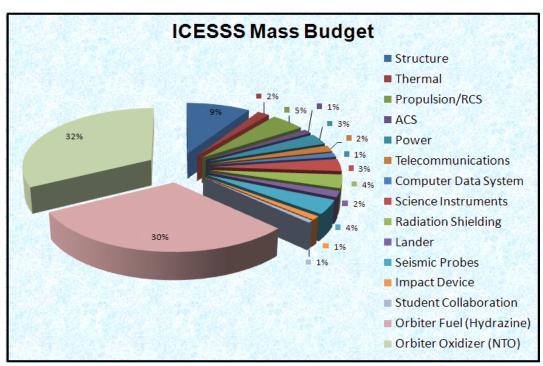
4492kg with 123kg of additional margin

Telecommunications

Frequencies

Ka-band and X-band


Antennas

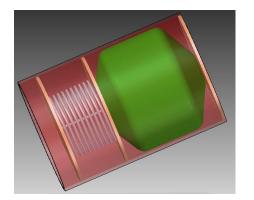

3 meter parabolic high gain antenna

1 medium gain and 2 low gain antennae

Power Requirement

85 W

Propulsion System ΔV Requirement


2260m/s

System

Hydrazine and Nitrogen Tetroxide

Dual mode system utilizing AMBR Engine
335s Isp for primary maneuvers
210s Isp for attitude control maneuvers

Power Budget (in Watts)									
System	Standard Operations	Telecom Operations	Safe Mode						
Scientific Payload	125	90	0						
Thermal	0	0	0						
ACS	49	49	49						
CDS	51	51	51						
Communications	50	85	85						
Propulsion	5	5	5						
Total Power (W)	280	280	190						

Seismic Probes Scientific Studies

Quantify tidal flexing

Determine fundamental surface composition

Hydrazine and Nitrogen Tetroxide

Ejection System

29 separate ejection canisters

Spring ejects probe with 50lbs of force

Release actuated by thermal knife

	Team Eureka Mission Schedule																													
	20)2	0	0 4	2()2	2	2024 2026				2027							2030											
2	4	8	12	2	4	8	12	2	4	8	12	2	4	6	8	10	12	2	3	4	6	8	10	12	2	4	6	8	10	12
		Ľ	auı	nc	h																									
	Phase E																													
	Cruise 347 wks VEEGA Trajectory																													
	Jovian Tour																													
																E	uro	op	a (Orb	it									
2	4	8	12	2	4	8	12	2	4	8	12	2	4	6	8	10	12	2	3	4	6	8	10	12	2	4	6	8	10	12
	2020 2022 2024 2026							2027 2030																						

Cost Allocation – Baseline Mission									
Fixed Cost Element	Cost (FY2010\$)	Variable Cost Element	Cost (FY2010\$)						
Launch Vehicle	\$68M	Orbiter	\$773M						
Additional ASRG	\$27M	Lander	\$134M						
NEPA compliance	\$20M								
Total	\$115M	Total	\$907M						
Total Mission Cost: \$1022M									

