CALCULUS B REVIEW

Trig Sub Reference Triangle

$x=a \tan \theta$
$\sqrt{a^{2}+x^{2}}=a|\sec \theta|$

$x=a \sin \theta$
$\sqrt{a^{2}-x^{2}}=a|\cos \theta| \quad \sqrt{x^{2}-a^{2}}=a|\tan \theta|$

Partial Fraction Decomposition

Given two functions, $P(x)$ and $Q(x)$, when integrating $\int \frac{P(x)}{Q(x)} d x$, and $P(x)$ is smaller in degree than $Q(x)$, the integral decomposes into:

$$
\begin{array}{ll}
(a x+b)^{k} & \frac{A_{1}}{a x+b}+\frac{A_{2}}{(a x+b)^{2}}+\cdots+ \\
\frac{A_{k}}{(a x+b)^{k}} & \\
\left(a x^{2}+b x+c\right)^{k} & \frac{A_{1} x+B_{1}}{a x^{2}+b x+c}+\cdots+\frac{A_{k} x+B_{k}}{\left(a x^{2}+b x+c\right)^{k}}
\end{array}
$$

Trapezoidal Rule

To ap joximitie $\int_{a}^{b} f^{\prime}(x) d x$, use

$$
T=\frac{\wedge \tilde{x}}{2}\left(y_{0}+2 y_{1}+\cdots+2 y_{n-1}+y_{n}\right)
$$

The y 's are the values of f at the partition points

$$
x_{0}=a, x_{1}=a+\Delta x, \ldots x_{n-1}=a+(n-1) \Delta x
$$

$x_{n}=b$, Where $\Delta x=\frac{(\hat{b}-\tilde{u})}{n}$

Simpson's Rule

To approximate $\int_{a}^{b} f(x) d x$, use
$S=\frac{\Delta x}{3}\left(y_{0}+4 y_{1}+2 y_{2}+\cdots+2 y_{n-2}+4 y_{n-1}+y_{n}\right.$
The number n is even, and $\Delta x=\frac{(b-a)}{n}$

Improper Integrals

Typel

1. If $f(x)$ is continuous on $[a, \infty)$, then

$$
\int_{a}^{\infty} f(x) d x=\lim _{b \rightarrow \infty} \int_{a}^{b} f(x) d x
$$

2. If $f(x)$ is continuous on $(-\infty, b]$, then

$$
\int_{-\infty}^{b} f(x) d x=\lim _{a \rightarrow-\infty} \int_{a}^{b} f(x) d x
$$

3. If $f(x)$ is continuous on $(-\infty, \infty)$, then
$\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{c} f(x) d x+\int_{c}^{\infty} f(x) d x$

Type II

1. If $f(x)$ is cont. on $(a, b]$ and discont. at a, thieii

$$
\int_{a}^{b} f^{\prime}(x) d x=\operatorname{iim}_{c \rightarrow a^{+}} f_{c}^{b} f^{\prime}(x) d x
$$

2. If $f(x)$ is cont. on $[a, b)$ and discont. at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{c \rightarrow b^{-}} \int_{a}^{c} f(x) d x
$$

3. If $f(x)$ is discont. at c, where $a<c<$ b, and cont. on $[a, c) \cup(c, b]$, then

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

In each case, if the limit is finite, the improper integrals converges and that the limit is the value of the improper integral. If the limit does not exist, the integral diverges.

Polar Coordinates

Equations relating Polar and Cartesian

$$
\begin{array}{ll}
x=r \cos \theta, & y=r \sin \theta, \\
\tan \theta=\frac{y}{x}, & r^{2}=x^{2}+y^{2}
\end{array}
$$

Sequences

The sequence converges to the finite number L if the limit of the sequence

$$
\lim _{n \rightarrow \infty} a_{n}=L
$$

The sequence diverges to negative or positive infinity

$$
\lim _{n \rightarrow \infty} a_{n}= \pm \infty
$$

Infinite Series

Given a sequence of numbers $\left\{a_{n}\right\}$, $a_{1}+a_{2}+\cdots+a_{n}$, is an infinite series. The number a_{n} is the \boldsymbol{n} th term of the series. The sequence $\sum_{k=1}^{n} a_{k}$ is the sequence of partial sums of the series. If the sequence of partial sums converges to a limit \mathbf{L}, we say that the series converges and its sum is \mathbf{L}. If the sequence of partial sums does not converge to a number, we say it diverges.

Convergence Tests

Comparison Test
Let $\sum a_{n}, \sum c_{n}$, and $\sum d_{n}$ be series with nonnegative terms. Suppose, for some number
N , that

$$
d_{n} \leq a_{n} \leq c_{n} \text { For all } n>N
$$

(A) If $\sum c_{n}$ converges, then $\sum a_{n}$ also converges
(B) If $\sum d_{n}$ diverges, then $\sum a_{n}$ also diverges

P-Series Tes \dagger

The P-Series $\sum_{n=1}^{\infty} \frac{1}{n^{p}}$ converges if $p>1$, diverges if $p \leq 1$

Limit Comparison Test

Suppose that $a_{n}>0$ and $b_{n}>0$ for all $n \geq N$

$$
\text { If } \lim _{n \rightarrow \infty} \frac{a_{n}}{b_{n}} \text { equals: }
$$

1) $c>0$, then both series either converge or diverge
2) 0 , and $\sum b_{n}$ converges, then $\sum a_{n}$ converges
3) ∞, and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges

Ratio Test

Let $\sum a_{n}$ be a series with positive terms, compute

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n}+1\right|}{\left|a_{n}\right|}=p
$$

Converges if $p<1$, diverges if $p>1$ or is infinite, inconclusive if $p=1$

Root Test

Let $\sum a_{n}$ be a series with $a_{n}>0$ for $n \geq N$

$$
\lim _{n \rightarrow \infty} \sqrt[n]{a_{n}}=p
$$

Converges if $p<1$, diverges if $p>1$ or is infinite, inconclusive if $p=1$

Alternating Series Test

$\sum_{n=1}^{\infty}(-1)^{n+1} u_{n}=u_{1}-u_{2}+u_{3}-u_{4} \cdots$
Converges if the following is satisfied: all u_{n} 's are positive, the positive u_{n} 's are non-increasing, and $u_{n} \rightarrow 0$

For more information on time management and to develop a personalized plan, visit an academic coach. All appointments are available in-person at the Student Success Center, located in the Library, or online.

