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The interaction between an atomic system and a few-cycle ultrafast pulse carries rich physics and a 
considerable application prospect in quantum-coherence control. However, theoretical understanding of 
its general behaviors has been hindered by the lack of an analytical description in this regime, especially 
with regard to the impact of the carrier-envelope phase (CEP). Here, we present an analytical theory that 
describes a two-level atom driven by a far-off-resonance, few-cycle square pulse. A simple, closed-form 
solution of the Schrödinger equation is obtained under the first-order perturbation without invoking the 
rotating-wave approximation or the slowly varying envelope approximation. Further investigation reveals 
an arithmetic relation between the final inversion of the atom and the CEP of the pulse. Despite its 
mathematical simplicity, the relation is able to capture some of the key features of the interaction, which 
prove to be robust against generalization of pulse shapes and show good agreements with numerical 
solutions. The theory can potentially offer a general guidance in future studies of CEP-sensitive quantum 
coherence.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Light-matter interactions have drawn a lot of interest in quan-
tum optics and atomic physics in recent years. Driven by the grow-
ing prospect of quantum information, considerable effort has been 
dedicated in the research of quantum coherence and quantum in-
terference in atomic systems [1–3]. Over the last two decades, the 
advance in ultrafast laser technology has made few-cycle pulses 
widely available [4,5]. This enables the study of quantum coher-
ence in the few-cycle regime, which leads to a number of new 
discoveries [6–8] and applications [9–11].

Few-cycle excitation of a two-level atom bears some unique 
features. Generally, the area theorem is no longer valid for few-
cycle pulses, and the actual field pattern underneath the pulse 
envelope has a direct impact on the interaction outcome [6,12]. 
The field pattern in a few-cycle pulse is often characterized by 
the so-called carrier-envelope phase (CEP), the phase of the opti-
cal carrier relative to the peak of the pulse envelope. When the 
pulse width becomes comparable to the optical cycle, CEP can 
strongly affect the shape of the oscillating field [4]. As a result, 
CEP has proved to be a critical factor in strong-field interactions 
such as high-harmonic generation [13], above-threshold ioniza-
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tion [14] and attosecond pulse generation [15]. Moreover, due to 
the breakdown of the rotating-wave approximation (RWA) and the 
slowly varying envelope approximation (SVEA) in the few-cycle 
regime [16–18], Bloch equations without RWA and SVEA have to 
be adopted, which increases the complexity of the problem signif-
icantly. Consequently, theoretical analysis in this regime has been 
primarily based on numerical approaches.

The lack of an analytical description has rendered the physics of 
few-cycle interactions less clear. Most of the findings so far have 
been based on numerical solutions aligned towards specific prob-
lems, while a general picture of the qualitative trend is missing. 
There has been some prior effort in pursuit of analytical solutions 
in the few-cycle regime [19–21]. One particularly interesting area 
is the study of atomic coherence driven by far-off-resonance pulses 
[20]. Far-off-resonance pulses are of practical significance because 
of their potential applications in efficient generation of soft x-
ray and UV radiations [22,23]. A suite of analytical solutions have 
been obtained under the RWA for far-detuned many-cycle pulses 
[24,25]. In the few-cycle regime, however, the perturbation the-
ory has to be invoked to simplify the Schrödinger equation under 
strong excitation, which yields a partial solution in the form of a 
nested integral [20,23]. This solution is implicit and would still re-
quire numerical methods when solving actual problems.

In this work, we take a different approach to solve the 
Schrödinger equation. By assuming a far-detuned, few-cycle square 
pulse, we are able to obtain a simple, closed-form solution. The so-
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lution is further applied to evaluating the impact of CEP on atomic 
inversion, which leads to a concise, arithmetic expression. Compar-
isons with direct numerical solutions of the Schrödinger equation 
show good agreements. Key characteristics of the CEP dependence 
are found to be robust against generalization of the pulse shapes, 
indicating the feasibility of the method in offering a sound physical 
picture beyond the square pulse. As such, this analytical theory ap-
pears to be able to complement the traditional numerical methods 
with a qualitative guideline.

