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ABSTRACT

Significant advance has been made over the last decade in the development of broadband optoelectronic devices
based on novel technologies such as 2D materials, metamaterials, plasmonics, negative electron affinity photoe-
mission, etc. Understanding carrier dynamics in such devices, especially carrier relaxation and transportation
near device surfaces, requires time-resolved, broadband reflective spectroscopy with femtosecond temporal resolu-
tions. Femtosecond pump-probe reflectivity measurement (PPRM) has long been used to study carrier dynamics
in semiconductor devices. However, conventional PPRM lacks the necessary bandwidth and the ability to make
spectroscopic measurement. In this presentation, we report the demonstration of wavelength-resolved tran-
sient reflectivity measurement using a ultrabroad-band few-cycle pump-probe system. The system allows device
transient reflectivity to be mapped onto a two-dimensional space formed by time and wavelength, providing
a comprehensive characterization of ultrafast carrier dynamics. Preliminary results based on a GaAs substrate
and GaAs/AlGaAs layered structures have offered interesting insights into device dynamics that otherwise would
not be clear. These results demonstrate the feasibility of performing wavelength-resolved transient reflectivity
measurement and the effectiveness of this technique in characterizing broadband optoelectronic devices.
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1. INTRODUCTION

There has been significant advances over the last decade in the development of novel technologies such as 2D
materials, metamaterials, plasmonics, negative electron affinity (NEA) structures etc. Accompanying this tech-
nological revolution has emerged an equally expanding market of broadband ultrafast optoelectronic devices.1–4
Understanding the ultrafast dynamics, such as carrier relaxation and transportation, in these devices is vital for
maximizing their performances. More specifically, transient processes near devices surfaces are crucial for the
operation of ultrafast devices such as NEA photocathodes5 and photodetectors based 2D materials.6 Probing
these processes calls for sophisticated diagnostic techniques capable of making comprehensive characterization
on these devices. One broad family of techniques that can meet such demands is optical reflectometry. By
measuring changes in reflectivity off sample surfaces, this technique has proved very useful in deducing vital
optical constants of the samples7–9 and gaining insight in various time dependent processes.10–12

Here, we focus on one such technique - pump-probe reflectivity measurement (PPRM). PPRM is a ver-
satile and well established characterization technique to study ultrafast dynamics in materials and devices.13
However, depending on specific research goals, various groups have exploited PPRM systems either to make
time-domain measurements14,15 or time-resolved spectral domain measurements.13,16 In this paper, we present
preliminary results of wavelength-resolved pump-probe transient-reflectivity measurements with GaAs wafer and
GaAs/AlGaAs layered structures. The work aims to showcase the feasibility of performing both time domain
and spectral domain measurements simultaneously and with expected sensitivities.
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2. ULTRABROAD-BAND PUMP-PROBE TRANSIENT REFLECTOMETER

In a typical pump-probe transient reflectivity measurement, variations in surface reflectivity of a device sample
is measured at various time delays following the optical excitation by energetic pump pulses.14–21 For only
time-domain PPRM, one measures the evolution of sample’s total reflectivity as a function of the relative time
delay between the pump and probe pulses.19 On the other hand, by using a spectrometer at the system’s
output, PPRM can also perform spectroscopic measurements by measuring the spectrum of transient reflectivity
at various time delays.13 This addition has proved to be very useful for direct characterization of the dielectric
function, offering insight into underlying physical processes.22

We have previously reported time-domain transient-reflectivity measurement of a GaAs/AlGaAs photocath-
ode using a home-built, ultrabroad-band (300 nm), few-cycle (sub-10 fs) pump-probe system.11 In the current
report, we take one step further to add the capability of making wavelength-resolved measurement to the system.
This is done by inserting a tunable bandpass filters in front of the photodetector to select the probe wavelength
that is detected. By changing the center wavelength of the filter (typically with a 10-nm bandwidth), the same
time-domain measurement can be made at a series of wavelengths. This offers an extra dimension to PPRM for
comprehensive characterization of various opto-electronic devices.

3. EXPERIMENTAL RESULTS

As a proof-of-concept study, we have investigated wavelength-dependent transient reflectivity of GaAs substrates.
We have also made a comparative study of GaAs/AlGaAs NEA photocahtodes with different doping structures.
Similar time-domain studies on these samples have led to deeper understanding about carrier dynamics in such
devices and have been used to distinguish the performance of different structures.5,10,11
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Figure 1. (a) Pump-probe reflectivity measurement of GaAs on a time scale of 0 to 72 ps. The inset figure is plotted on
linear time scale. (b) 3D representation of transient reflectivity signal as a function of time delay and probe wavelength.
(c) Wavelength-dependent transient reflectivity on logarithm time scale.
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3.1 Observation of Non-Instantaneous Rise Time in Transient Reflectivity of GaAs
By measuring time-resolved reflectivity changes on sample surfaces, one can extract information about various
ultrafast processes such as band filling (BF), band-gap renormalization (BGR), free-carrier absorption (FCA),
Coulomb enhancement (CE), etc.23 The vast majority of transient-reflectivity studies so far focus exclusively
on the recovery dynamics of reflectivity upon an impulse-like excitation induced by the pump pulse.21,23,24 The
abrupt ascent (or descent) of reflectivity during or immediately after the pump pulse is normally treated as an
instantaneous process due primarily to its extremely short rise time (e.g., <100 fs) and the limitation of system
temporal resolution.21 Recent theoretical work, however, has predicted that the rise time of transient reflectivity
carries important information about the relative scales of various ultrafast effects.23 In particular, it is shown
that non-instantaneous rise time occurs when carrier cooling rate becomes comparable with carrier decay rate.23
That is, BF begins to contribute to the change of refractive index, which otherwise is dominated by BGR.21 Such
predictions can only be verified with temporally-resolved measurement of the initial edge of transient reflectivity.
Here, we report experimental observation of non-instantaneous rise time in transient reflectivity of an Si-doped
GaAs (110) wafer with a carrier concentration of about 3 × 1018cm-3.

