THE BASICS OF ACIDS \& BASES

Acids:

The two main definitions of acids are:

- Bronsted-Lowry Acid - Molecules that can donate a hydrogen ion (proton donors)
- Lewis Acid - Molecules that can accept an electron pairs (electron acceptors)

Bases:

- Bronsted-Lowry Base - Molecules that can accept hydrogen ions (proton acceptors)
- Lewis Base - Molecules that can donate electron pairs (electron donors)
$\mathrm{pH}, \mathrm{pOH}, \mathrm{pKw}:$
- pH is a measure of the concentration of hydronium ions

$$
\begin{gathered}
p H=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right) \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-p H}}
\end{gathered}
$$

- pOH is a measure of the concentration of hydroxide ions

$$
\begin{gathered}
p O H=-\log \left(\left[\mathrm{OH}^{-}\right]\right) \\
{\left[\mathrm{OH}^{-}\right]=10^{-p O H}}
\end{gathered}
$$

- The p in front of the H and OH indicates a -log. This stands to reason that pKw is:

$$
p K w=-\log (K w)
$$

- The relationship between Kw, hydronium concentration, and hydroxide concentration is:

$$
\mathrm{Kw}=1 \mathrm{X} 10^{-14}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]
$$

- If we take the -log of everything we can develop the full relationship

$$
\begin{gathered}
-\log (K w)=-\log \left(1 X 10^{-14}\right)=-\log \left(\left[H_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]\right) \\
p K w=14=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)+\left(-\log \left(\left[O H^{-}\right]\right)=p H+p O H\right.
\end{gathered}
$$

- Example
- Calculate the [H $3 \mathrm{O}+$], [OH -], pH, and pOH for . 1 M HNO 3
- Since HNO 3 is a strong acid, so all the hydrogen ions will be dissociated in water to form H 3 O +

$$
\begin{gathered}
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=.1 \mathrm{M}} \\
p H=-\log \left(\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\right)=-\log (.1)=1 \\
p O H=p K a-p H=14-1=13 \\
{\left[O H^{-}\right]=10^{-p O H}=10^{-13}}
\end{gathered}
$$

- Calculate the [H $3 \mathrm{O}+$], $[\mathrm{OH}-$], pH , and pOH for .05 M NaOH
- This works the same way, but NaOH is a strong base so we can find the concentration of OH - first and work backward to find the concentration of H3O+

$$
\left[\mathrm{OH}^{-}\right]=[\mathrm{NaOH}]=.05 \mathrm{M}
$$

$$
\begin{gathered}
p O H=-\log \left(\left[\mathrm{OH}^{-}\right]\right)=-\log (.05)=1.30 \\
p H=14-p O H=14-1.3=12.70 \\
{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-12.7}=2 X 10^{-13}}
\end{gathered}
$$

