STUDENT SUCCESS CENTER
THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

CALC: FUNCTIONS \& GRADIENT

Functions of Several Variables:

- Just as a typical one-dimensional function maps an input (x, horizontal axis) to an output (y, vertical axis), so a two-dimensional function maps inputs (x and y) to an output (z, height). All rules still apply to higher-order functions and many properties scale.

Directional Derivatives and Gradient:

- Directional derivatives describe how rapidly a function is changing in a certain direction as defined by the unit vector of \boldsymbol{v}. A typical partial derivative is a specific directional derivative, with the unit vector in the \boldsymbol{i} or \boldsymbol{j} direction. If you are given a vector \mathbf{u} that is not a unit vector, then the unit vector \mathbf{v} would be $\mathbf{u} /[\mathbf{u}]$.
- Gradients define the rate of change in the direction that water would flow along the surface; that is, the direction of greatest increase/decrease at a specific point. A vector orthogonal to the gradient experiences no change. This is analogous to a contour map.

The gradient of f is noted by the

> Greek letter "del":

$$
\nabla f=\frac{\partial f}{\partial x} \boldsymbol{i}+\frac{\partial f}{\partial y} \boldsymbol{j}
$$

The directional derivative at point P_{0} in the

$$
\text { direction of } \boldsymbol{u}=\frac{v}{|v|} \text { : }
$$

$$
\left.\left(\frac{\partial f}{\partial s}\right)\right|_{\boldsymbol{u}, P_{0}}=\left.(\nabla f)\right|_{P_{0}} \cdot \boldsymbol{u}
$$

Extreme Values:

- First, determine the location (a, b) such that $f_{x}=f_{y}=0$. Note: this often requires factoring.
- Next, apply the second derivative test to determine which feature is located at (a, b).
- If the discriminant of f is <0 (negative), f has a saddle point at (a, b).
- If the discriminant of f is $=0$, the test is inconclusive.
- If the discriminant of f is >0 (positive), evaluate the following rules:
- If $f_{x x}<0$ (negative) then there is a local maximum at (a, b).
- If $f_{x x}>0$ (positive) then there is a local minimum at (a, b).
- The discriminant is defined as $f_{x x} \cdot f_{y y}-f_{x y}^{2}$, which can be remembered using $\left|\begin{array}{ll}f_{x x} & f_{x y} \\ f_{x y} & f_{y y}\end{array}\right|$

For more information, visit a tutor. All appointments are available in-person at the Student Success Center, located in the Library, or online. Adapted from Hass, J., Weir, M.D., \& Thomas, G.B. (2012). University Calculus: Early Transcendentals (2nd ed.). Boston: Pearson Education.

