STUDENT SUCCESS CENTER

Notation for Derivatives:

The most common notation methods are Lagrange notation (aka prime notation), Newton notation (aka dot notation), and Leibniz's notation (aka dy/dx notation).

Ex 1:

$$
\begin{aligned}
& \text { Lagrange Notation: } \quad y^{\prime \prime}(x)=0 \\
& \text { Newton Notation: } \quad \ddot{y}=0 \\
& \text { Leibniz Notation: } \quad \frac{d^{2} y}{d x^{2}}=0
\end{aligned}
$$

The example above shows three different ways to write the second derivative of y is equal to zero. Note that Leibniz notation is the notation used for the rest of the reference sheet.

Independent Variable:

The variable in an equation that can be freely chosen and does not depend on another variable.

Dependent Variable:

The variable that depends on the value of at least one independent variable.
Ex 2:

$$
\frac{d y}{d x}=x+2
$$

The variable y is the dependent variable. Variable x is the independent variable. y is a function of x and can be denoted $y=y(x)$. Note how y is in the numerator and x is in the denominator of the derivative.

Differential Equation:

An equation that contains an unknown function and its derivatives.
Ex 3:

$$
\frac{d y}{d x}+y=0
$$

The example contains the dependent variable y and its derivative.
Again remember that y is a function of x and can be denoted $y=y(x)$.

Ordinary Differntial Equation (ODE):

A differential equation that is written in terms of one independent variable.
Ex 4:

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=x
$$

The example above is written in terms of independent variable x, where y is a function of x. All examples given so far have been ODEs.

Partial Differential Equation (PDE):

In contrast to an ODE, a partial differential equation is a differential equation written in terms of more than one independent variable.

Ex 5:

$$
\begin{gathered}
\frac{d y}{d x}+\frac{d y}{d v}=x \\
\mathrm{y}=\mathrm{f}(\mathrm{x}, \mathrm{v})
\end{gathered}
$$

The example above is written in terms of independent variables x and v. The dependent variable is y, where y is a function of both x and v.

Order:

The value of the highest derivative of an ODE. If given a system of equations, the order of the system is the sum of the order of each equation.

Ex 6:

$$
\frac{d^{2} y}{d x^{2}}=x
$$

The highest derivative in the example is two. Therefore, it is a second-order equation. Examples 1 and 4 also show second order equations. Examples 2,3 and 5 are first order equations. The term 'Higher order' refers to an order of three or more.

Separable:

When the variables of an ODE can be rearranged on to opposite sides of the equal sign.

Ex 7:

$$
\frac{d y}{d x}=x+x y
$$

For more information, visit a tutor. All appointments are available in-person at the Student Success Center, located in the Library, or online.

$$
\begin{aligned}
& \frac{d y}{d x}=x(1+y) \\
& \frac{d y}{(1+y)}=x d x
\end{aligned}
$$

The example ODE equation was first factored into x and (1+y). The term (1+y) was divided to the left hand side. The x variable was multiplied to the right hand side. Separating equations in this way allows for easy integration.

Linear:

An equation that forms a line when plotted. The dependent variable should always be to a power of 1 and should not be multiplied by another dependent variable term.

Ex 8:

$$
a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0
$$

Ex 9:

$$
a \frac{d^{2} y}{d x^{2}} \frac{d y}{d x}+b \frac{d y}{d x}+c y^{2}=0
$$

Example 8 is the form of a second-order linear equation with coefficients a, b, and c. Example 9 is a non-linear second-order equation with the same coefficients. Note why the equations are different.

Homogeneous:

A linear equation that is equal to zero when only the dependent variable terms are on the left-hand side of the equal sign.

Ex 10:

$$
\frac{d y}{d x}+y=0
$$

The example above is homogenous. Examples 1,3 , and 8 are also homogeneous. Examples 2,4-7, and 9 are not homogenous.

For more information, visit a tutor. All appointments are available in-person at the Student Success Center, located in the Library, or online.

