CAL A: EXTREME VALUES

Relative Extreme Values:

First Derivative Test:

- Local maximum at $x=c$ if f ' $(c)=0$ and the function changes from increasing to decreasing at $x=c$ and $f(c)$ is defined
- Local minimum at $x=c$ if f ' $(c)=0$ and the function changes from decreasing to increasing at $x=c$ and $f(c)$ is defined

Second Derivative Test:

- Local maximum at $x=c$ if f ' $(c)=0$ and f " $(c)<0$ and $f(c)$ is defined
- Local minimum at $x=c$ if f ' $(c)=0$ and f " $(c)>0$ and $f(c)$ is defined

Example: Find relative max./min. of $f(x)=3 x^{2}-12 x+4$.

First Derivative Test:

- $f^{\prime}(x)=6 x-12=0$

Critical Point at $\mathrm{x}=2$

- On $(-\infty, 2)$, let the test point be $x=0$.
- $f^{\prime}(0)=6(0)-12=-12<0$
$f(x)$ is decreasing on interval $(-\infty, 2)$
- On $(2, \infty)$, let the test point be $x=3$.
- $f^{\prime}(3)=6(3)-12=18-12=6>0$
$f(x)$ is increasing on interval $(2, \infty)$
- Since $f(x)$ changes from decreasing to increasing at the critical point $x=2, x=2$ is a relative minimum.
- Define $f(c)$

Second Derivative Test:

- $f^{\prime}(x)=6 x-12=0$

Critical Point at $\mathrm{x}=2$

- $f^{\prime \prime}(x)=6$
- $f^{\prime \prime}(2)=6>0$
$f(x)$ is concave up at $x=2$
- Since $f(x)$ is concave up at the critical point $x=2, x=2$ is a relative minimum
- Define $f(c)$

Absolute Extreme Values:

1. Find critical points
2. Evaluate $f(x)$ for critical points and endpoints
3. Compare $f(x)$ values to determine maximum and minimum

Example: Find absolute max. and min. of $f(x)=x^{3}-3 x+5$ on the interval $[0,2]$.

$$
\begin{aligned}
& \text { - } f^{\prime}(x)=3 x^{2}-3=0 \\
& \text { Critical points are } x=-1 \text { and } x=1
\end{aligned}
$$

- $f(0)=(0)^{3}-3(0)+5=5$

$$
\begin{aligned}
& f(1)=(1)^{3}-3(1)+5=3 \\
& f(2)=(2)^{3}-3(2)+5=7
\end{aligned}
$$

Critical point $x=-1$ is not included because -1 is not on the interval $[0,2]^{}$

- Absolute maximum at $\mathrm{x}=2$ and absolute minimum at $\mathrm{x}=1$.

For more information, visit a tutor. All appointments are available in-person at the Student Success Center, located in the Library, or online. Adapted from Hass, J., Weir, M.D., \& Thomas, G.B. (2012). University Calculus: Early Transcendentals (2nd ed.). Boston: Pearson Education.

