
AERODYNAMIC EFFECTS OF INTEGRATED LIFTING

SURFACES ON VERY LOW EARTH ORBIT SMALL

SATELLITES

by

WILLIAM J. BICKETT

A THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science

in
The Department of Mechanical and Aerospace Engineering

to
The School of Graduate Studies

of
The University of Alabama in Huntsville

HUNTSVILLE, ALABAMA

2019

In presenting this thesis in partial fulfillment of the requirements for a master’s de-
gree from The University of Alabama in Huntsville, I agree that the Library of this
University shall make it freely available for inspection. I further agree that permis-
sion for extensive copying for scholarly purposes may be granted by my advisor or,
in his/her absence, by the Chair of the Department or the Dean of the School of
Graduate Studies. It is also understood that due recognition shall be given to me
and to The University of Alabama in Huntsville in any scholarly use which may be
made of any material in this thesis.

William J. Bickett (date)

ii

10/23/2019

THESIS APPROVAL FORM

Submitted by William J. Bickett in partial fulfillment of the requirements for the
degree of Master of Science in Aerospace Systems Engineering and accepted on behalf
of the Faculty of the School of Graduate Studies by the thesis committee.

We, the undersigned members of the Graduate Faculty of The University of Alabama
in Huntsville, certify that we have advised and/or supervised the candidate of the
work described in this thesis. We further certify that we have reviewed the thesis
manuscript and approve it in partial fulfillment of the requirements for the degree of
Master of Science in Aerospace Systems Engineering.

Committee Chair
Dr. Kunning G. Xu (Date)

Dr. Jason Cassibry (Date)

Dr. James A Parsons (Date)

Department Chair
Dr. Keith Hollingsworth (Date)

College Dean
Dr. Shankar Mahalingam (Date)

Graduate Dean
Dr. David Berkowitz (Date)

iii

23 Oct 2019

GABE-DESK
Typewriter
10/23/19

ABSTRACT

School of Graduate Studies
The University of Alabama in Huntsville

Degree Masters of Science College/Dept. Engineering/Mechanical and

in Engineering Aerospace Engineering

Name of Candidate William J. Bickett

Title Aerodynamic Effects of Integrated Lifting Surfaces

on Very Low Earth Orbit Small Satellites

Small satellites are becoming increasingly popular due to their low cost and

ease of launch. One limitation that they possess, however, is their inability to house

the large imaging equipment needed for detailed observation of the Earths surface

from high altitudes. Operating these satellites at very low orbits in order to decrease

the observation range is a possible solution to this issue. Satellites orbiting at altitudes

under 150 km are subject to the effects of atmospheric drag which causes the satellite

to de-orbit quickly; however, if there is enough atmosphere to cause significant drag,

then there is also enough to generate significant lift which could be harnessed as a

maneuvering tool for adjustments to orbital parameters such as altitude and inclina-

tion. This thesis presents the modeling of the aerodynamic effects of integrated lifting

surfaces on 6U sized satellite orbits ranging from 100 km to 150km. The results show

that while the lifting surfaces create additional drag, they are also generate sufficient

lift force to reduce the effect of orbital altitude decay and the overall thrust impulse

which would be needed to sustain the satellites orbit.

iv

Abstract Approval: Committee Chair
Dr. Kunning G. Xu

Department Chair
Dr. Keith Hollingsworth

Graduate Dean
Dr. David Berkowitz

v

ACKNOWLEDGMENTS

I would foremost like to express my sincere appreciation to the members of

my committee. Each of you has played an important role in my journey to this point

in my academic career.

I am also extremely grateful for all of my friends and family. You have always

been encouraging and kept me focused on my goals.

Lastly, the completion of this thesis would have not been possible without the

love and support of my wife, Kelsey. Thank you for everything.

vi

TABLE OF CONTENTS

List of Figures x

List of Tables xii

List of Symbols xiii

Chapter

1 Introduction 1

1.1 A Brief History of Small Satellites . 1

1.2 Advantages and Disadvantages of Small Satellites 3

1.3 Current Orbit Maintenance Solutions for LEO Satellites 4

1.3.1 Using Thrust to Maintain Altitude 5

1.3.2 Tethers . 6

1.3.3 Lift as a Solution for Low Earth Orbit Maintenance 6

2 Methodology and Design of Experiment 8

2.1 Assumptions, Constraints, and Parameters 8

2.1.1 Earth Gravitation Model . 9

2.1.2 Satellite and Lifting Surface(s) Model 9

2.1.3 Atmospheric Density Model 10

2.2 Forces and Perturbations . 11

vii

2.2.1 Two-Body Gravitation Equations 12

2.2.2 J2 Effect . 12

2.2.3 Lift and Drag . 13

2.2.4 Thrust Matching . 16

2.3 Coordinate Frame Transformations 17

2.3.1 Cartesian State Vectors−→ Keplerian Orbit Elements 17

2.3.2 Keplerian Orbit Elements−→ Cartesian State Vectors 19

2.3.3 ECEF−→ Geodetic . 20

2.3.4 NED−→ ECEF . 22

2.4 4th-Order Runge-Kutta Integration 23

2.5 Angle-of-Attack Control Loop . 25

2.6 Algorithm Outline . 26

2.6.1 Inputs and Outputs . 26

2.6.2 Steps . 27

2.7 Validation . 29

3 Simulation Analysis and Results 31

3.1 Simulation Optimization . 31

3.2 Angle-of-Attack Variation . 32

3.2.1 Results . 33

3.3 Controlled Angle-of-Attack . 39

3.3.1 Results . 39

3.4 Thrust Matching . 47

viii

3.4.1 Results . 47

4 Conclusions 49

4.1 Overview . 49

4.2 Research Contribution . 51

4.3 Future Work . 52

APPENDIX A: Code 55

A.1 Simulation Code . 55

REFERENCES 77

ix

LIST OF FIGURES

FIGURE PAGE

1.1 Total Number of Launches [1] . 2

1.2 Launches by Organization Type [1] 3

2.1 6U CubeSat Render [2] . 10

2.2 Atmospheric Density as a Function of Altitude 11

2.3 Knudsen Number vs. Altitude for L = 10 cm and davg = 4.11× 10−10 m 14

2.4 Rarefied Flow Flat Plate Drag Polar for the Case of Specular Reflection 16

2.5 Keplerian Parameters for an Orbit [3] 18

2.6 ECEF/ECI Coordinates [3] . 23

2.7 Satellite Altitude vs. Time for CubeSats in a 200 km Sun Synchronous
Orbit . 30

3.1 Satellite X & Y Position for Varying Angle-of-Attack 36

3.2 Satellite Altitude vs. Time for varying Angle-of-Attack 37

3.3 Semi-Major Axis vs. Time for varying Angle-of-Attack 37

3.4 Eccentricity vs. Time for varying Angle-of-Attack 38

3.5 Controlled Angle of Attack vs. Time 42

3.6 Altitude vs. Time for a Controlled Angle-of-Attack 43

3.7 Orbital Velocity vs. Time for a Controlled Angle-of-Attack 43

3.8 Semi-Major Axis vs. Time for a Controlled Angle-of-Attack 44

3.9 Eccentricity vs. Time for a Controlled Angle-of-Attack 44

x

3.10 Gravity Force vs. Time for a Controlled Angle-of-Attack 45

3.11 Total Drag Force vs. Time for a Controlled Angle-of-Attack 45

3.12 Lift Force vs. Time for a Controlled Angle-of-Attack 46

3.13 Thrust Force vs. Time for a Controlled Angle-of-Attack 48

xi

LIST OF TABLES

TABLE PAGE

2.1 Satellite Characteristic Parameters 10

2.2 Knudsen Number Flow Regimes . 13

2.3 Simulation Inputs . 26

2.4 Simulation Outputs . 27

2.5 Simulation Runs for a CubeSat in a 200 km Sun-Synchronous Orbit . 29

3.1 Time-Step Convergence Results . 32

3.2 Global Parameters for α Runs . 33

3.3 Local Parameters for α Runs . 33

3.4 Global Parameters for α-Controlled Runs 39

3.5 Local Parameters for α-Controlled Runs 39

3.6 Parameters for Simulation α-Controlled with Thrust Matching Runs . 47

xii

LIST OF SYMBOLS

SYMBOL DEFINITION

3DOF three-degrees-of-freedom

α angle-of-attack of the satellite

λ geodetic latitude

µ standard gravitational parameter for Earth

ν true anomaly

ω argument of periapsis

Ω longitude of the ascending node

φ geodetic longitude

ρ atmospheric density

ρ0 atmospheric density at sea-level

a semi-major axis

A area

Asatellite cross-sectional area of the satellite

Awing reference area for the wing(s)

CD0 drag coefficient for the satellite body

CDα coefficient of drag due as a function of angle-of-attack

xiii

CLα coefficient of lift due as a function of angle-of-attack

D drag force

DCM direction-cosine matrix

dt iteration time-step for a simulation

e orbital eccentricity

~e eccentricity vector

ECEF Earth-Centered-Earth-Fixed coordinate system

ECI Earth-Centered-Intertial coordinate system

FG force due to gravity

FGx X component of force due to gravity

FGy Y component of force due to gravity

FGz Z component of force due to gravity

FJ2 perturbation force due to the Earth’s oblatness

FJ2x X component of perturbation force due to the Earth’s oblat-
ness

FJ2y Y component of perturbation force due to the Earth’s oblat-
ness

FJ2z Z component of perturbation force due to the Earth’s oblat-
ness

~h angular momentum vector

H atmospheric scale height

xiv

i orbital inclination

J2 parameter for the gravitational force perturbation due to the
oblatness of the earth

Boltzmann constant

Kn Knudsen number

L lift force

msatellite mass of the satellite

~n normal vector

NED North-East-Down coordinate system

p semi-latus rectum

r position

~r position vector

re Earth’s equatorial radius

R gas constant

RK4 4th-order Runge-Kutta algorithm

s molecular speed ratio: V/
√

2RT

T transformation matrix

v velocity

~v velocity vector

xv

Somewhere, something incredible is waiting to be known.

—Carl Sagan

CHAPTER 1

INTRODUCTION

Anticipating problems and figuring out how
to solve them is actually the opposite of
worrying: its productive.

—Chris Hadfield

1.1 A Brief History of Small Satellites

The turn of the 21st century saw the advent of a new kind of satellite which

would usher in a new era of space exploration and experimentation. These new

satellites were small, so small that they were dubbed ”mircosatellites” and because of

their size, these miniaturized satellites were much cheaper and easier to launch than

traditionally-sized satellites. First developed and launched by Stanford University,

this new class of small satellites soon saw a multi-organizational movement towards

standardization with the development of the CubeSat1 design program [4]. Initially

defined as a 10 cm cube with a mass not exceeding 1 kg [5], the goal of this program

was to develop a universal standard for micro and smaller class satellites in order to

increase the ease of development and streamline the production of these low cost space

missions for the public and private sector alike. Cubesats have since seen wide-spread

1See cubesat.org for more info. Last accessed on 10/21/2019.

1

adoption [6]. The success of microsatellites and their even smaller counterparts, nano

and picosatellites, has been undeniable with over one thousand CubeSats launched

to date [1]. The usage of these satellites has grown from purely academic research to

commercial use [1, 7]. The total number of CubeSats and nanosatellites launched to

date and by organization type can be seen in Figure 1.1 and Figure 1.2.

