CAL C: POLAR, CYLINDRICAL, \& SPHERICAL COORDINATES

Polar and Cylindrical Coordinates:

$$
\iint_{R} f(x, y) d x d y=\iint_{G} f(r \cos \theta, r \sin \theta) \cdot r d r d \theta
$$

- For limits of integration for a polar double integral, draw a ray extending radially outward from the origin and determine the functions at which it enters and at which it exits. For the θ limits, determine the initial and final angle of this ray. Note: θ will usually be the last variable of integration.
- The Cylindrical coordinate system is built on the polar coordinate system with the addition of a variable to describe the distance from the r - θ plane (thought of as height"), notated as z. Note that this z is equivalent to that of the rectangular coordinate z.

$$
\iiint_{D} f d V=\iiint_{D} f d z r d r d \theta
$$

- The limits of integration are similar to polar for r and θ and to rectangular for z. Note: θ will usually be the last variable of integration.

Spherical Coordinates:

- Spherical coordinates are defined by three parameters:

1) ρ, the radial distance from a point to the origin.
2) ϕ, the polar angle between a point and the positive z-axis.

3) θ, the azimuth angle between the shadow of ρ on the $x-y$ plane and positive x-axis.

$$
\iiint_{D} f(x, y, z) d V=\iiint_{D} f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \theta) d V=\iiint_{D} f(\rho, \phi, \theta) \rho^{2} \sin \phi d \rho d \phi d \theta
$$

- The limits of integration are found by similar fashion as cylindrical. Typically, first find ρ limits by drawing a ray from the origin through the region at angle ϕ and observe the functions which it enters and exits. Next, determine ϕ limits by observing the minimum (\leq 0°) and maximum ($\geq 180^{\circ}$) angle made with the positive z-axis. Finally, observe the "shadow" of ray ρ on the $x-y$ plane and determine the minimum and maximum angles it makes with the positive x-axis as it sweeps through the entire region.

Cylindrical to Rectangular	Spherical to Rectangular	Spherical to Cylindrical
$x=r \cos \theta$	$x=\rho \sin \phi \cos \theta$	$r=\rho \sin \phi$
$y=r \sin \theta$	$y=\rho \sin \phi \sin \theta$	$z=\rho \cos \phi$
$z=z$	$z=\rho \cos \phi$	$\theta=\theta$

$d V=$	$d x d y d z$	Rectangular

	$d z r d r d \theta$	Cylindrical
	$\rho^{2} \sin \phi d \rho d \phi d \theta$	Spherical

Change of Variables:

- A change of variables or coordinate systems is often useful in solving complex integrals. When doing so, a Jacobian is a necessary accompaniment:

$$
J(u, v)=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\frac{\partial x}{\partial u} \cdot \frac{\partial y}{\partial v}-\frac{\partial y}{\partial u} \cdot \frac{\partial x}{\partial v}=\frac{\partial(x, y)}{\partial(u, v)}
$$

- For example, the following Jacobian is required to transform cartesian to polar coordinates:

$$
J(r, \theta)=\left|\begin{array}{ll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta}
\end{array}\right|=\left|\begin{array}{ll}
\frac{\partial(r \cos \theta)}{\partial r} & \frac{\partial(r \cos \theta)}{\partial \theta} \\
\frac{\partial(r \sin \theta)}{\partial \theta} & \frac{\partial(r \sin \theta)}{\partial \theta}
\end{array}\right|=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=r
$$

- Likewise, it can be shown that $J(\rho, \phi, \theta)=\rho^{2} \sin \phi$ by adding a third row $\left(\frac{\partial z}{\partial()}\right)$ and third column $\left(\frac{\partial()}{\partial \phi}\right)$.

For more information, visit a tutor. All appointments are available in-person at the Student Success Center, located in the Library, or online. Adapted from Hass, J., Weir, M.D., \& Thomas, G.B. (2012). University Calculus: Early Transcendentals (2nd ed.). Boston: Pearson Education.

