CAL C: LINE INTEGRALS \& VECTOR FIELDS

Line Integrals and Vector Fields:

- Line integrals are used as a general form of integration over a curve C rather than an interval. The curve needs to be parameterized using a ray that traces location as a function of t :

$$
\boldsymbol{r}(t)=g(t) \mathbf{i}+h(t) \mathbf{j}+k(t) \mathbf{k} \text { for } a \leq t \leq b \text { such that } f(x, y, z)=f(g(t), h(t), k(t))
$$

- Knowing that $\left|\frac{d s}{d t}\right|=|\boldsymbol{v}(t)|$, a line integral is written:

$$
\int_{C} f(x, y, z) d s=\int_{a}^{b} f(g(t), h(t), k(t)) \cdot|\boldsymbol{v}(t)| d t
$$

- Line integrals can be used in vector fields to find work, flux, and more. A vector field is defined:

$$
F(x, y, z)=M(x, y, z) \mathbf{i}+N(x, y, z) \mathbf{j}+P(x, y, z) \boldsymbol{k}
$$

- One notable vector field is the gradient field, defined by the gradient vector F of a scalar function f:

$$
\nabla f=\frac{\partial f}{\partial x} \mathbf{i}+\frac{\partial f}{\partial y} \mathbf{j}+\frac{\partial f}{\partial z} \mathbf{k}
$$

- Knowing that the tangent vector is defined as $T=\frac{d r}{d s^{\prime}}$ which defines the forward motion of the path, the line integral of a vector field \boldsymbol{F} over path $\boldsymbol{r}(t)$ can be written:

$$
\int_{C} \boldsymbol{F} \cdot \boldsymbol{T} d s=\int_{C}\left(\boldsymbol{F} \cdot \frac{d \boldsymbol{r}}{d s}\right) d s=\int_{C} \boldsymbol{F} \cdot d \boldsymbol{r}=\int_{a}^{b} \boldsymbol{F}(\boldsymbol{r}(t)) \cdot \frac{d \boldsymbol{r}}{d t} d t
$$

- It is known that this integral is equal to the work done by a force \boldsymbol{F} over a curve C from a to b as well as the flow of a fluid along the curve C.
- The flux of \boldsymbol{F} across the curve C is defined by the scalar component of the fluid's velocity in the direction of the curve's outward facing normal vector (while the tangential vector leads to flow along the curve, flux is concerned with flow across the curve).

$$
\text { Flux }=\int_{C} \boldsymbol{F} \cdot \boldsymbol{n} d s=\int_{C} \boldsymbol{F} \cdot(\boldsymbol{T} \times \mathbf{k}) d s=\int_{C}\left(M \frac{d y}{d s}-N \frac{d x}{d s}\right) d s=\oint_{C} M d y-N d x
$$