Figure 1.1: Total Number of Launches [1]

2

Figure 1.2: Launches by Organization Type [1]

1.2 Advantages and Disadvantages of Small Satellites

The low development and launch cost of small satellites is undoubtedly their

largest advantage over traditionally-sized satellites which can reach hundreds of mil-

lions of dollars in total financial cost. Estimated development costs for a CubeSat

range from $50,000 to $200,000 depending on size and complexity and current Cube-

Sat launch costs range from $50,000 to $200,000 with an expected drop to between

$10,000 and $85,000 by the year 2020 [8]. This low cost advantage is driven by their

small size, which in turn is their largest disadvantage. Small satellites, with payload

capacities ranging from 1 kg and > 72 in3 (1U CubeSate) to 24 kg and 864 in3 (12U

CubeSat) [5], are incapable of supporting many of the payloads, components and

subsystems which larger satellites can. Small satellites are unable to carry the large

3

imaging systems used for highly-detailed earth surface observation [9] and imaging,

full-scale attitude-control-systems [10], or sizeable thrust engines and the propellant

or power-systems required to fuel them. For example, the Earth-imaging satellite

Landsat 8 houses an imaging system capable of a 30 m per pixel resolution while

orbiting at a distance of roughly 700 km but has a dry mass of 1512 kg and cost $855

million dollars [11]. Compare this to the M-Cubed satellite project being developed

by the University of Michigan which only has a budget of $100,000 and hopes to

achieve medium resolution (200 m per pixel) optical imaging of the Earth’s surface

at an altitude of 650 km [12].

1.3 Current Orbit Maintenance Solutions for LEO Satellites

The need for large and expensive imaging equipment for surface observation

could be reduced by minimizing the effective observation range by decreasing the

satellite’s orbital altitude to the extreme lower limits of Low-Earth-Orbit where the

altitude ranges span from 2000 km to as low as 100 km [13]. This solution presents

additional problems though, chiefly, the presence of significant atmospheric density to

impart drag on the satellite as it orbits. The increased drag force causes the satellite

to rapidly lose velocity and altitude. Therefor the majority of satellites placed in

Low-Earth-Orbit are fitted with various systems to maintain the orbit altitude over

the course of the satellite’s mission duration.

An example which illustrates the station-keeping requirements of a very low

Earth orbit satellite mission is the Gravity Field and Steady-State Ocean Circulation

Explorer or GOCE satellite which was developed and launched by the European Space

4

Agency in March of 2009 [14]. The GOCE orbited for 4 years and 8 months at an

altitude of approximately 250 km before depleting its 40 kg of Xenon propulsion fuel

for the QinetiQ T5 ion thruster used to counteract the atmospheric drag forces [14–16].

Using an average ISP of 2000 s [16] and a launch mass of 1100 kg [14], the yearly

delta-v requirement for this mission comes out to be 177 m/s. It is important to

note that while the GOCE is roughly 400 times larger than a 6U CubeSat [5,14], this

still gives a reasonable estimate of the delta-v requirements for smaller satellites as

well since aerodynamic drag scales linearly with spacecraft size, more specifically the

presented drag area.

1.3.1 Using Thrust to Maintain Altitude

The most common method of orbit maintenance is to use a thrust force to

increase the orbital velocity of the satellite and subsequently the altitude, such as done

on the GOCE mission. The process of using controlled thrust forces to keep a satellite

on its assigned orbit is known as orbital station-keeping [17]. Traditionally, this

process is achieved using either liquid fuel chemical propulsion or cold-gas chemical

propulsion. These methods can achieve high magnitudes of thrust and perform well

on larger satellites where their is enough payload volume to house the propellant

required for operation. Small satellites, while requiring smaller magnitudes of thrust

due to their size, are still hampered by their reduced payload capacity and these

systems are not usually ideal for use [9]. Recent technological developments in the

field of electric propulsion have seen the development of miniature propulsion systems,

such as ion, hall effect, electrospray, and pulsed plasma thrusters, which would be

5

ideal for the use in small satellites [18–21]. These devices have a much lower impact

on payload volume, but at the cost of very small thrust magnitudes which may be

unable to overcome the aerodynamic drag forces present at extreme low orbits as well

as adding to the satellite’s total electrical power draw.

1.3.2 Tethers

Tethers have been used in space since as early as 1966 when the Gemini XI

mission tested the concept of artificial gravity by spinning two spacecraft connected

via a tether [22]. Now used for applications such as stabilization and attitude control,

momentum exchange, maintaining relative positions for constellations of satellites,

and also as a propulsive device via interaction with the Earth’s magnetic field [23],

tethers are seeing widespread research throughout the space industry. Tethers have

yet to be successfully used in conjunction with small satellites [24–28], but are of

a continued interest with a promising planned mission by the U.S. Naval Research

Laboratory being design to test a propulsion concept that would be able to alter the

altitude of the satellite system by several kilometers a day [29]. This technology,

while exciting, still remains to be proven as feasible for small satellite usage.

1.3.3 Lift as a Solution for Low Earth Orbit Maintenance

The existence of drag effects at Low-Earth-Orbit altitudes also indicates the

possibility for significant lift generation. Therefore, one possible solution to some of

the problems that the micro and smaller classes of satellites face lies in the usage of

integrated lifting-surfaces to act as a propellant-less orbital maneuvering tool. Small

6

satellites could potentially gain the ability to passively alter their orbital parameters,

such as inclination, improve their endurance, and reduce any amount of thrust needed

for orbital control by leveraging the aerodynamic forces imparted upon the satellite at

low orbit altitudes. The successful integration and operation of aerodynamic lifting

and control surfaces onto small satellites could give way to an entire new breed of

satellites which would be part low-orbit satellite and and part high-altitude aircraft.

7

CHAPTER 2

METHODOLOGY AND DESIGN OF EXPERIMENT

Research is what I’m doing
when I don’t know what I’m doing.

—Wernher von Braun

2.1 Assumptions, Constraints, and Parameters

A high-fidelity physics-based simulation was developed in order to study the

effects of integrated lifting surfaces on a small satellite and determine their feasibility.

This chapter will cover the algorithms and equations implemented to govern the

simulation used to conduct this study. The assumptions, characteristic parameters,

and constraints chosen will also be detailed with explanations for their selection. The

code for this simulation can be found in the Appendix.

Various assumption and constraints were placed on the simulation in this study

in order to reduce its cost in both time and computation memory usage. The scope

of the simulation was limited to three-degrees-of-freedom (3DOF), and the satellite

was assumed to be a rigid-body. A more detailed description of the assumptions,

constraints, and various parameters which drove the simulation can be found in the

following subsections.

8

2.1.1 Earth Gravitation Model

This simulation was designed around the assumption of a two-body problem

given the low altitude orbits being modeled. The only perturbations modeled for this

study were the oblatness of the earth, the J2 effect, and atmospheric lift and drag.

2.1.2 Satellite and Lifting Surface(s) Model

The characteristic parameters chosen to model the satellite and its integrated

lifting surfaces for this study are in Table 2.1. The cross-sectional area for the satellite,

ASatellite, was chosen as the small side of the rectangular profile described in [5] for a

6U sized satellite, (12 × 24 × 36 cm) and the mass, msatellite (12 kg) as the standard

maximum allowed for the size. A representative rendering of a 6U CubeSat is shown

in Figure 2.1 which comes from [2]. The coefficient of drag for the satellite body, CD0,

was picked as a rough estimate for an angled cube [30]. It should be noted that this

simple estimation with realistic bounds was enough for the purposes of this study,

and that it’s effect is independent to the effects produced by the lifting surfaces. A

lower value would have yielded less total drag and a higher value of more total drag.

It should also be noted that it is assumed that the satellite has a fixed attitude which

is always as commanded. The satellite would require an advanced control system to

achieve this in reality but modeling this was outside the scope of this study.

An infinitely thin, flat-plate wing was modeled as the primary lifting surface

shape as it is the basic element of lifting surfaces and to reduce the overall complexity

of the model. The area chosen for total lifting surface area was selected by computing

9

the length-wise side panel area of the satellite and multiplying by three, suggesting

a fold-out design. This parameter represents a semi-realistic value so that noticeable

and appropriate lift magnitudes could be expected. A more detailed description of

the lifting surfaces model is discussed in Section 2.2.3.

Table 2.1: Satellite Characteristic Parameters

Parameter Value Units

Asatellite 0.2880 m2

Awing 0.0648 m2

msatellite 12 kg
CD0 0.8

Figure 2.1: 6U CubeSat Render [2]

2.1.3 Atmospheric Density Model

The density distribution used to model the terrestrial atmosphere for this

simulation is defined by [31] as Equation 2.1 which gives density as a continuous

10

function of altitude. A plot of this function can be seen in Figure 2.2.

ρ(r) = ρ0 exp

[
−(r − re)

H

]
(2.1)

Altitude is represented by r and the Earth’s radius by re = 6.4x106m. H = 8.5×103m

is the atmospheric scale height and ρ0 ≈ 1.3 kg
m3 . This model holds well for altitudes

below 150km [31].

Figure 2.2: Atmospheric Density as a Function of Altitude

2.2 Forces and Perturbations

Any physics-based simulation will be ultimately governed by mathematical

equations which represent the forces effecting the system. This section contains a

detailed description of the forces and their perturbations which are modeled in this

simulation.

11

2.2.1 Two-Body Gravitation Equations

The standard gravitational equation for satellites are defined in Ref. [13] as

Equation 2.2. This can be expanded to form the necessary state-vector equations for

integration as shown in Equation 2.2 through Equation 2.5.

FG = − µ
r2

(
~r

r

)
(2.2)

FGx = − µx(√
x2 + y2 + z2

)3 (2.3)

FGy = − µ z(√
x2 + y2 + z2

)3 (2.4)

FGz = − µ z(√
x2 + y2 + z2

)3 (2.5)

The standard gravitational parameter of the Earth is represented by µ and has a

value of 398600.436km
3

s2

2.2.2 J2 Effect

The J2 perturbation is an effect imparted on Earth orbiting bodies due to the

oblateness of the Earth about its equator [32]. This effect is minimized in this study

however by having the satellite orbit in a nearly-equatorial orbit. These equations

are defined in Ref. [32] as Equation 2.6 through Equation 2.8.

FJ2x = −3J2µ r
2
e x (x2 + y2 − 4z2)

2 (x2 + y2 + z2)7/2
(2.6)

12

FJ2y = −3J2µ r
2
e y (x2 + y2 − 4z2)

2 (x2 + y2 + z2)7/2
(2.7)

FJ2z = −3J2µ r
2
e z (−3 (x2 + y2) + 2z2)

2 (x2 + y2 + z2)7/2
(2.8)

The J2 parameter is defined as 1.082635666551098 × 10−2 and re = 6378.137km,

which is the Earth’s radius.

2.2.3 Lift and Drag

The standard continuum model used for most cases in the field of aerodynamics

begins to break down at altitudes around 75 km [33]. This is because the atmospheric

density is so low, and the mean free path between the air molecules is so large that

the flow ceases to act like a body of fluid and needs to instead be modeled using

the kinetic theory of gases [34] which treats the air molecules as a distribution of

particles rather than a continuous fluid body. The Knudsen number is a quantity

which is used to determine the rarefaction of a flow and is expressed in Equation 2.9

where λ is the mean free path and L is some reference length [34]. The flow regimes

which correspond to different Knudsen numbers are shown in Table 2.2 [35].

Kn =
λ

L
(2.9)

Kn < 0.01 Continuum flow
0.01 < Kn < 10 Slip flow

Kn > 10 Free-molecular flow

Table 2.2: Knudsen Number Flow Regimes

13

The Knudsen number can be calculated by finding the mean free path from

Equation 2.10, where kB is the Boltzmann constant, T is the gas temperature,d2avg is

the molecular diameter, and p is the total pressure [36].

λ =
kB T√

2π d2avg p
(2.10)

Figure 2.3 shows the relationship between the Knudsen number and altitude

for the given constraints which correspond to the reference length for a Cubesat and

the average diameter of molecular nitrogen which is generally used for computing

mean free path in the atmosphere [36].

Figure 2.3: Knudsen Number vs. Altitude for L = 10 cm and davg = 4.11× 10−10 m

Equations for the coefficients of lift and drag can be empirically derived for two

different cases, diffuse reflection and specular reflection. Diffuse reflection assumes

14

that the air molecules achieve complete thermal equilibrium with the incident surface,

are absorbed, and then evaporated from the surface at some scattering angle. [37].

