

Study of the collisional effects and increasing transverse magnetic field on the expansion of a laser produced plasma Zachary White¹, Dr. Gabe Xu¹, Dr. Saikat Chakraborty Thakur², and Dr. Edward Thomas²

Introduction

- The study of laser produced plasmas is useful for understanding multiple phenomena such as energy conversion, confinement, and instabilities in transient plasmas.
- Previous work has investigated multiple plasmas using fields ranging from 0 to 1 T.
- Our goal is to show the results obtained from our experiments on the Magnetic Dusty Plasma Experiment (MDPX) superconducting magnet.
- We extended the ranges of previous studies into magnetic field strengths greater than 1 T and up to 3 T.

Objectives

- Our goal was to use gated imaging and optical emission spectroscopy to observe the plasma propagation across a strong uniform magnetic field.
- We wanted to observe the affect of the increased magnetic field on expansion dynamics, confinement, and instabilities observed in previous literature.

Materials and Methods

- Nd:YAG (532 nm) laser with a 10 ns pulse width and 275 mJ of energy was used to ablate a cylindrical carbon fiber target (1 mm diameter).
- The laser was focused to an ~ 1 mm spot size to increase our laser fluence to approximately 10 GW/cm2
- The magnetic field was created using the superconducting magnet located at Auburn University MDPX.
- The maximum attainable field is 4 T.
- A low-pressure environment was desired, so the target was placed in a 14 cm x 8 cm hexagonal vacuum chamber.
- Optical emission spectroscopy and gated imaging were used to diagnose the plasma expansion

¹University of Alabama in Huntsville, Department of Mechanical and Aerospace Engineering ² Auburn University

Results

Table 1. Ion Larmor radius, critical expansion radius, velocity, and beta

Γ)	r _{L (mm)}	R _b (mm)	v (m/s)	β
5	28.3	10.8	28,300	1,045
	1.0	7.38	8,200	1.65
	0.5	3.7	10,300	0.35

Conclusions

- The shrinking of the critical radius perpendicular to the magnetic field because of an increase of the magnitude of the field was expected.
- For β greater than unity, the plasma effectively pushes the external magnetic field out of the volume that the expansion resides (diamagnetic limit)
- For β lower than unity, the magnetic field diffuses into the plasma relatively quickly (nondiamagnetic limit)
- Our results of β show that the plasma is in diamagnetic limit only for the magnetic fields
 - approximately below 1 T.
- Further investigation into the diamagnetic nature of the cavity like structure is necessary.
- Striated structures are observed perpendicular and flutes are observed parallel to the magnetic field suggesting instability onset.

Acknowledgements

"This work was supported by a NASA Space Technology Research Fellowship grant no 80NSSC19K1144.."