Fig. 1(a) shows the overall transient-reflectivity trace, which is obtained without using any filter. The inset is
plotted on a typical linear time scale, whereas the main panel is plotted on a logarithm time scale. The logarithm
scale allows the steep rising edge to be clearly revealed. A mild increase in reflectivity is seen in the first 200
fs, followed by a more rapid rise. The reflectivity reaches peak at slightly more than 1 ps and then begins to
decrease. Since the overall reflectivity is a lumped sum of the responses over a broad range of wavelengths, it is
instructive to analyze the dvice response at different wavelengths (or photon energies) in order to gain deeper
insight into the underlying physics. Fig. 1(b) shows a series of transient-reflectivity measurements obtained over
a wavelength span from 710 nm to 890 nm. At each wavelength, a 10-nm bandpass filter is used right in front of
the photodetector. In addition, the probe beam spectrum is simultaneously measured and the pump-probe trace
at each wavelength is normalized to the probe spectral density at the same wavelength to obtain reflectivity.
The results show different reflectivity behaviors at different wavelengths. In particular, the reflectivity shows a
positive change at wavelengths above the band gap and a negative change at wavelengths below the band gap.
At wavelengths right around the band gap, a bipolar activity is observed. These features qualitatively agree with
theoretical predictions.23 The rise times of reflectivity at individual wavelengths are better revealed by plotting
some of the traces in Fig. 1(b) on logarithm time scales, which is shown in Fig. 1(c). A striking feature of the
plot is the difference in rise time for different wavelengths, ranging from about 300 fs to well over 1 ps. This
can be an indication of an evolving dielectric function, which may lend insights into the relative scales of various
ultrafast processes. This data is currently being analyzed based on theoretical models.

Figure 2. (a) ) Device#1: uniform-doped p-GaAs as active layer.(b) Device #2: gradient-doped p-Al0.63Ga0.37As as active
layer.

3.2 Time-resolved spectral domain measurements of GaAs/AlGaAs layered structures
In this section, we expand the application of wavelength-resolved PPRM to GaAs/AlGaAs layered structures,
whereby confirming the robustness of our PPRM system on a wide variety of applications. The devices under
investigation are two NEA photocathodes. Their doping structures are shown in Fig 2. Specifically, Device#1
Fig. 2(a)) has a uniform-doped active (GaAs) layer with a doping concentration of 1 × 1019cm-3 , whereas
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Device#2 (Fig. 2(b)) has a gradient-doped active layer with a doping concentration changing from 1× 1018cm-3

at the surface to 1 × 1019cm-3 near the AlGaAs buffer layer.

By changing the center wavelength of the tunable filter, transient reflectivity measurements are taken over
a series of wavelengths on both devices. The results are summarized in Fig. 3(a) and 3(b). Similar to the
GaAs substrate, bipolar behaviors of the reflectivity are observed with both devices, i.e. ∆R/R displays positive
changes at some wavelengths and negative changes at other wavelengths. Carrier decay behaviors, which are
indicated by the tails of the reflectivity traces, also appear to be different for different wavelengths, indicating
rich physics underlying the involved processes.

Further insight can be gained by plotting the traces in Fig. 3 into waterfall graphs with a logarithm time
scale, as shown in Fig. 4. Such time-wavelength mapping of transient reflectivity offers a comprehensive picture
of the behaviors of dielectric function after optical excitation by femtosecond pulses. Comparing Fig. 4(a) and
Fig. 4(b), it is evident that photoelectron accumulation on device surface occurs quicker in the gradient-doped
photocathode than in the uniform-doped photocathode (indicated by the earlier appearance of the bipolar feature
near the GaAs band gap in Device#2). This confirms the projected advantage of gradient-doped photocathodes,
i.e. the doping profile can assist carrier transportation to enhance device performance. Such complex carrier
dynamics would not be revealed without the ability to make wavelength-resolved measurements.
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Figure 3. Wavelength resolved transient reflectivity (a) Device#1. (b) Device#2.
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Figure 4. Time-Wavelength mapping of transient reflectivity (a) Waterfall plot for Device#1 with logarithmic time scale.
(b) Waterfall plot for Device#2 with logarithmic time scale.

4. CONCLUSION

In conclusion, we report here wavelength-resolved pump-probe transient-reflectivity measurements with a GaAs
substrate and GaAs/AlGaAs NEA photocathodes. In both cases, the technique offers insights into transient
carrier dynamics that otherwise would not be available. These results demonstrate the feasibility of performing
both time domain and spectral domain PPRM simultaneously and the effectiveness of such an approach in
characterizing broadband optoelectronic devices.
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