Specular assumes that no energy is exchanged in the interaction between the air

molecule and the incident surface aside from the a change in the velocity vector angle

in which the angle of reflection is the same as the angle of incidence [37]. This angle

of incidence is expressed in Equation 2.12 and Equation 2.14 as the angle of attack.

The equations used to model lift and drag can be seen in Equations 2.11

and 2.12. CLα and CDα come from the assumption of an infinitely thin flat plate [38]

in a completely rarefied flow regime for specular reflection which are consistent with

the work done in Reference [33]. A drag polar curve for these equations can be seen

in Figure 2.4. The assumption of an infinitely thin flat plate results in no lift or

additional drag being generated when α = 0, therefore at this condition, the satellite

with integrated lifting surfaces behaves the same as an identical one without lifting

surfaces. The drag force always acts in opposition to the satellite’s velocity vector in

any given frame [38] so it can be readily be expressed in Earth-Centered-Earth-Fixed,

or ECEF, Cartesian coordinates. The lift force, however, always acts in the vertical

axis of the local tangent plane [38]. The lift force vector is first defined in the North-

East-Down, or NED, frame and then transformed into the ECEF frame so that it

can be incorporated into the total force equation and then integrated to obtain the

state-vectors. This transformation will be covered in more detail in Section 2.3.

L =
1

2
CLρ(r) v2A (2.11)

15

CLα =
4√
π s

cosα sinα e−(s sinα)2 + cosα

(
4 sin2 α +

2

s2

)
erf(s sinα) (2.12)

D =
1

2
CDαρ(r) v2A (2.13)

CDα =

(
4√
π s

sin2 α

)
e−(s sinα)2 + 2 sinα

[
2(sin2 α +

1

2 s2
)

]
erf(s sinα) (2.14)

Figure 2.4: Rarefied Flow Flat Plate Drag Polar for the Case of Specular Reflection

2.2.4 Thrust Matching

Equations to simulate a thrust force were introduced to this simulation for part

of the study in order to determine the thrust requirements for cancelling the effect

of drag on the satellite to maintain orbit. This was achieved by simply inverting the

16

drag force equations being modeled in Equation 2.13, such that just enough thrust

was produced to counteract drag. Since an actual engine was not being modeled,

using real thrust equations was not necessary.

2.3 Coordinate Frame Transformations

This section outlines the equations used for the various coordinate system

transformations used throughout the simulation. Coordinate systems used include

NED, ECEF, and perifocal which is expressed using the Keplerian orbital elements.

2.3.1 Cartesian State Vectors−→ Keplerian Orbit Elements

The follow equations as described in [39] allow for the conversion of position

and velocity vectors in the ECEF/ECI frame to the Keplerian elements used for

describing the satellite and orbit at any given time. A diagram of the Kelperian

elements can be seen in Figure 2.5 as shown in [3].

~h = ~r × ~v (2.15)

~e =
~v × ~h
µ

(2.16)

~n = (0, 0, 1)T × ~h (2.17)

ν =

arccos ~e·~r

||~e|| ||~r|| ~r · ~v ≥ 0

2π − arccos ~e·~r
||~e|| ||~r|| else

(2.18)

17

i = arccos
hz

||~h||
(2.19)

e = ||~e|| (2.20)

Ω =

arccos ~n·~e

||~n|| ||~e|| ez ≥ 0

2π − arccos ~n·~e
||~n|| ||~e|| ez < 0

(2.21)

ω =

arccos nx

||~n|| ny ≥ 0

2π − arccos nx
||~n|| ny < 0

(2.22)

a =

(
2

||~r||
− ||~v||

2

µ

)−1
(2.23)

Figure 2.5: Keplerian Parameters for an Orbit [3]

18

2.3.2 Keplerian Orbit Elements−→ Cartesian State Vectors

Equation 2.24 through Equation 2.33, given in [40] describe the steps for the

inverse of Equation 2.15 through Equation 2.23. While the orbital elements are useful

for more easily interpreting the state of the orbit and satellite’s position in it they

are not useful in the state-vector integration.

p = a (1− e2) (2.24)

r =
p

1 + e cos(ν)
(2.25)

~rp = (r cos(ν), r sin(ν), 0) (2.26)

~vp = (−
√
µ

p
sin(ν),

√
µ

p
(e+ cos(ν)), 0) (2.27)

T1 =

cos(Ω) cos(ω)− sin(Ω) cos(i) cos(ω)

sin(Ω) cos(ω) + cos(Ω) cos(i) sin(ω)

sin(i) sin(ω)

 (2.28)

T2 =

− cos(Ω) sin(ω)− sin(Ω) cos(i) cos(ω)

− sin(Ω) sin(ω) + cos(Ω) cos(i) cos(ω)

sin(i) cos(ω)

 (2.29)

T3 =

sin(Ω) sin(i)

− cos(Ω) sin(i)

cos(i)

 (2.30)

19

T =

(
T1 T2 T3

)
(2.31)

~r = T · ~rp (2.32)

~v = T · ~vp (2.33)

2.3.3 ECEF−→ Geodetic

The transformation from ECEF to Geodetic coordinates is necessary as part of

the transformation of a vector described in the NED frame to the ECEF frame [3]. The

geodetic latitude and longitude are used as the rotation angles in that transformation’s

direction-cosine matrix. The following set of equations come from [41] and outline

a computationally efficient algorithm for deriving latitude and longitude from an

ECEF position vector. Please note that the variable names used in this section only

(Equation 2.34 through Equation 2.57), are unique to this algorithm and should not

be confused with variables with similar names referenced in the rest of this paper.

w2 = x2 + y2 (2.34)

l = e2/2 (2.35)

m = (w/a)2 (2.36)

n = z2(1− e2)/a2 (2.37)

p = (m+ n− 4l2)/6 (2.38)

20

G = mn l2 (2.39)

H = 2p3 +G (2.40)

C =
3
√
H +G+ 2

√
H G

3
√

2
(2.41)

i = −(2l2 +m+ n)/2 (2.42)

P = p2 (2.43)

β = i/3− C − P/C (2.44)

k = l2(l2 −m− n) (2.45)

t =

√√
β2 − k − (β + i)/2− sign(m− n)

√
|(β − i)/2| (2.46)

F = t4 + 2i t2 + 2l(m− n)t+ k (2.47)

dF/dt = 4t3 + 4i t+ 2l(m− n) (2.48)

∆t = −F/(dF/dt) (2.49)

u = t+ ∆t+ l (2.50)

v = t+ ∆t− l (2.51)

w =
√
w2 (2.52)

φ = arctan(z u, w v) (2.53)

∆w = w(1− 1/u) (2.54)

21

∆z = z(1− 1(1− e2)/v) (2.55)

h = sign(u− 1)
√

(∆w)2 + (∆z)2 (2.56)

λ = arctan(x, y) (2.57)

2.3.4 NED−→ ECEF

The transformation for a vector defined in the NED frame to the ECEF frame

relies on a directional-cosine matrix which is defined using the geodetic latitude and

longitude from an ECEF reference position vector. This matrix can be seen in Equa-

tion 2.58 and changes as the ECEF position vector does. Once the Directional-

Cosine-Matrix, DCM is obtained all that is required for the transformation is the

matrix multiplication show in Equation 2.59. The ECEF/ECI frame can be seen in

Figure 2.6 as shown in [3].

DCMECEF
NED =

− cos(λ) sin(φ) − sin(λ) − cos(λ) cos(φ)

− sin(λ) sin(φ) cos(λ) − sin(λ) cos(φ)

cos(φ) 0 − sin(φ)

 (2.58)

(u1, u2, u3)TECEF = DCMECEF
NED (w1, w2, w3)TNED (2.59)

22

Figure 2.6: ECEF/ECI Coordinates [3]

2.4 4th-Order Runge-Kutta Integration

An RK4 integration method was used in this simulation to obtain the state-

vectors from the total force-vector defined in Section 2.2. The general form of this

method is shown in [42], and its adaptation for this simulation can be seen in Equa-

tion 2.60 through Equation 2.65 where dt is the timestep for the simulation. This

method was chosen for its accuracy and low computational cost.

k1x = dt fx(x, y, z, vx, vy, vz)

k1y = dt fy(x, y, z, vx, vy, vz)

k1z = dt fz(x, y, z, vx, vy, vz)

(2.60)

23

k2x = dt fx(x+ vx
dt

2
, y + vy

dt

2
, z + vz

dt

2
, ...

...vx +
k1x
2
, vy +

k1y
2
, vz +

k1z
2

)

k2y = dt fy(x+ vx
dt

2
, y + vy

dt

2
, z + vz

dt

2
, ...

...vx +
k1x
2
, vy +

k1y
2
, vz +

k1z
2

)

k2z = dt fz(x+ vx
dt

2
, y + vy

dt

2
, z + vz

dt

2
, ...

...vx +
k1x
2
, vy +

k1y
2
, vz +

k1z
2

)

(2.61)

k3x = dt fx(x+ vx
dt

2
+ k1x

dt

4
, y + vy

dt

2
+ k1y

dt

4
, z + vz

dt

2
+ k1z

dt

4
, ...

...vx +
k2x
2
, vy +

k2y
2
, vz +

k2z
2

)

k3y = dt fy(x+ vx
dt

2
+ k1x

dt

4
, y + vy

dt

2
+ k1y

dt

4
, z + vz

dt

2
+ k1z

dt

4
, ...

...vx +
k2x
2
, vy +

k2y
2
, vz +

k2z
2

)

k3z = dt fz(x+ vx
dt

2
+ k1x

dt

4
, y + vy

dt

2
+ k1y

dt

4
, z + vz

dt

2
+ k1z

dt

4
, ...

...vx +
k2x
2
, vy +

k2y
2
, vz +

k2z
2

)

(2.62)

k4x = dt fx(x+ vx dt + k2x
dt

2
, y + vy dt + k2y

dt

2
, z + vz dt + k2z

dt

2
, ...

...vx + k3x, vy + k3y, vz + k3z)

k4y = dt fy(x+ vx dt + k2x
dt

2
, y + vy dt + k2y

dt

2
, z + vz dt + k2z

dt

2
, ...

...vx + k3x, vy + k3y, vz + k3z)

k4z = dt fz(x+ vx dt + k2x
dt

2
, y + vy dt + k2y

dt

2
, z + vz dt + k2z

dt

2
, ...

...vx + k3x, vy + k3y, vz + k3z)

(2.63)

24

xnew = x+ dt vx + dt
(k1x + k2x + k3x)

6

ynew = y + dt vy + dt
(k1y + k2y + k3y)

6

znew = z + dt vz + dt
(k1z + k2z + k3z)

6

(2.64)

vxnew = vx +
k1x + 2 k2x + 2 k3x + k4x

6

vynew = vy +
k1y + 2 k2y + 2 k3y + k4y

6

vznew = vz +
k1z + 2 k2z + 2 k3z + k4z

6

(2.65)

2.5 Angle-of-Attack Control Loop

A simple control-loop as described in [43] was introduced to this simulation to

modulate the angle-of-attack driving the lift and induced-drag forces. This was done

to determine how a dynamic angle-of-attack would effect the simulation behavior. A

gain value of K = 0.1 was used as it provided sufficient control to achieve the ideal

angle-of-attack before the simulation ended but no optimization was performed as this

was not the goal of this study. Equation 2.68 shows the equation used to recalculate

the ”commanded” angle-of-attack where v is the magnitude of the satellite’s velocity

state-vector. Limits of 45◦ and −15◦ where placed on the angle-of-attack to eliminate

erratic behavior.

