STUDENT SUCCESS CENTER
THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

ANOVA TABLES

Basic Table:

Source Of Variation	Sum Of Squares*	Degrees Of Freedom	Mean Square	F Test Statistic	F Critical Value
Treatments (k) (\# of population)	SSTR	k-1 (treatments- 1)	SSTR/df $=$ MSTR	MSTR/MSE (mean square of the treatments/ mean square error)	Use F chart
Error (random variable)	SSE	n_{T-k} (population - \#of treatments)	SSE/df = MSE		
Total	Total	n_{T-1} (population- 1)			

ANOVA Table with Blocks:

- Use when the main category being tested has sub-categories (blocks).

Source Of Variation	Sum Of Squares*	Degrees Of Freedom	Mean Square	F Test Statistic	F Critical Value
Treatments	SST	k-1	SST/k-1 $=$ MSTR	MSTR/MSE	Use F chart
Blocks	SSB	b-1	SSB/b-1 $=$ MSB	MSB/MSE	
Error	SSE	$(k-1)(b-1)$	SSE/(k-1)(b-1) $=$ MSE		
Total	SST	$\mathbf{n}_{T}-1$			

ANOVA Two Factor with Replication:

- Use when the 2+ main categories being tested have sub-categories.

Source Of Variation	Sum Of Squares*	Degrees Of Freedom	Mean Square	F Test Statistic	F Critical Value
Factor A	SSA	$\mathrm{a}-1$	SSA/a-1 $=$ MSA	MSA/MSE	Use the F chart
Factor B	SSB	$\mathrm{b}-1$	SSB/b-1 $=$ MSB	MSB/MSE	
Interaction	SSAB	$(a-1)(b-$ $1)$	SSAB/(a-1)(b-1) MSAB	MSAB/(a-1)(b-1)	
Error	SSE	$\mathrm{ab}(\mathrm{r}-1)$	SSE/ab $(\mathrm{n}-1)=$ MSE		
Total	SST	$\mathrm{n} T-1$			

*Sum of squares is calculated by: $\Sigma\left(\mathrm{x}_{\mathrm{i}}-\mathrm{x}\right)^{2}$ [take each data point, subtract the sample mean from each, square each difference, and add the squared numbers]

