

MECHANICS OF MATERIALS: AXIAL LOADS & TORSION

Axial Loads:

$$\varepsilon = \frac{\delta}{L} = \frac{\sigma}{\tau} = \frac{1}{E} \cdot \frac{P}{A}$$
 such that $\delta = \frac{PL}{AE}$ for homogenous and uniform cross – sections

$$\delta = \int_{0}^{L_0} \frac{P(x)}{A(x) \cdot E(x)} dx = \sum_{i=0}^{n} \frac{P_i L_i}{A_i E_i}$$

- Superposition allows the problem to be worked by evaluating how much a body would move if it could. Then, the reaction force must be equal and opposite.
 - 1. Remove one wall support
 - 2. Break the body into sections where P, L, A, or E changes
 - 3. Find δ for each section and the resulting $\delta_{total} = \sum \delta_i$ (careful to mind signs)
 - 4. Find $\delta_{reaction}$ in terms of the reaction force R_{wall}
 - 5. Equate the deformations due to the true deflection being 0 ($\delta = 0 = \delta_{no \ wall} + \delta_{reaction}$)
 - 6. Solve for reaction force at the wall, R_{wall} , and consequently other reaction forces.
 - 7. Solve for the stress in each section (from step 2), where $P = R_{wall}$ for all sections and A varies.
- Thermal Stress is a result of heating or cooling and is dependent on the material's coefficient of thermal expansion, α (found in tables, measured in °F⁻¹ or °C⁻¹):

$$\delta_T = \alpha L \Delta T \qquad \varepsilon_T = \alpha \Delta T$$

• Stress concentrations arise when stress flow is abruptly "pinched" around a corner. Two common instances are holes and fillets in a flat plate. This is the reason sidewalk corners crack first.

Given D, d, and r/d, K can be found using provided charts. K tells the ratio of the maximum stress observed to the average.

Torsion:

Twisting engenders a shear stress:

 $au_{max} = rac{Tc}{I}$ for max stress occurring at

Angle of twist measures deformation and is dependent on the length and diameter. • Shear strain is independent of both diameter and length:

$$\gamma_{max} = \frac{c\phi}{L} = \frac{\tau_{max}}{G} = \frac{TC}{JG}$$
 and $\phi = \frac{TL}{JG}$

Power transmissions can be analyzed to understand the minimum shaft diameter for a • given power requirement (or max power for given shaft diameter):

$$P = t \cdot \omega = 2\pi \quad such \ that \quad T = \frac{P}{2\pi f} = \frac{\tau_{max} \cdot J}{c}$$
$$\frac{J}{C} = \frac{P}{2\pi f} \cdot \frac{1}{\tau_{max}}$$
$$J = \frac{TL}{G\phi} = \frac{P}{2\pi f} \cdot \frac{L}{G\phi}$$