Erroraltitude = rdesired − ractual (2.66)

Errorvz = 0− ri − ri−1
dt

(2.67)

αcmd = (Erroraltitude + Errorvz)
K

v
(2.68)

25

2.6 Algorithm Outline

This section provides a high level description of the overall simulation. Please

reference the actual code in the Appendix for an explicit description.

2.6.1 Inputs and Outputs

Table 2.3 and Table 2.4 describe the various inputs1 used to to drive the

simulation and the outputs2 from each run.

Table 2.3: Simulation Inputs

Input Parameter Description Units

dt Iteration timestep size s
tstop Simulation step limit s
~oeint (a, e, i,Ω, ω, ν) at initial timestep (km, N/A, deg, ...)
αint Initial angle-of-attack deg

1For the non-control-loop variant of the simulation the initial α is fixed throughout the entirety
of the simulation run.

2Each output described in the table is recorded for every timestep the simulation is run.

26

Table 2.4: Simulation Outputs

Output Parameter Description Units

t Simulation time s
~rECEF Satellite position-vector in ECEF km
~vECEF Satellite velocity-vector in ECEF km/s
~Ftot Total force-vector imparted on satellite kN
~FG Gravity force-vector kN
~FL Lift force-vector kN
~FD0 Body-drag force-vector kN
~FDi Induced drag force-vector kN
~FThrust Thrust force-vector kN

ρ(r) Atmospheric density at current satellite altitude kg/m3

~oe (a, e, i,Ω, ω, ν) at current time (km, N/A, deg, ...)
α angle-of-attack deg

2.6.2 Steps

The following steps provide a verbal depiction of the algorithm describing the

simulation.

1. Define the initial characteristic parameters from the simulation inputs. This

step includes calculating parameters such as CDα , ρ(r), and the position and

velocity vectors from the initial inputs.

2. Calculate initial forces. Once the force equations are defined their values for the

initial timestep must be calculated using the characteristic parameters defined

in Step 1 so that they can be integrated.

3. Create output log and write initial parameters and forces to it. The output

log is created and given a specified filename when the initial row is written

27

to it. This output log is then appended with a new row every timestep with

parameters unique to that iteration.

4. Perform RK4 iteration on current state-vectors. The total-force vector is in-

tegrated using the RK4 method with the current position and velocity state-

vectors which results in an updated state-vector for the next timestep.

5. Calculate updated parameters and forces. The parameters and forces defined

in Steps 1 and 2 are recalculated using the updated position and velocity state-

vectors from Step 4.

6. Write parameters and forces to log file for the current timestep.

7. Perform altitude and vertical speed error checks and compute commanded

angle-of-attack at each timestep3.

8. Recalculate CLα and CDα from commanded angle-of-attack4.

9. Return to Step 4 until either desired runtime is reached or minimum altitude5

is hit.

10. Close log file.

11. Exit Simulation.

3This step only applies to the control-loop variant of the simulation
4This step only applies to the control-loop variant of the simulation
5The minimum altitude condition for this simulation was determined to be 50 km.

28

2.7 Validation

The simulation code written for this study was validated against results for

CubeSat lifetimes in [44]. The results of this validation can be seen in Table 2.5. It

should be noted that in the baseline study conducted many perturbations such as solar

flux, and higher J factors were modeled whose effects outweigh the effects felt from

atmospheric drag at higher altitudes. These perturbations were not modeled in this

simulation as the focus of the study is on orbits with altitudes of 150km and therefor

this simulation is not well suited for accurately modeling the lifetimes of satellites

at altitudes which there is little to no atmospheric density. This difference accounts

for the slight increase in lifetime in which this study’s simulation predicted for a 200

km orbit versus the predicted lifetime by that of the simulation used in [44]. The

variation of altitude versus time for this validation can be seen in Figure 2.7. These

results indicate that simulation code is on par with that used in similar publications

and can be considered a valid representation of the system.

Table 2.5: Simulation Runs for a CubeSat in a 200 km Sun-Synchronous Orbit

Size Simulation Lifetime Baseline Lifetime [44]

6U 3.49 days 3 days
5U 4.01 days 4 days
4U 4.56 days 4 days
3U 3.50 days 3 days
2U 2.53 days 2 days
1U 2.76 days 2 days

29

Figure 2.7: Satellite Altitude vs. Time for CubeSats in a 200 km Sun Synchronous
Orbit

30

CHAPTER 3

SIMULATION ANALYSIS AND RESULTS

What I cannot create, I do not understand.

—Richard Feynman

3.1 Simulation Optimization

Initial testing of the simulation revealed that there was a large sensitivity to

the timestep, dt, and large values resulted in unstable simulation behavior. This

was attributed to the large impulses imparted on the system once it was within the

significant drag regime. A series of convergence tests were then conducted in order to

determine an adequate time-step for the study and to balance run time and memory

costs. The results of the convergence test can be seen in Table 3.1. Simulation run

time and output file size are seen to scale inversely with the time-step and the final

orbit time converges around a value of 1603 seconds for the control case of a 6U

Cubesat in an equatorial orbit at an altitude of 150km. It was determined from these

results that a time-step value of 1 second would be adequate for the scope of this

study as it achieved sufficient accuracy while minimizing computational costs.

31

Table 3.1: Time-Step Convergence Results

dt (s) Orbit Time (s) Run Time (s) Output Size (KB)

0.01 1602.42 626.311 106845
0.1 1602.60 63.396 10686
0.5 1603.00 27.612 2101
1 1603.00 1.173 1048
5 1605.00 1.509 211
10 1610.00 0.909 106

3.2 Angle-of-Attack Variation

Variations on initial orbital parameters and applied angle-of-attack were im-

plemented to generate respective behavioral profiles and document their effects on

orbital endurance as well as other orbit characteristics in this study. A description of

the analysis performed and the results can be found in this and the following sections.

A series of simulation runs was conducted with a varying angles-of-attack

ranging from 0◦ to 40◦ in increments of 5◦ in order to study the effects of lift and drag

on a low-orbiting satellite. The range of α was chosen so that significant variances

in the effects on the orbital behavior imparted by the introduced aerodynamic lift

and drag could be observed as these forces scale proportionally with α. It should

be noted that boundary-layer separation effects do not occur in rarefied flows in

which the simulation takes place and are not modeled in the kinetic gas theory [45].

The atmospheric densities and temperatures at 100 km present an extremely low

Reynolds number environment in which thin plate airfoils have been shown to exhibit

better performance than their traditional thick counterparts [46]. Table 3.2 shows the

global operating parameters for the series of tests and Table 3.3 shows the operating

32

parameters for each run and the length of time which the satellite’s altitude remained

above 50 km in the orbit.

Table 3.2: Global Parameters for α Runs

dt tstop aint eint iint Ωint ωint νint

1 s 2×
(

2π
√

a3int
µ

)
s 150 km 0.0001 0.0001◦ 0◦ 0◦ 0◦

Table 3.3: Local Parameters for α Runs

rint Run # α torbit(s)

150 km

1 0◦ 1603
2 5◦ 1723
3 10◦ 2132
4 15◦ 2769
5 20◦ 3321
6 25◦ 3576
7 30◦ 3549
8 35◦ 3344
9 40◦ 3056

3.2.1 Results

A relatively short simulation run-time of two orbital periods as determined

by the initial conditions of the orbit was used for these runs because of the small

timestep requirement. This amount of time was sufficient, however, for observing the

desired behavior of the simulation. Orbits were initiated to be nearly circular and

equatorial in order to more easily observe the effects that adding lift would have on

the eccentricity and inclination. A value of 0.0001 was used to approximate zero for

33

initial eccentricity and inclination in order to accommodate the limitations in the

algorithms used for calculating Cartesian state-vectors from orbital elements.

The control case, Run 1, experienced an orbit time of approximately 27 min-

utes before its altitude degraded lower than 50 km. This short lifetime is in accordance

with previous studies seen in [47]. The orbit lifetimes increase with α, culminating

in an almost 125% difference in the case of α = 25◦, after which it begins to de-

crease again which is consistent with the theory described in [34]. While in no case

is the satellite able to maintain its orbit, the increased orbit times indicate that by

introducing lifting surfaces to the system, the orbital endurance improves despite the

added drag. Figure 3.1 shows an X-Y plot of the orbits for each of the nine runs and

shows none of the runs even complete a single orbit before deorbiting.

Figure 3.2 gives a more insight into the altitude degradation of the satellite’s

orbit for the various run conditions. The satellite’s altitude degrades less as the angle-

of-attack increases up to 25◦ with only a slightly diminished endurance for the case

of 30◦ as compared to that for 25◦. Note that for 40◦, endurance is less than for 20◦.

Figure 3.3 shows the semi-major axis vs time for the various angles-of-attack.

The semi-major axis is a better indicator of the state of the entire orbit as opposed

to altitude because it is independent of the satellite’s position along the orbit. Note

that the decline of a grows more gradual as angle-of-attack increases and the lift

force becomes more prevalent until the critical value of 25◦ is reached and the effect

begins to decline. Figure 3.4 shows the change in each orbit’s eccentricity as time

progresses. Note from Table 3.2 that each orbit starts as a circular orbit with an

eccentricity of zero. This parameter increases as the orbit becomes more elliptical

34

and begins changing into a parabolic trajectory towards the earth’s surface. The

drastic increases seen in eccentricity are primarily due to the drag effect of decreasing

the satellite velocity which in turn dives the satellite down in altitude. Figure 3.4

is in agreement with Figure 3.2 and Figure 3.3, in that increases seen in eccentricity

is lessened as the effects of lift increase with angle-of-attack. This can be primarily

attributed to the positive radial force driving the satellite up and away from the

denser lower altitudes where drag overcomes the satellite’s velocity.

35

Figure 3.1: Satellite X & Y Position for Varying Angle-of-Attack

36

Figure 3.2: Satellite Altitude vs. Time for varying Angle-of-Attack

Figure 3.3: Semi-Major Axis vs. Time for varying Angle-of-Attack

37

Figure 3.4: Eccentricity vs. Time for varying Angle-of-Attack

38

3.3 Controlled Angle-of-Attack

A rudimentary pitch control loop was incorporated for altitude hold, once is

was determined that adding the capability to generate lift to the satellite produced

a significant positive effect. This was to determine if modulating the angle-of-attack

would have any effect and to create an isolated data set for more detailed analysis of

the behavior and forces as opposed to the previous simulation runs where α was fixed

for the duration of the orbit.

Table 3.4: Global Parameters for α-Controlled Runs

dt tstop aint eint iint Ωint ωint νint

1 s 2×
(

2π
√

a3int
µ

)
s 150 km 0.0001 0.0001◦ 0◦ 0◦ 0◦

Table 3.5: Local Parameters for α-Controlled Runs

rint Run # Lift (Y/N) torbit(s)

150 km
1 N 1603
2 Y 3555

3.3.1 Results

The control loop was effective in smoothing out the initial bouncing and al-

lowed a more clear analysis of the effects driving the system. The initial conditions

and constraints are listed in Table 3.4 and are identical to those in Table 3.2. Results

are shown in Table 3.5. There is an increase of about 122% in orbit time which is a

reduction from the maximum increase seen in the fixed angle-of-attack study. This

39

value is more realistic since the system begins in a steady-state with no initial lift

vector versus in the fixed case where a large initial impulse is imparted on the system

by the lift force.

Ultimately the control loop resulted in a total saturation of the upper angle-

of-attack limit of 25◦. This limit was determined from the previous results where

angles-of-attack greater than 25◦ were seen to have negative effects on the satellite’s

orbital endurance. Adding lift increased the life-time of the orbit but still resulted

in the satellite de-orbiting indicating that the lift effects were not sufficient to main-

tain altitude. The drastic losses in orbital velocity indicate large amounts of energy

being bled from the system due to drag and resulting in the observed orbital decay.