2. Theoretical model

Our theoretical model is based on the general framework of a 
two-level system (TLS) under the excitation of an electromagnetic 
field. The Hamiltonian of the TLS is given by

Ĥ = h̄ωc |c〉 〈c| − μE(t) |c〉 〈d| − [μE(t)]∗ |d〉 〈c| , (1)

where |c〉 and |d〉 are upper and lower level states of the TLS, re-
spectively. μ is the dipole moment. ωc is the transition frequency 
of the TLS. E(t) = E(t) cos(ωt + ϕ) is the excitation field defined 
in the moving frame, where E(t) represents the pulse envelope,
ω is the carrier wave frequency, and ϕ is the CEP. The medium 
is assumed to be optically thin so the propagation effects are ne-
glected. From the Schrödinger equation, the following relations can 
be established,

Ċ(t) = −i�(t) cos(ωt + ϕ)eiωct D(t), (2a)

Ḋ(t) = −i�∗(t) cos(ωt + ϕ)e−iωct C(t), (2b)

where C(t) and D(t) are probability amplitudes of the state vector 
|�〉, with |�〉 = C(t)e−iωct |c〉+ D(t) |d〉. �(t) = μE(t)/h̄ is the Rabi 
frequency.

By defining f (t) = C(t)/D(t), the Schrödinger equation (2) can 
be converted into a Riccati equation without invoking the RWA or 
the SVEA [20],

ḟ = i�∗(t) cos(ωt + ϕ)e−iωct f 2

− i�(t) cos(ωt + ϕ)eiωct .
(3)

Eq. (3) can be simplified under the first-order perturbation by in-
troducing g(t) = f (t) + iθ(t), where

θ(t) =
t∫

−∞
�(t′) cos(ωt′ + ϕ)eiωct′dt′. (4)

Since −iθ(t) is the solution of (3) when the f 2 term on the right 
hand side of (3) is set to zero, g(t) is effectively the difference 
between f (t) and its zeroth-order approximation. Substituting g(t)
into (3) and neglecting the g2 term yields the equation

ġ − 2θ θ̇∗g = −iθ2θ̇∗. (5)

Applying the Green’s function to (5) leads to the general solution

g(t) = −i

t∫
−∞

θ2θ̇∗eα(t′;t)dt′, (6)

where α(t′; t) is given by

α(t′; t) = 2

t∫
t′

θ θ̇∗dt′′. (7)

Since dα/dt′ = −2θ θ̇∗ , (6) can be simplified to
2

g(t) = i

2

t∫
−∞

θ(t′)deα(t′;t). (8)

The right-hand side of (8) can be integrated by parts using the 
conditions θ(−∞) ≈ 0 and α(t; t) = 0. This then leads to the gen-
eral solution of f (t),

f (t) = − i

2

⎡
⎣θ(t) +

t∫
−∞

θ̇ (t′)eα(t′;t)dt′
⎤
⎦ . (9)

Note that a slightly different version of this integration-form 
solution has been given in Ref. [20]. The focus of the current pa-
per, however, is to find a closed-form solution of the Schrödinger 
equation for a particular type of excitation pulse, specifically, a 
few-cycle square pulse. The pulse is defined as

E(t) =
{

E0, 0 ≤ t ≤ τ

0, Otherwise
(10)

where τ is the pulse width. Taking such a pulse into (4), it is easy 
to see that, within the duration of the pulse (0 ≤ t ≤ τ ), θ(t) satis-
fies

θ(t) = �0

t∫
0

cos(ωt′ + ϕ)eiωct′dt′, (11)

where �0 = μE0/h̄ is the peak Rabi frequency. The integral in (11)
can be separately evaluated for ω > ωc and ω < ωc , and the results 
are similar in form. Here, we only focus on the ω < ωc case, with 
the understanding that the ω > ωc case can be treated in a similar 
fashion. A tedious but straightforward derivation shows that θ(t), 
θ∗(t), θ̇ (t) and θ̇∗(t) can be expressed as follows:

θ = −iη
[

cos(ωt + ϕ + iβ)eiωct − cos(ϕ + iβ)
]
, (12a)

θ∗ = iη
[

cos(ωt + ϕ − iβ)e−iωct − cos(ϕ − iβ)
]
, (12b)

θ̇ = �0 cos(ωt + ϕ)eiωct, (12c)

θ̇∗ = �0 cos(ωt + ϕ)e−iωct, (12d)

where η = �0/
√

ω2
c − ω2 and β satisfies the relations cosh β =

ωc/
√

ω2
c − ω2 and sinh β = ω/

√
ω2

c − ω2.
By substituting (12) into (7), one can show that α(t′; t) consists 

of three parts written in an integration form,

α(t′; t) = − iη�0

t∫
t′

{cos iβ + cos(2ωt′′ + 2ϕ + iβ)

− 2 cos(ϕ + iβ) cos(ωt′′ + ϕ)e−iωct′′ }dt′′.

(13)

Among these three terms, the second and the third terms have pe-
riodic amplitudes oscillating at 2ω and ω, respectively. When the 
integral covers multiple carrier cycles, the contributions of these 
two terms become negligible compared to the first one. Thus, we 
can drop the last two terms in the integral and simplify (13) to

α(t′; t) = −iη2ωc(t − t′). (14)
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Fig. 1. The incident two-cycle square pulse.

