CAL C: PARAMETERIZATION, TNB FRAME OF REFERENCE, \& EXTREME VALUES

Parameterization:

- Curves in space can be parameterized using intermediate variables, such as t (which can be thought of as time). When $\boldsymbol{r}(t)=f(t) \boldsymbol{i}+g(t) \boldsymbol{j}+h(t) \boldsymbol{k}$, the head of the vector traces out the path of the curve as a function of t over some (time) interval I. All differential rules hold true when a curve is parameterized.
- Introducing \boldsymbol{r} as position and t as time allows for expansion to use $\boldsymbol{v}=\frac{d r}{d t}$ for velocity and $=\frac{d}{d t}\left(\frac{d r}{d t}\right)=\frac{d v}{d t}$. This allows for simplification of formulas such as arc length:

$$
L=\int_{t=a}^{t=b} \sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}+\left(\frac{d z}{d t}\right)^{2}} d t=\int_{t=a}^{t=b} \sqrt{|\boldsymbol{v}|} d t
$$

TNB Frame of Reference:

- Rather than defining the reference frame from a stationary observer of an airplane, it can be defined from an observer inside the airplane. This frame of reference is completed with 3 descriptions of motion:
- The unit tangent vector, T. This defines forward motion, normalized to be a unit vector:

$$
T=\frac{\frac{d r}{d s}}{\left|\frac{d r}{d s}\right|}=\frac{v}{|\boldsymbol{v}|}
$$

- The principal unit normal vector, \boldsymbol{N}. This defines the direction which the curve is turning and is, by definition, orthogonal to \boldsymbol{T}. It is normalized by dividing the orthogonal vector by length of κ, which defines the intensity/amount of the turn.

$$
\boldsymbol{N}=\frac{1}{\kappa} \cdot \frac{d T}{d s} \quad \text { where } \quad \kappa=\frac{1}{|v|} \cdot\left|\frac{d T}{d t}\right| \quad \text { and therefore } \quad N=\frac{\frac{d T}{d s}}{\left|\frac{d T}{d s}\right|}
$$

- The binormal vector, B. This is defined as the cross product of T and N and is used in finding the torsion, τ, which describes how the path twists.

$$
\tau=-\frac{d \boldsymbol{B}}{d s} \cdot \boldsymbol{N} \text { where } \boldsymbol{B}=\boldsymbol{T} \times \boldsymbol{N}
$$

- These are used in finding the acceleration vector, \boldsymbol{a} :

> Bathagorean's Theorem
$\boldsymbol{a}=a_{T} \cdot \boldsymbol{T}+a_{N} \cdot \boldsymbol{N} \quad$ where $\quad a_{T}=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}} \quad$ and $\quad a_{N}=\kappa \cdot|\boldsymbol{v}|^{2}=\sqrt{|\boldsymbol{a}|^{2}-a_{T}^{2}}$

For more information, visit a tutor. All appointments are available in-person at the Student Success Center, located in the Library, or online. Adapted from Hass, J., Weir, M.D., \& Thomas, G.B. (2012). University Calculus: Early Transcendentals (2nd ed.). Boston: Pearson Education.