Figure 3.5 shows the angle-of-attack commanded by the control loop throughout the

simulation run and should be referenced when observing the other figures for this

study in order to understand the variations in the lift force present on the system

at any given time. Note that this value becomes saturated at its limit of 25◦ almost

instantly. The extremely limited amounts of lift able to be generated demanded that

the maximum amount of lift be provided at all times.

Figure 3.6 shows some oscillatory behavior, and can be attributed to changes

in the eccentricity and velocity of the satellite’s orbit as well as the slight reactive

buoyancy forces experienced by the satellite falling into a more dense atmosphere

where there is significantly more lift and drag. Orbital velocity as a function of orbit

time is shown in Figure 3.7. The sharp decrease for no lift versus the gradual decline

with lift is indicative of the behavior as orbital velocity is the driving state variable

responsible for the orbital conditions.

40

The plot of semi-major axis for the orbit versus time in Figure 3.8 is in agree-

ment with Figure 3.3 and shows a sharp decrease in a for the case of no lift in contrast

to the gradual decline seen in the case with lift.

Eccentricity is seen to sharply increase as the orbital velocity decreases in no

lift in Figure 3.9 and gradually increase with lift. This is still in agreement with

the fixed angle-of-attack simulation runs. A breakdown of the forces acting on the

simulation and their individual components can be seen in Figure 3.10 and Figure 3.12

for the case with lift. Gravity remains smooth and oscillatory as expected until the

time of de-orbiting. The total drag force increases in amplitude as the orbit time

progresses. This is due to the increased atmospheric density as the altitude decreases.

The lift force follows the same trend for similar reasons. The oscillations in the lift

force are not due to the angle-of-attack variation as the controller is maxed out at that

time but instead is due to the satellite ”bobbing” against the increasing atmospheric

density as its altitude decreases and the changes in its eccentricity and velocity. It is

important to note that in all of the force plots negligible forces in the Z-axis indicate

there is little to no influence on the inclination of the orbit, which agrees with the

notation that all the major forces being modeled are acting in the orbital plane. The

exception is the J2 perturbation which has an extremely small magnitude and does

not have time to manifest any significant changes due to the short duration of the

simulation runs.

The results in this section indicate that adding lifting surfaces to a satellite

and modulating the angle-of-attack in order to maintain altitude can reduce orbital

41

decay due to the significant drag forces at low altitude orbits without destabilizing

the orbit.

Figure 3.5: Controlled Angle of Attack vs. Time

42

Figure 3.6: Altitude vs. Time for a Controlled Angle-of-Attack

Figure 3.7: Orbital Velocity vs. Time for a Controlled Angle-of-Attack

43

Figure 3.8: Semi-Major Axis vs. Time for a Controlled Angle-of-Attack

Figure 3.9: Eccentricity vs. Time for a Controlled Angle-of-Attack

44

Figure 3.10: Gravity Force vs. Time for a Controlled Angle-of-Attack

Figure 3.11: Total Drag Force vs. Time for a Controlled Angle-of-Attack

45

Figure 3.12: Lift Force vs. Time for a Controlled Angle-of-Attack

46

3.4 Thrust Matching

Drag cancelling thrust equations were modeled into the simulation as an ex-

tension of the previous runs to determine the total amount of thrust necessary to

maintain the satellite’s orbit, with lifting surfaces included and without. The simula-

tion initial parameters and constraints were the same as in Table 3.4 and the results

are in Table 3.6.

Table 3.6: Parameters for Simulation α-Controlled with Thrust Matching Runs

rint Run # Lift (Y/N) Total Thrust Impulse kN · s

150 km
1 N 7.85× 10−13

2 Y 1.44× 10−14

3.4.1 Results

The thrust magnitude as a function of time for both without lift and with lift

are shown in Figure 3.13. This should be interpreted as the total thrust magnitude

required to cancel the effects of drag on the satellite as it orbits at an altitude of 150

km. Note that the magnitudes without lift are much greater than those with lift.

This data was discretely integrated to find the total thrust impulse imparted over the

2 orbits modeled in these runs as seen in Table 3.6. The amount of impulse required

without lift is 55 times that for the case with lift. This indicates that for the same

engine and satellite, roughly 1.834% of the fuel required for drag cancelling would be

needed with integrated lifting surfaces versus without.

47

Figure 3.13: Thrust Force vs. Time for a Controlled Angle-of-Attack

48

CHAPTER 4

CONCLUSIONS

Finishing races is important, but racing is
more important.

—Dale Earnhardt

4.1 Overview

The current limitations of small satellites make them ill-suited for missions

which require large payloads. Many of these payloads could be drastically reduced

in size if the mission altitude was reduced to Very Low Earth Orbit. It is difficult

to maintain an orbit in this region of space due to significant drag from the Earth’s

atmosphere. These effects could be mitigated by incorporating lifting surfaces to the

satellite in order to harness the aerodynamic forces which previously only hindered

the satellite. This study’s purpose was to characterize the effects of integrating lifting

surfaces onto a small satellite in Very Low Earth Orbit and determine whether they

would be beneficial to improving orbital endurance and could assist in orbit mainte-

nance. Answering this question is an important step in extending the operating range

of small satellites and expanding their role in the theater of space.

A physics-based simulation which modeled the various forces that govern the

motion of a satellite while in orbit was designed for the purposes of this study. The

49

major perturbations in the regime of interest which were modeled included the J2

effect and atmospheric drag. The satellite model was based off a 6U Cubesat with

infinitely thin flat plate lifting surfaces. The control case for this study was conducted

used the same satellite model without lifting surfaces. All runs were conducted using

initial conditions for 150 km equatorial circular orbits. Suites of simulation runs

were first conducted while varying a fixed angle-of-attack from 0◦ to 40◦ in order

to profile the effects on orbital endurance. Increases in orbital endurance were seen

to diminish after an angle-of-attack value of 25◦. Improvements of 125% in orbit

life time were seen when adding lifting surfaces to the satellite as opposed to the

control case without lifting surfaces. An altitude-hold control loop was then used

to dynamically vary the angle-of-attack so that maximum amount of lift would be

generated and a more in-depth analysis into the individual forces effecting the system

could be conducted. The control loop was seen to be saturated for the duration of

the run at the maximum value of 25◦ which produced similar results as the previous

case of a fixed angle-of-attack at 25◦. Small oscillatory effects seen in the fixed angle-

of-attack runs were absent in this case due to the lack of an initial lift vector on the

system. Finally, an analysis of total thrust required to cancel the drag forces on the

satellite was conducted for both the control case and with integrated lifting surfaces.

It was observed that the total thrust required was reduced by a factor of 55 when

lifting surfaces were added to the satellite. The reduced total thrust requirement

can be extrapolated to indicate a propellant mass requirement of only 2% that of an

identical satellite without integrated lifting surfaces. A reduction in propellant mass

50

required for a given mission which would allow for either a larger payload, or much

longer mission times for the same amount of fuel.

The results from this study show that adding lifting surfaces are capable of

significantly reducing the orbit decay due to atmospheric drag at low orbital alti-

tudes as well as the amount of thrust needed to cancel drag in order to maintain

altitude. This indicates that there are potential benefits of integrated lifting surfaces

for satellite altitude maintenance and fuel reduction at Very Low Earth Orbit.

4.2 Research Contribution

Low-Earth-Orbit CubeSats have been of interest to the scientific community

and space industry since their inception. Many studies have investigated aerodynamic

perturbations in Low-Earth-Orbit and the effects on a satellite’s orbit [33,44,48,49].

These studies, however, are only concerned with the perturbations caused by an

aerodynamic lift force and not how to harness it. The concept for a class of Very-

Low-Earth-Orbit satellites whose primary mission focus would be Earth observation

is explored in [50], but relies on the idea of novel air-breathing-drag-compensating

propulsive systems for altitude maintenance. This study provides detailed insight into

how the incorporation of lifting surfaces to Very-Low-Earth-Orbit satellites could be

used as a low-cost method for orbit maintenance to make such missions much more

feasible.

51

4.3 Future Work

Several assumptions were made in order to reduce the complexity of the sim-

ulation, thus future work is required to better understand and possibly optimize the

effect of lifting surfaces in Very-Low-Earth-Orbit. More detailed studies should be

done on optimizing the airfoil used for the integrated lifting surfaces in order to re-

duce induced drag as well as how to make the satellite body more aerodynamic to

reduce body drag. This airfoil optimization study should incorporate modern numer-

ical methods to directly simulate the interactions between the air molecules in the

rarefied flows and the lifting surfaces. A study performed by NASA using the direct

simulation Monte Carlo method has shown that for an infinitely flat plate, the lift-

to-drag ratio increases by up to 90% are possible compared to the free molecular lift

and drag coefficient equations used in this study [51]. A reduction of total drag would

greatly improve the impact that the lift force is able to make on the satellite-orbit

system. A study on the design of an attitude-control system in order to achieve a

commanded angle of attack would also be necessary to confirm the feasibility of this

study. This could be done by incorporating additional control surfaces to the lifting

surfaces, by attitude control systems seen in traditional satellites, or some combina-

tion. Different methods of engine modeling would also yield further insight. Constant

thrust was modeled in this study but periodic engine use is also a valid approach.

Different methods of engine operation may impact the propellant use differently and

should be compared in order to determine the optimal solution. A more detailed

study into the atmospheric density conditions and how they vary with solar activity

52

as well as solar flux should also be conducted to determine a higher fidelity profile of

orbit perturbations at VLEO altitudes. Finally a study of thermal conditions due to

the drag forces at such low orbital altitudes and if current materials are capable of

withstanding them should be conducted as well.

If these remaining questions can be answered then the potential exists for a

new class of low-cost satellites which could navigate the extreme reaches of the earth’s

atmosphere like aircraft allowing for dynamic orbit alterations and extended mission

times.

53

APPENDICES

54

APPENDIX A

CODE

A.1 Simulation Code

-*- coding: utf-8 -*-

"""

Created on Fri Jul 19 11:06:11 2019 in Python 3.5

@author: wbickett

"""

import numpy as np

import csv

from mpl_toolkits.mplot3d import Axes3D

import matplotlib.pyplot as plt

Constants

mu = 398600.436

55

re = 6378.137 # km

J2 = 0.1082635666551098e-2

Cd0 = 0.8

A = 0.0288e-6 # km^2

Aw = (0.0648e-6)*1 # km^2

m = 1 # kg

Subroutines

Elements to Vector

def elem2vec(elem):

define elements

a = elem[0]

e = elem[1]

i = elem[2]*np.pi/180

o = elem[3]*np.pi/180

w = elem[4]*np.pi/180

nu = elem[5]*np.pi/180

calculations

p = a*(1-e**2)

56

r = p/(1+e*np.cos(nu))

rp = np.array([r*np.cos(nu), r*np.sin(nu), 0])

vp = np.array([-np.sqrt(mu/p)*np.sin(nu),

np.sqrt(mu/p)*(e+np.cos(nu)), 0])

T = np.array([[np.cos(o)*np.cos(w)-np.sin(o)*np.cos(i)*np.sin(w),

-np.cos(o)*np.sin(w)-np.sin(o)*np.cos(i)*np.cos(w),

np.sin(o)*np.sin(i)],

[np.sin(o)*np.cos(w)+np.cos(o)*np.cos(i)*np.sin(w),

-np.sin(o)*np.sin(w)+np.cos(o)*np.cos(i)*np.cos(w),

-np.cos(o)*np.sin(i)],

[np.sin(i)*np.sin(w), np.sin(i)*np.cos(w), np.cos(i)]])

R = np.dot(T, rp)

V = np.dot(T, vp)

vec = [R, V]

return vec

Vector to Elements

def vec2elem(R, V):

r = np.linalg.norm(R)

v = np.linalg.norm(V)

57

E = ((v**2)/mu-(1/r))*R-(1/mu)*np.dot(R, V)*V

e = np.linalg.norm(E)

H = np.cross(R, V)

h = np.linalg.norm(H)

p = (h**2)/mu

a = p/(1-(e**2))

i = np.arccos(H[2]/h)

Nv = np.cross(np.array([0, 0, 1]), H)

nv = np.linalg.norm(Nv)

if Nv[0] == 0 or nv == 0:

o = 0.0

else:

o = np.arccos(Nv[0]/nv)

if Nv[1] >= 0:

o = o

else:

o = 2*np.pi-o

if np.dot(Nv, E) == 0 or nv*e == 0:

w = 0.0

else:

w = np.arccos(np.dot(Nv, E)/(nv*e))

if E[2] >= 0:

w = w

58

else:

w = 2*np.pi-w

if np.dot(E, R) == 0 or (e*r) == 0:

nu = 0.0

else:

nu = np.arccos(np.dot(E, R)/(e*r))

if np.dot(R, V) >= 0:

nu = nu

else:

nu = 2*np.pi-nu

elem = [a, e, i*180/np.pi, o*180/np.pi, w*180/np.pi, nu*180/np.pi]

return elem

ECEF 2 LLA Transformation

def ecef2lla(evec):

a = 6378137e-3

e = 0.08181919084

b = a*np.sqrt(1-e**2)

w2 = evec[0]**2+evec[1]**2

l = e**2/2

m = w2/a**2

59

n = ((1-e**2)*evec[2]/b**2)**2

p = (m+n-4*l**2)/6

G = m*n*l**2

H = 2*p**3+G

C = ((H+G+2*np.sqrt(H*G))**(1/3))/(2**(1/3))

i = -(2*l**2+m+n)/2

P = p**2

beta = i/3-C-P/C

k = (l**2)*(l**2-m-n)

t = np.sqrt(np.sqrt(beta**2-k)-(beta+i)/2)...

