THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

MECHANICS OF MATERIALS: NORMAL \& SHEAR STRESS

Normal Stress Caused by Bending:

- Recall shear and moment calculation and graphing techniques:

$$
\begin{gathered}
M=\int V d x=\iint w d x \\
w=\frac{d}{d x} w=\frac{d^{2}}{d x^{2}} M
\end{gathered}
$$

Load (w)	Shear (V)	Moment $\mathbf{(M)}$
0	0	0
$-w$ (constant)	$w x$ (linear)	$w x^{2}$ (parabolic)
$-w x$ (linear)	$w x^{2}$ (parabolic)	$w x^{3}$
$-w x^{2}$ (parabolic)	$w x^{3}$	$w x^{4}$

- The Neutral Axis is the axis at which a member in bending experiences no normal stress:

- When bending, we observe how stress varies as a point moves away from the Neutral Axis.

$$
\begin{gathered}
\varepsilon=-\frac{y}{c} \cdot \varepsilon_{\max } \text { such that } \sigma_{x}=E\left(-\frac{y}{c}\right) \cdot \varepsilon_{\max } \text { and } \sigma_{x}=-\frac{y}{c} \cdot \sigma_{\max } \\
I=\int y^{2} d A=\frac{M c}{\sigma_{\max }} \text { or } \sigma_{x}=-\frac{M y}{I} \text { for any } y \begin{array}{c}
\text { The negative sign is necessary } \\
\begin{array}{c}
\text { because for a positive } y \text { point, the } \\
\text { beam experiences compression }
\end{array}
\end{array}
\end{gathered}
$$

- The Parallel Axis Theorem is often used for objects that are not strictly rectangular or circular, but rather are comprised of several shapes:

$$
I_{i}=I^{\prime}+A_{i} d_{i}^{2}
$$

Rectangle	$I_{\text {rectangle }}=\frac{1}{12} b h^{3}$
Circle	$I_{\text {circle }}=\frac{1}{4} \pi R^{4}$
Triangle	$I_{\text {triangle }}=\frac{1}{36} b h^{3}$
Semi-circle	$I_{\text {semicircle }}=\frac{1}{8} \pi R^{4}$

b is in the direction parallel (II) to the NA h is in the direction perpendicular (\perp) to the NA

- Unsymmetrical bending due to moments at angles requires the moment vector be decomposed:

Shear Stress Caused By Shear Force:

- There are two directions in which shear force acts: longitudinal (along the length of the beam) and transverse (on cut plane)

1. Horizontal shear (longitudinal): $\Delta H=\frac{V Q}{I} \Delta x$
2. Transverse shear: $\tau_{a v g}=\frac{V Q}{I t}$ and $\tau_{\max }=1.5 \cdot \frac{V_{\max }}{A}$

- \quad Shear flow (shear force per unit length): $q=\frac{\Delta H}{\Delta x}=\frac{V Q}{I}$

\bar{y}	Distance from NA to the centroid of A
A	Area above the point or above the Shear Plane (opposite side of NA)
I	Moment of inertia of entire object (independent of A or \bar{y})
V	Transverse force applied
t	Thickness of the object at the point observed or Shear Plane

