## CAL A: DERIVATIVES

## Definition of the Derivative:

- $\frac{d}{d x}(f(x))=f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$


## Derivative Properties:

- $(c \cdot f(x))^{\prime}=c \cdot f^{\prime}(x)$
- $(f(x) \pm g(x))^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$
- $\frac{d}{d x}(c)=0$


## Power Rule:

- $\frac{d}{d x}\left(x^{n}\right)=n \cdot x^{n-1}$


## Product Rule:

Used to take the derivative of a product of two functions:

- $\frac{d}{d x}[f(x) \cdot g(x)]=f^{\prime}(x) \cdot g(x)+f(x)$. $g^{\prime}(x)$

Example: $\frac{d}{d x}\left[\left(3-x^{2}\right)(\sin x)\right]$
$=\frac{d}{d x}\left(3-x^{2}\right) \cdot(\sin x)+\left(3-x^{2}\right) \cdot \frac{d}{d x}(\sin x)$
$=(-2 x) \cdot(\sin x)+\left(3-x^{2}\right) \cdot(\cos x)$

## Quotient Rule:

Used to take the derivative of a quotient of two functions:

- $\frac{d}{d x}\left[\frac{f(x)}{g(x)}\right]=\frac{f(x) \cdot g(x)-f(x) \cdot g \prime(x)}{[g(x)]^{2}}$

Example: $\frac{d}{d x}\left(\frac{x^{3}-x+1}{\ln x}\right)$
$=\frac{\frac{d}{d x}\left(x^{3}-x+1\right) \cdot(\ln x)-\left(x^{3}-x+1\right) \cdot \frac{d}{d x}(\ln x)}{(\ln x)^{2}}$
$=\frac{\left(3 x^{2}-1\right) \cdot \ln x-\left(x^{3}-x+1\right) \cdot \frac{1}{x}}{(\ln x)^{2}}$

## Chain Rule:

Used to take the derivative of a composite function (a function within another function:

- $\frac{d}{d x}[f(g(x))]=f^{\prime}(g(x)) \cdot g^{\prime}(x)$

Example: $\frac{d}{d x}\left[(2 x-7)^{3}\right]$
$=3(2 x-7)^{2} \cdot \frac{d}{d x}(2 x-7)=3(2 x-7)^{2} \cdot 2$
$=6(2 x-7)^{2}$

## L'Hopital's Rule:

Used when the limit of a fraction when direct substitution gives and indeterminate form:

- If $\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\frac{0}{0}$ or $\underset{ \pm \infty}{ \pm \infty}$,
then $\lim _{x \rightarrow a}\left[\frac{f(x)}{g(x)}\right]=\lim _{x \rightarrow a}\left[\frac{f(x)}{g^{\prime}(x)}\right]$


## Curve Sketching Definitions:

- Critical Point at $x=c$ if $f^{\prime}(c)=0$ or is undefined
- Function is increasing if $f^{\prime}(x)>0$
- Function is decreasing if $f^{\prime}(x)<0$
- Function is concave up if $f$ " $(x)>0$
- Function is concave down if $f$ " $(x)<0$
- Possible Inflection Point at $x=c$ if $f$ "(c) $=0$ or is undefined and concavity changes

Newton's Method:

- A technique for finding solutionsto the equation $f(x)=0$.
- $x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}$


## Common Derivatives:

- $\frac{d}{d x}(x)=1$
- $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
- $\frac{d}{d x}\left(a^{x}\right)=a^{x} \cdot \ln (a)$
- $\frac{d}{d x}[\ln (x)]=\frac{1}{x}$
- $\frac{d}{d x}\left[\log _{a}(x)\right]=\frac{1}{x \cdot \ln (a)}$
- $\frac{d}{d x}[\sin (x)]=\cos (x)$
- $\frac{d}{d x}[\cos (x)]=-\sin (x)$
- $\frac{d}{d x}[\tan (x)]=\sec ^{2}(x)$
- $\frac{d}{d x}[\cot (x)]=-\csc ^{2}(x)$
- $\frac{d}{d x}[\sec (x)]=\sec (x) \cdot \tan (x)$
- $\frac{d}{d x}[\csc (x)]=-\csc (x) \cdot \cot (x)$
- $\frac{d}{d x}\left[\sin ^{-1}(x)\right]=\frac{1}{\sqrt{1-x^{2}}}$
- $\frac{d}{d x}\left[\cos ^{-1}(x)\right]=-\frac{1}{\sqrt{1-x^{2}}}$
- $\frac{d}{d x}\left[\tan ^{-1}(x)\right]=\frac{1}{1+x^{2}}$
- $\frac{d}{d x}\left[\cot ^{-1}(x)\right]=-\frac{1}{1+x^{2}}$
- $\frac{d}{d x}\left[\sec ^{-1}(x)\right]=\frac{1}{|x| \sqrt{x^{2}-1}}$
- $\frac{d}{d x}\left[\csc ^{-1}(x)\right]=-\frac{1}{|x| \sqrt{x^{2}-1}}$


## Optimization:

Steps to find the maximum or minimum of a function:

1. Draw a picture and assign variables
2. Write an equation for the variable being optimized (rewrite the unknown as a function of a single variable if applicable)
3. Test critical points and endpoints to determine absolute maximum or minimum
4. $L=6$ is a minimum and not a
maximum - use the $2^{\text {nd }}$ derivative test.

## Related Rates:

Steps to find the rate of change of a variable using other known rates of change:

1. Draw a picture and assign variables
2. Write an equation relating the variables
3. Differentiate with respect to $\dagger$
4. Solve for the unknown

Example: Find the rate of change of the area of a circle when the radius is 4 in . and the radius is increasing at a rate of $3 \mathrm{in} / \mathrm{min}$.

$$
\rightarrow \frac{d r}{d t}=3
$$

- $A=\pi r^{2}$
- $\frac{d A}{d t}=2 \pi r \cdot \frac{d r}{d t}=2 \pi(4)(3)=24 \pi$
- The rate of change of the area of the circle is $24 \pi \mathrm{in}^{2} / \mathrm{min}$.