...-np.sign(m-n)*np.sqrt(np.abs((beta-i)/2))

F = t**4+2*i*t**2+2*l*(m-n*t+k)

dFdt = 4*t**3+4*i*t+2*l*(m-n)

dt = -F/dFdt

u = t+dt+l

v = t+dt-l

w = np.sqrt(w2)

latitude = np.arctan2(evec[2]*u, w*v)

dw = w*(1-1/u)

dz = evec[2]*(1-(1-e**2)/v)

h = np.sign(u-1)*np.sqrt(dw**2+dz**2)

longitude = np.arctan2(evec[1], evec[0])

return latitude, longitude, h

60

Body frame to ECEF frame Transformation

def body2ecef(roll, pitch, yaw, i, bvec, evec):

roll = roll*np.pi/180

pitch = pitch*np.pi/180

i = i*np.pi/180

lat, lon, h = ecef2lla(evec)

yaw = np.arcsin(np.cos(i)/np.cos(lat))+yaw

body2nedDCM = np.array([

[np.cos(yaw)*np.cos(pitch),...

...-np.sin(yaw)*np.cos(roll)+np.cos(yaw)*np.sin(pitch)*np.sin(roll),...

...np.sin(yaw)*np.sin(roll)+np.cos(yaw)*np.sin(pitch)*np.cos(roll)],

[np.sin(yaw)*np.cos(pitch),...

...np.cos(yaw)*np.cos(roll)+np.sin(yaw)*np.sin(pitch)*np.sin(roll),...

...-np.cos(yaw)*np.sin(roll)+np.sin(yaw)*np.sin(pitch)*np.cos(roll)],

[-np.sin(pitch),...

...np.cos(pitch)*np.sin(roll),...

...np.cos(pitch)*np.cos(roll)]])

body2enuDCM = np.array([

[np.sin(yaw)*np.cos(pitch),...

...np.cos(roll)*np.cos(yaw)+np.sin(roll)*np.sin(yaw)*np.sin(pitch),...

61

...-np.sin(roll)*np.cos(yaw)+np.cos(roll)*np.sin(yaw)*np.sin(pitch)],

[np.cos(yaw)*np.cos(pitch),...

...-np.cos(roll)*np.sin(yaw)+np.sin(roll)*np.cos(yaw)*np.sin(pitch),...

...np.sin(roll)*np.sin(yaw)+np.cos(roll)*np.cos(yaw)*np.sin(pitch)],

[np.sin(pitch),...

...-np.sin(roll)*np.cos(pitch),-np.cos(roll)*np.cos(pitch)]])

ned2ecefDCM = np.array([

[-np.cos(lon)*np.sin(lat),...

...-np.sin(lon),-np.cos(lon)*np.cos(lat)],

[-np.sin(lon)*np.sin(lat),...

...np.cos(lon),-np.sin(lon)*np.cos(lat)],

[np.cos(lat),0,-np.sin(lat)]])

enu2ecefDCM = np.array([

[-np.sin(lon),...

...-np.cos(lon)*np.sin(lat),...

...np.cos(lon)*np.cos(lat)],

[np.cos(lon),...

...-np.sin(lon)*np.sin(lat),...

...np.sin(lon)*np.cos(lat)],

[0,np.cos(lat),np.sin(lat)]])

vecNED = np.matmul(body2nedDCM,bvec)

vecENU = np.matmul(body2enuDCM,bvec)

vecECEF1 = np.matmul(ned2ecefDCM,vecNED)

62

vecECEF2 = np.matmul(enu2ecefDCM,vecENU)

return vecECEF1 #, vecECEF2

Body frame to Ned frame Transformation

def body2ned(roll, pitch, yaw, bvec):

roll = roll*np.pi/180

pitch = pitch*np.pi/180

yaw = yaw*np.pi/180

body2nedDCM = np.array([

[np.cos(yaw)*np.cos(pitch),...

...-np.sin(yaw)*np.cos(roll)+np.cos(yaw)*np.sin(pitch)*np.sin(roll),...

...np.sin(yaw)*np.sin(roll)+np.cos(yaw)*np.sin(pitch)*np.cos(roll)],

[np.sin(yaw)*np.cos(pitch),...

...np.cos(yaw)*np.cos(roll)+np.sin(yaw)*np.sin(pitch)*np.sin(roll),...

...-np.cos(yaw)*np.sin(roll)+np.sin(yaw)*np.sin(pitch)*np.cos(roll)],

[-np.sin(pitch),....

...np.cos(pitch)*np.sin(roll),...

...np.cos(pitch)*np.cos(roll)]])

vecNED = np.matmul(body2nedDCM, bvec)

return vecNED

63

Ned Frame to ECEF frame Transformation

def ned2ecef(nvec, evec):

lat, lon, h = ecef2lla(evec)

ned2ecefDCM = np.array([

[-np.cos(lon)*np.sin(lat),...-np.sin(lon),-np.cos(lon)*np.cos(lat)],

[-np.sin(lon)*np.sin(lat),np.cos(lon),-np.sin(lon)*np.cos(lat)],

[np.cos(lat),0,-np.sin(lat)]])

vecECEF = np.matmul(ned2ecefDCM, nvec)

return vecECEF

Saturation

def saturate(value,min,max):

if value > max:

value = max

if value < min:

value = min

else:

value = value

return value

64

Main Code

def solver(step, stop, elem, attitude, filename):

Define Orbital Elements

a = elem[0]

e = elem[1]

i = elem[2]

o = elem[3]

w = elem[4]

nu = elem[5]

Define Euler Angles

roll = attitude[0]

pitch = attitude[1]

yaw = attitude[2]

Calculate Vectors

Vec = elem2vec(elem)

rVec = Vec[0]

vVec = Vec[1]

Define Constants

dt = step

65

timeCount = 0

Define State Vector Elements

X = rVec[0]

Y = rVec[1]

Z = rVec[2]

Vx = vVec[0]

Vy = vVec[1]

Vz = vVec[2]

Define Iteration State Vector Elements

Xj = X

Yj = Y

Zj = Z

Vxj = Vx

Vyj = Vy

Vzj = Vz

Rj = np.array([X, Y, Z])

Vj = np.array([Vx, Vy, Vz])

rj = np.linalg.norm(Rj)

vj = np.linalg.norm(Vj)

rhoj = (1.3e9)*np.exp((-(rj-re)*(10**3))/(8.5e3))

Calculate CL and CD

sr = (vj*10**3)/np.sqrt(2*R*Temp)

Cl = (

66

4/(np.sqrt(np.pi)*sr)*np.cos(pitch*np.pi/180)...

...*np.sin(pitch*np.pi/180)*np.exp(-(sr*np.sin(pitch*np.pi/180)**2))

+ np.cos(pitch*np.pi/180)*(4*np.sin(pitch*np.pi/180)**2...

...+(2/(sr**2)))*math.erf(sr*np.sin(pitch*np.pi/180))

)

Cdw = (

((4/(np.sqrt(np.pi)*sr))*np.sin(pitch*np.pi/180)**2)...

...*np.exp(-(sr*np.sin(pitch*np.pi/180))**2)

+ 2*np.sin(pitch*np.pi/180)*(2*(np.sin(pitch*np.pi/180)**2...

...+(1/(2*sr**2))))*math.erf(sr*np.sin(pitch*np.pi/180))

)

Define Equations of Motion

def fx(rho, lift, thrust, x, y, z, Vx, Vy, Vz):

force = (-(mu*x)/((x**2+y**2+z**2)**(3/2))

-(3*J2*mu*re**2*x*(x**2+y**2-4*z**2))/(2*(x**2+y**2+z**2)**(7/2))

-(A*Cd0*Vx*np.sqrt(Vx**2+Vy**2+Vz**2)*rho)/(2*m)

-(Aw*Cdw*Vx*np.sqrt(Vx**2+Vy**2+Vz**2)*rho)/(2*m)

+lift+thrust) # *np.sqrt(Vx**2+Vy**2+Vz**2)**2)

return force

def fy(rho, lift, thrust, x, y, z, Vx, Vy, Vz):

force = (-(mu*y)/((x**2+y**2+z**2)**(3/2))

67

-(3*J2*mu*re**2*y*(x**2+y**2-4*z**2))/(2*(x**2+y**2+z**2)**(7/2))

-(A*Cd0*Vy*np.sqrt(Vx**2+Vy**2+Vz**2)*rho)/(2*m)

-(Aw*Cdw*Vy*np.sqrt(Vx**2+Vy**2+Vz**2)*rho)/(2*m)

+lift+thrust) # *np.sqrt(Vx**2+Vy**2+Vz**2)**2)

return force

def fz(rho, lift, thrust, x, y, z, Vx, Vy, Vz):

force = (-(mu*z)/((x**2+y**2+z**2)**(3/2))

+(3*J2*mu*re**2*z*(-3*(x**2+y**2)+2*z**2))/(2*(x**2+y**2+z**2)**(7/2))

-(A*Cd0*Vz*np.sqrt(Vx**2+Vy**2+Vz**2)*rho)/(2*m)

-(Aw*Cdw*Vz*np.sqrt(Vx**2+Vy**2+Vz**2)*rho)/(2*m)

+lift+thrust) # *np.sqrt(Vx**2+Vy**2+Vz**2)**2)

return force

def fx(rho, x, y, z, vx, vy, vz):

force = (-(mu*x)/((x**2+y**2+z**2)**(3/2)))

return force

#

def fy(rho, x, y, z, vx, vy, vz):

force = (-(mu*y)/((x**2+y**2+z**2)**(3/2)))

return force

#

def fz(rho, x, y, z, vx, vy, vz):

force = (-(mu*z)/((x**2+y**2+z**2)**(3/2)))

68

return force

Calculate Initial Lift Force

lift_body = np.array([0, 0, -(Cl*Aw*rhoj*(vj**2))/(2*m)])

lift_ned = body2ned(roll, 0, 0, lift_body)

lift_ned = np.array([0, 0, -(Cl*Aw*rhoj*(vj**2))/(2*m)])

lift_ecef = body2ecef(roll, pitch, yaw, i, lift_body, Rj)

lift_ecef = ned2ecef(lift_ned, Rj)

Initial Thrust is Zero

thrust = np.array([0, 0, 0])

