

THERMODYNAMICS REVIEW

Energy Balance – Closed Systems	$E_2 - E_1 = Q - W$
Energy Rate Balance – Closed	$\frac{dE}{dt} = \dot{Q} - \dot{W}$
Energy Rate Balance – Steady State	$0 = \dot{Q}_{CV} - \dot{W}_{CV} + \sum_{i} \dot{m}_{i} \left(h_{i} + \frac{V_{i}^{2}}{2} + gz_{i} \right) - \sum_{e} \dot{m}_{e} \left(h_{e} + \frac{V_{e}^{2}}{2} + gz_{e} \right)$
Energy Balance – Power Cycle	$W_{cycle} = Q_{in} - Q_{out}$
Thermal Efficiency – Power Cycle	$\eta = rac{W_{cycle}}{Q_{in}}$
Energy Balance – Refrigeration/Heat Pump Cycle	$W_{cycle} = Q_{out} - Q_{in}$
Coefficient of Performance – Refrigeration	$\beta = \frac{Q_{in}}{W_{cycle}}$
Coefficient of Performance – Heat Pump	$eta = rac{Q_{in}}{W_{cycle}}$ $\gamma = rac{Q_{out}}{W_{cycle}}$
Closed System Entropy Balance	$S_2 - S_1 = \int_1^2 \left(\frac{\delta Q}{T}\right)_b + \sigma$
Steady State Control Volume Entropy Rate Balance	$0 = \sum_{j} \frac{\dot{Q}_{j}}{T_{j}} + \sum_{i} \dot{m}_{i} s_{i} - \sum_{e} \dot{m}_{e} s_{e} + \dot{\sigma}_{CV}$ $\frac{T_{2}}{T_{1}} = \left(\frac{p_{2}}{p_{1}}\right)^{\frac{k-1}{k}} \qquad \frac{T_{2}}{T_{1}} = \left(\frac{v_{1}}{v_{2}}\right)^{k-1} \qquad \frac{p_{2}}{p_{1}} = \left(\frac{v_{1}}{v_{2}}\right)^{k}$
Ideal Gas Relations – Constant Specific Heat ratio, k, s1=s2	$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{k-1}{k}} \qquad \frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{k-1} \qquad \frac{p_2}{p_1} = \left(\frac{v_1}{v_2}\right)^k$
Ideal Gas Relation for Entropy – Constant Specific Heat	$s(T_2, p_2) - s(T_1, p_1) = c_p \ln\left(\frac{T_2}{T_1}\right) - R\ln\left(\frac{p_2}{p_1}\right)$
Isentropic Efficiency Compressor & Pump	$\eta_c = rac{\left(-rac{\dot{W}_{CV}}{\dot{m}} ight)_s}{-rac{\dot{W}_{CV}}{\dot{m}}} = rac{h_{2s}-h_1}{h_2-h_1}$
Isentropic Efficiency Turbine	$\eta_t = \frac{-\frac{\dot{W}_{CV}}{\dot{m}}}{\left(-\frac{\dot{W}_{CV}}{\dot{m}}\right)_s} = \frac{h_1 - h_2}{h_1 - h_{2s}}$
Saturation Table – Property Relationship (use for v, u, h, & s)	$u_1 = u_f + x_1(u_g - u_f)$
Tds Relations	Tds = du - pdv $Tds = dh - vdp$

For more information, make an appointment for your course with one of our <u>content tutors</u>. All appointments are available in-person at the Student Success Center, located in the Library, or online.