Calculate Force Components for recording

Fgrav = [-(mu*Xj)/((Xj**2+Yj**2+Zj**2)**(3/2)),

-(mu*Yj)/((Xj**2+Yj**2+Zj**2)**(3/2)),

-(mu*Zj)/((Xj**2+Yj**2+Zj**2)**(3/2))]

Fj2 = [

-(3*J2*mu*re**2*Xj*(Xj**2+Yj**2-4*Zj**2))/(2*(Xj**2+Yj**2+Zj**2)**(7/2)),

-(3*J2*mu*re**2*Yj*(Xj**2+Yj**2-4*Zj**2))/(2*(Xj**2+Yj**2+Zj**2)**(7/2)),

+(3*J2*mu*re**2*Zj*(-3*(Zj**2+Yj**2)+2*Zj**2))/(2*(Xj**2+Yj**2+Zj**2)**(7/2))]

FD0 = [-(A*Cd0*Vxj*np.sqrt(Vxj**2+Vyj**2+Vzj**2)*rhoj)/(2*m),

-(A*Cd0*Vyj*np.sqrt(Vxj**2+Vyj**2+Vzj**2)*rhoj)/(2*m),

-(A*Cd0*Vzj*np.sqrt(Vxj**2+Vyj**2+Vzj**2)*rhoj)/(2*m)]

FDw = [-(Aw*Cdw*Vxj*np.sqrt(Vxj**2+Vyj**2+Vzj**2)*rhoj)/(2*m),

-(Aw*Cdw*Vyj*np.sqrt(Vxj**2+Vyj**2+Vzj**2)*rhoj)/(2*m),

-(Aw*Cdw*Vzj*np.sqrt(Vxj**2+Vyj**2+Vzj**2)*rhoj)/(2*m)]

69

Calculate Initial Forces

fxj = fx(rhoj, lift_ecef[0], thrust[0], Xj, Yj, Zj, Vxj, Vyj, Vzj)

fyj = fy(rhoj, lift_ecef[1], thrust[1], Xj, Yj, Zj, Vxj, Vyj, Vzj)

fzj = fz(rhoj, lift_ecef[2], thrust[2], Xj, Yj, Zj, Vxj, Vyj, Vzj)

Create Log File

with open(filename, ’w’, newline=’’) as csvFile:

writer = csv.writer(csvFile)

writer.writerows([[’Time’, ’X’, ’Y’, ’Z’, ’Vx’, ’Vy’, ’Vz’,

’Fx’, ’Fy’, ’Fz’, ’Lx’, ’Ly’, ’Lz’, ’rho’, ’rj’,

’a’, ’e’, ’i’, ’o’, ’w’, ’nu’, ’pitch’,

’Fgrav’, ’FgravX’, ’FgravY’, ’FgravZ’,

’Fj2’, ’Fj2X’, ’Fj2Y’, ’Fj2Z’,

’FD0’, ’FD0X’, ’FD0Y’, ’FD0Z’,

’FDw’, ’FDwX’, ’FDwY’, ’FDwZ’, ’Thrust’],

[str(timeCount), str(Xj), str(Yj), str(Zj),

str(Vxj), str(Vyj), str(Vzj),

str(fxj), str(fyj), str(fzj),

str(lift_ecef[0]), str(lift_ecef[1]), str(lift_ecef[2]),

str(rhoj), str(rj), str(a), str(e),

str(i),str(o), str(w),str(nu), str(pitch),

str(np.linalg.norm(Fgrav)), str(Fgrav[0]), str(Fgrav[1]), str(Fgrav[2]),

str(np.linalg.norm(Fj2)), str(Fj2[0]), str(Fj2[1]), str(Fj2[2]),

str(np.linalg.norm(FD0)), str(FD0[0]), str(FD0[1]), str(FD0[2]),

70

str(np.linalg.norm(FDw)), str(FDw[0]), str(FDw[1]), str(FDw[2]),

str(np.linalg.norm(thrust))]])

csvFile.close()

RK4-4 Integrator

while timeCount < stop and rj > (re+50):

if rj < (re+120):

dt = step

else:

dt = (step*10)

dt = step

Step 1

k1x = dt*fx(rhoj, lift_ecef[0], thrust[0], Xj, Yj, Zj, Vxj, Vyj, Vzj)

k1y = dt*fy(rhoj, lift_ecef[1], thrust[1], Xj, Yj, Zj, Vxj, Vyj, Vzj)

k1z = dt*fz(rhoj, lift_ecef[2], thrust[2], Xj, Yj, Zj, Vxj, Vyj, Vzj)

Step 2

k2x = dt*fx(rhoj, lift_ecef[0], thrust[0],...

...Xj+Vxj*(dt/2), Yj+Vyj*(dt/2), Zj+Vzj*(dt/2),...

...Vxj+(k1x/2), Vyj+(k1y/2), Vzj+(k1z)/2)

k2y = dt*fy(rhoj, lift_ecef[1], thrust[1],...

...Xj+Vxj*(dt/2), Yj+Vyj*(dt/2), Zj+Vzj*(dt/2),...

...Vxj+(k1x/2), Vyj+(k1y/2), Vzj+(k1z)/2)

k2z = dt*fz(rhoj, lift_ecef[2], thrust[2],...

Xj+Vxj*(dt/2), Yj+Vyj*(dt/2), Zj+Vzj*(dt/2),...

71

Vxj+(k1x/2), Vyj+(k1y/2), Vzj+(k1z)/2)

Step 3

k3x = dt*fx(rhoj, lift_ecef[0], thrust[0],...

...Xj+Vxj*(dt/2)+k1x*(dt/4), Yj+Vyj*(dt/2)+k1y*(dt/4),...

...Zj+Vzj*(dt/2)+k1z*(dt/4),...

...Vxj+(k2x/2), Vyj+(k2y/2), Vzj+(k2z)/2)

k3y = dt*fy(rhoj, lift_ecef[1], thrust[1],...

...Xj+Vxj*(dt/2)+k1x*(dt/4), Yj+Vyj*(dt/2)+k1y*(dt/4),...

...Zj+Vzj*(dt/2)+k1z*(dt/4),...

...Vxj+(k2x/2), Vyj+(k2y/2), Vzj+(k2z)/2)

k3z = dt*fz(rhoj, lift_ecef[2], thrust[2],...

...Xj+Vxj*(dt/2)+k1x*(dt/4), Yj+Vyj*(dt/2)+k1y*(dt/4),...

...Zj+Vzj*(dt/2)+k1z*(dt/4),...

...Vxj+(k2x/2), Vyj+(k2y/2), Vzj+(k2z)/2)

Step 4

k4x = dt*fx(rhoj, lift_ecef[0], thrust[0],...

...Xj+Vxj*dt+k2x*(dt/2), Yj+Vyj*dt+k2y*(dt/2), Zj+Vzj*dt+k2z*(dt/2),...

...Vxj+k3x, Vyj+k3y, Vzj+k3z)

k4y = dt*fy(rhoj, lift_ecef[1], thrust[1],...

...Xj+Vxj*dt+k2x*(dt/2), Yj+Vyj*dt+k2y*(dt/2), Zj+Vzj*dt+k2z*(dt/2),...

...Vxj+k3x, Vyj+k3y, Vzj+k3z)

k4z = dt*fz(rhoj, lift_ecef[2], thrust[2],...

...Xj+Vxj*dt+k2x*(dt/2), Yj+Vyj*dt+k2y*(dt/2), Zj+Vzj*dt+k2z*(dt/2),...

72

...Vxj+k3x, Vyj+k3y, Vzj+k3z)

Update State Variables

Xj = Xj+dt*Vxj+dt*((k1x+k2x+k3x)/6)

Yj = Yj+dt*Vyj+dt*((k1y+k2y+k3y)/6)

Zj = Zj+dt*Vzj+dt*((k1z+k2z+k3z)/6)

Vxj = Vxj+((k1x+2*k2x+2*k3x+k4x)/6)

Vyj = Vyj+((k1y+2*k2y+2*k3y+k4y)/6)

Vzj = Vzj+((k1z+2*k2z+2*k3z+k4z)/6)

Calculate New State Parameters

Rj = np.array([Xj, Yj, Zj])

Vj = np.array([Vxj, Vyj, Vzj])

timeCount = timeCount+dt

rjOld = rj

rj = np.linalg.norm(Rj)

vj = np.linalg.norm(Vj)

elemj = vec2elem(Rj, Vj)

rhoj = (1.3e9)*np.exp((-(rj-re)*(10**3))/(8.5e3))

Calculate Forces

Lift

lift_body = np.array([0, 0, -(Cl*Aw*rhoj*10**3)/2])

lift_ecef = body2ecef(roll, pitch, yaw, elemj[2], lift_body, Rj)

lift_ned = np.array([0, 0, -(Cl*Aw*rhoj*(vj**2))/(2*m)])

lift_body = np.array([0, 0, -(Cl*Aw*rhoj*(vj**2))/(2*m)])

73

lift_ned = body2ned(roll, 0, 0, lift_body)

lift_ecef = ned2ecef(lift_ned, Rj)

Calculate Force Components for recording

Fgrav = [-(mu*Xj)/((Xj**2+Yj**2+Zj**2)**(3/2)),

-(mu*Yj)/((Xj**2+Yj**2+Zj**2)**(3/2)),

-(mu*Zj)/((Xj**2+Yj**2+Zj**2)**(3/2))]

Fj2 = [

-(3*J2*mu*re**2*Xj*(Xj**2+Yj**2-4*Zj**2))/(2*(Xj**2+Yj**2+Zj**2)**(7/2)),

-(3*J2*mu*re**2*Yj*(Xj**2+Yj**2-4*Zj**2))/(2*(Xj**2+Yj**2+Zj**2)**(7/2)),

+(3*J2*mu*re**2*Zj*(-3*(Zj**2+Yj**2)+2*Zj**2))/(2*(Xj**2+Yj**2+Zj**2)**(7/2))]

FD0 = [-(A*Cd0*Vxj*np.sqrt(Vxj**2+Vyj**2+Vzj**2)*rhoj)/(2*m),

-(A*Cd0*Vyj*np.sqrt(Vxj**2+Vyj**2+Vzj**2)*rhoj)/(2*m),

-(A*Cd0*Vzj*np.sqrt(Vxj**2+Vyj**2+Vzj**2)*rhoj)/(2*m)]

FDw = [-(Aw*Cdw*Vxj*np.sqrt(Vxj**2+Vyj**2+Vzj**2)*rhoj)/(2*m),

-(Aw*Cdw*Vyj*np.sqrt(Vxj**2+Vyj**2+Vzj**2)*rhoj)/(2*m),

-(Aw*Cdw*Vzj*np.sqrt(Vxj**2+Vyj**2+Vzj**2)*rhoj)/(2*m)]

Calculate Thrust

thrust = -1*np.array([FD0[0]+FDw[0], FD0[1]+FDw[1], FD0[2]+FDw[2]])

Total Force

fxj = fx(rhoj, lift_ecef[0], thrust[0], Xj, Yj, Zj, Vxj, Vyj, Vzj)

fyj = fy(rhoj, lift_ecef[1], thrust[1], Xj, Yj, Zj, Vxj, Vyj, Vzj)

fzj = fz(rhoj, lift_ecef[2], thrust[2], Xj, Yj, Zj, Vxj, Vyj, Vzj)

Write State Info to csv

74

with open(filename, ’a’, newline=’’) as csvFile:

writer = csv.writer(csvFile)

writer.writerow([str(timeCount), str(Xj), str(Yj), str(Zj),

str(Vxj), str(Vyj), str(Vzj),

str(fxj), str(fyj), str(fzj),

str(lift_ecef[0]), str(lift_ecef[1]), str(lift_ecef[2]),

str(rhoj), str(rj), str(elemj[0]), str(elemj[1]),

str(elemj[2]), str(elemj[3]),

str(elemj[4]), str(elemj[5]), str(pitch),

str(np.linalg.norm(Fgrav)), str(Fgrav[0]), str(Fgrav[1]), str(Fgrav[2]),

str(np.linalg.norm(Fj2)), str(Fj2[0]), str(Fj2[1]), str(Fj2[2]),

str(np.linalg.norm(FD0)), str(FD0[0]), str(FD0[1]), str(FD0[2]),

str(np.linalg.norm(FDw)), str(FDw[0]), str(FDw[1]), str(FDw[2]),

str(np.linalg.norm(thrust))])

csvFile.close()

Pitch Control Loop

gain = 0.1

altErr = a-rj

vertSpeedErr = 0-(rj-rjOld)/dt

pitch = saturate((altErr+vertSpeedErr)*gain/vj,...

...-15*np.pi/180, 45*np.pi/180)*180/np.pi

Calculate CL and CD

sr = (vj*10**3)/np.sqrt(2*R*Temp)

75

Cl = (

4/(np.sqrt(np.pi)*sr)*np.cos(pitch*np.pi/180)...

...*np.sin(pitch*np.pi/180)*np.exp(-(sr*np.sin(pitch*np.pi/180)**2))

+ np.cos(pitch*np.pi/180)*(4*np.sin(pitch*np.pi/180)**2...

...+(2/(sr**2)))*math.erf(sr*np.sin(pitch*np.pi/180))

)

Cdw = (

((4/(np.sqrt(np.pi)*sr))*np.sin(pitch*np.pi/180)**2)...

...*np.exp(-(sr*np.sin(pitch*np.pi/180))**2)

+ 2*np.sin(pitch*np.pi/180)*(2*(np.sin(pitch*np.pi/180)**2...

...+(1/(2*sr**2))))*math.erf(sr*np.sin(pitch*np.pi/180))

)

76

REFERENCES

[1] Erik Kulu. Nanosats database. https://www.nanosats.eu/. Accessed: 2019-10-
22.

[2] Thomas Yunck, Conrad Lautenbacher, Mike McGrath, Peter Withnell, Penina
Axelrad, Danielle Nuding, and John Kreisher. Cicero: Community initiative
for continuing earth radio occultation. 6th FORMOSAT-3/COSMIC data users
workshop. Boulder, CO, USA, 2012.

[3] Mohinder S Grewal, Lawrence R Weill, and Angus P Andrews. Global positioning
systems, inertial navigation, and integration. John Wiley & Sons, 2007.

[4] Hank Heidt, Jordi Puig-Suari, Augustus Moore, Shinichi Nakasuka, and Robert
Twiggs. Cubesat: A new generation of picosatellite for education and industry
low-cost space experimentation. 2000.

[5] Ryan Hevner, Walter Holemans, Jordi Puig-Suari, and Robert Twiggs. An ad-
vanced standard for cubesats. 2011.

[6] Alexander Chin, Roland Coelho, Ryan Nugent, Riki Munakata, and Jordi Puig-
Suari. Cubesat: the pico-satellite standard for research and education. In AIAA
Space 2008 Conference & Exposition, page 7734, 2008.

[7] Isaac Nason, Jordi Puig-Suari, and Robert Twiggs. Development of a family
of picosatellite deployers based on the cubesat standard. In Proceedings, IEEE
Aerospace Conference, volume 1, pages 1–1. IEEE, 2002.

[8] Anders Kose Nervold, Joshua Berk, Jeremy Straub, and David Whalen. A path-
way to small satellite market growth. Advances in Aerospace Science and Tech-
nology, 1(01):14, 2016.

[9] Daniel Selva and David Krejci. A survey and assessment of the capabilities of
cubesats for earth observation. Acta Astronautica, 74:50–68, 2012.

[10] Junquan Li, Mark Post, Thomas Wright, and Regina Lee. Design of attitude
control systems for cubesat-class nanosatellite. Journal of Control Science and
Engineering, 2013:4, 2013.

[11] NASA. Landsat 8. https://landsat.gsfc.nasa.gov/landsat-8/. Accessed: 2019-
10-22.

77

[12] Kiril A Dontchev, Kartik Ghorakavi, Cameron E Haag, Thomas M Liu, and
Rafael Ramos. M-cubed: University of michigan multipurpose minisatellite with
optical imager payload. In Proceedings of the AIAA Space 2010 Conference &
Exhibition. Citeseer, 2010.

[13] Roger R Bate, Donald D Mueller, and Jerry E White. Fundamentals of astrody-
namics. Courier Corporation, 1971.

[14] ESA. Goce facts and figures. http://www.esa.int/OurActivities/ObservingtheEarth/GOCE/Factsandf igures.Accessed :
2019− 10− 22.

[15] Jaime Perez Luna, Rhodri A Lewis, and Mark Hutchins. Qinetiq high power
electric propulsion system and architectural options for future applications. 2017.

[16] CH Edwards, NC Wallace, C Tato, and P Van Put. The t5 ion propulsion
assembly for drag compensation on goce. In Second International GOCE User
Workshop” GOCE, The Geoid and Oceanography, 2004.

[17] Chia-Chun George Chao. Applied orbit perturbation and maintenance. American
Institute of Aeronautics and Astronautics, Inc., 2005.

[18] Samudra E Haque, Michael Keidar, and Taeyoung Lee. Low-thrust orbital ma-
neuver analysis for cubesat spacecraft with a micro-cathode arc thruster subsys-
tem. In 33rd International Electric Propulsion Conference, 2013.

[19] BA Arkhipov, NM Vertakov, BE Didenko, and AG Niatin. Control strategies
for orbit maintenance of leo small satellites with feep. In Spacecraft Propulsion,
volume 465, page 733, 2000.

[20] Andrea Garulli, Antonio Giannitrapani, Mirko Leomanni, and Fabrizio Scortecci.
Autonomous low-earth-orbit station-keeping with electric propulsion. Journal of
Guidance, Control, and Dynamics, 34(6):1683–1693, 2011.

[21] Akshay Tummala and Atri Dutta. An overview of cube-satellite propulsion tech-
nologies and trends. Aerospace, 4(4):58, 2017.

[22] Yi Chen, Rui Huang, Xianlin Ren, Liping He, and Ye He. History of the tether
concept and tether missions: a review. ISRN astronomy and astrophysics, 2013,
2013.

[23] Mario L Cosmo and Enrico C Lorenzini. Tethers in space handbook. 1997.

[24] Robert Hoyt and Jeffrey Slostad. The multi-application survivable tether (mast)
experiment. In 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and
Exhibit, page 5219, 2003.

[25] Robert Hoyt, Tyrel Newton, Ian Barnes, Jack Shepherd, S Scott Frank, Jeff
Slostad, Belgacem Jaroux, Robert Twiggs, et al. Early results of the multi-
application survivable tether (mast) space tether experiment. 2007.

78

[26] Masahiro Nohmi. Initial experimental result of pico-satellite kukai on orbit. In
2009 International Conference on Mechatronics and Automation, pages 2946–
2951. IEEE, 2009.

[27] Masahiro Nohmi, Takeshi Yamamoto, Akira Andatsu, Yohei Takagi, Yusuke
Nishikawa, Takashi Kaneko, and Daisuke Kunitom. Kagawa satellite stars
in shikoku. TRANSACTIONS OF THE JAPAN SOCIETY FOR AERO-
NAUTICAL AND SPACE SCIENCES, SPACE TECHNOLOGY JAPAN,
7(ists26):Tu 7–Tu 12, 2009.

[28] Jouni Envall, Pekka Janhunen, Petri Toivanen, Mihkel Pajusalu, Erik Ilbis,
Jaanus Kalde, Matis Averin, Henri Kuuste, Kaspars Laizans, Viljo Allik, et al.
E-sail test payload of estcube-1 nanosatellite. arXiv preprint arXiv:1404.6961,
2014.

[29] S Coffey, B Kelm, A Hoskins, J Carroll, and E Levin. Tethered electrodynamic
propulsion cubesat experiment (tepce). In Air Force Orbital Resources Iono-
sphere Conference, Dayton, Ohio, pages 12–14, 2010.

[30] A Haider and O Levenspiel. Drag coefficient and terminal velocity of spherical
and nonspherical particles. Powder technology, 58(1):63–70, 1989.

[31] Richard Fitzpatrick. Effect of atmospheric drag on artificial satellite orbits.
http://farside.ph.utexas.edu/teaching/celestial/Celestialhtml/node94.html. Ac-
cessed: 2019-10-22.

[32] Jeffery Scott Ginn. Spacecraft formation flight: Analysis of the perturbed j2-
modified hill-clohessy-wiltshire equation. Master’s thesis, The University of
Texas at Arlington, 2007.

[33] Carlos L Pulido. Aerodynamic lift and drag effects on the orbital lifetime low
earth orbit (leo) satellites. University of Colorado Boulder, 2007.

[34] Samuel A Schaaf, Lawrence Talbot, and GN Patterson. Handbook of supersonic
aerodynamics, section 16, mechanics of rarefied gases, 1960.

[35] George Karniadakis, Ali Beskok, and Narayan Aluru. Microflows and nanoflows:
fundamentals and simulation, volume 29. Springer Science & Business Media,
2006.

[36] Graeme A Bird and JM Brady. Molecular gas dynamics and the direct simulation
of gas flows, volume 5. Clarendon press Oxford, 1994.

[37] Jose F Padilla and Iain D Boyd. Assessment of gas-surface interaction models
for computation of rarefied hypersonic flow. Journal of Thermophysics and Heat
Transfer, 23(1):96–105, 2009.

[38] John David Anderson Jr. Fundamentals of aerodynamics. Tata McGraw-Hill
Education, 2010.

79

[39] M Eng and René Schwarz. Cartesian state vectors- keplerian orbit elements.
2017.

[40] M Eng and René Schwarz. Keplerian orbit elements- cartesian state vectors.
2017.

[41] Karl Osen. Accurate conversion of earth-fixed earth-centered coordinates to
geodetic coordinates. 2017.

[42] Antony Jameson, Wolfgang Schmidt, and Eli Turkel. Numerical solution of
the euler equations by finite volume methods using runge kutta time stepping
schemes. In 14th fluid and plasma dynamics conference, page 1259, 1981.

[43] Jan Roskam. Airplane flight dynamics and automatic flight controls. DARcor-
poration, 1998.

[44] Li Qiao, Chris Rizos, and Andrew G Dempster. Analysis and comparison of
cubesat lifetime. In Proceedings of the 12th Australian Space Conference, pages
249–260. Citeseer, 2013.

[45] Leonard B Loeb. The kinetic theory of gases. Courier Corporation, 2004.

[46] Justin Winslow, Hikaru Otsuka, Bharath Govindarajan, and Inderjit Chopra.
Basic understanding of airfoil characteristics at low reynolds numbers (10 4–10
5). Journal of Aircraft, 55(3):1050–1061, 2017.

[47] Daniel Oltrogge and Kyle Leveque. An evaluation of cubesat orbital decay. 2011.

[48] TP Brito, CC Celestino, and RV Moraes. Study of the decay time of a cube-
sat type satellite considering perturbations due to the earth’s oblateness and
atmospheric drag. In Journal of Physics: Conference Series, volume 641, page
012026. IOP Publishing, 2015.

[49] Sahadeo Ramjatan, Norman Fitz-Coy, and Alvin Yew. Magnus effect on a spin-
ning satellite in low earth orbit. In AIAA/AAS Astrodynamics Specialist Con-
ference, page 5257, 2016.

[50] Andrew Bacon and Ben Olivier. Skimsats: bringing down the cost of earth
observation. In Proceedings of the 12th Reinventing Space Conference, pages
1–7. Springer, 2017.

[51] Virendra K Dogra, James N Moss, and Joseph M Price. Rarefied flow past a flat
plate at incidence. 1988.

80