Bringing (14) into (9), the integral in (9) can be rewritten as

t∫
−∞

θ̇ (t′)eα(t′;t)dt′ =

e−iη2ωct

t∫
−∞

�0 cos(ωt′ + ϕ)ei(1+η2)ωct′dt′.

(15)

If η satisfies the condition η2 	 1, then 1 +η2 ≈ 1, and the integral 
on the right-hand side of (15) becomes θ(t). From (9), the final 
expression for f (t) is

f (t) = − i

2

(
1 + e−iη2ωct

)
θ(t), (16)

where θ(t) is given by (12a). The relation (16) is a closed-form 
analytical solution of the Riccati equation (3) under the first-
order perturbation for square-pulse excitation. Its valid range is set 
by the condition η2 	 1, which can be rewritten as (ω/ωc)

2 +
(�0/ωc)

2 	 1. Since ω < ωc is assumed in the current case, the 
above condition is always satisfied if we have(

ω

ωc

)2

+
(

�0

ω

)2

	 1. (17)

It is thus clear that the solution (16) is valid when the TLS is 
excited by a far-off-resonance square pulse with a peak Rabi fre-
quency much less than the carrier frequency. This latter condi-
tion implies that the peak field of the pulse must stay well be-
low the level required for the so-called carrier-wave Rabi flopping
[12,26]. Meanwhile, the large-detuning condition also implies that 
cos iβ ≡ cosh β ≈ 1, which ensures that the simplification of (13)
is valid under the assumption.

3. Comparison with numerical solutions

In order to validate the above analytical solution and also in-
vestigate its applicability, we numerically solve the Schrödinger 
equation (2) and compare the results with the analytical predic-
tions made by (16). The results presented in the following are 
based on a two-cycle square pulse as shown in Fig. 1. Other pulse 
widths and field patterns have also been studied and the results 
are similar in nature. In all the calculations, the carrier frequency 
ω is fixed at a wavelength of 800 nm. The transition frequency ωc

and the Rabi frequency �0 are adjusted to produce different com-
binations of the detuning factor ω/ωc and the amplitude factor 
�0/ω.

Fig. 2 shows the analytical and the numerical solutions of | f (t)|
across the pulse for four different peak fields (�0/ω = 0.05, 0.1, 
0.15 and 0.2). In each case, three different detunings, with ω/ωc =
0.3, 0.6, and 0.9, are investigated. When the Rabi frequency is 
3

Fig. 2. The analytical-numerical comparisons of | f (t)| across the excitation pulse 
under four different peak fields, with �0/ω = 0.05, 0.1, 0.15 and 0.2. Three different 
detuning levels, with ω/ωc = 0.3, 0.6, and 0.9, are plotted in each case.

Fig. 3. The final upper-level probability |Cfinal|2 versus the detuning factor ω/ωc

under different excitation levels, with �0/ω = 0.05, 0.1, 0.15 and 0.2, respectively. 
Good analytical-numerical agreement is found in general except for the cases with 
large ω/ωc (small detuning).

much lower than the carrier frequency, e.g., �0/ω = 0.05, the an-
alytical solutions show excellent agreement with the numerical 
results across the entire pulse for all three detuning levels. As 
the peak field gradually increases and the Rabi frequency moves 
closer towards the carrier frequency, discrepancies between the 
analytical and the numerical solutions begin to arise. Such differ-
ences are much more significant in the small-detuning case with 
ω/ωc = 0.9.

Similar comparisons can also be made with respect to the fi-
nal upper-level probability |Cfinal|2 at the end of the pulse, where 
|C(t)|2 is related to f (t) through the relation |C(t)|2 = | f (t)|2/(1 +
| f (t)|2). In Fig. 3, |Cfinal|2 is plotted against ω/ωc for the cases 
of �0/ω = 0.05, 0.1, 0.15 and 0.2. Once again, excellent analytical-
numerical agreement is achieved with small �0/ω across a wide 
detuning range, whereas increasing disagreement is observed at 
small detunings as �0 approaches ω, as evident from the �0/ω =
0.15 and �0/ω = 0.2 traces.



B. Zeng and L. Duan Physics Letters A 398 (2021) 127292
Fig. 4. The agreement between the analytical and the numerical solutions of |Cfinal|
vs. ω/ωc and �0/ω: (a) surface plot; (b) contour plot. The dashed guideline in (b) 
highlights the valid condition given by (16) for the analytical solution. (For inter-
pretation of the colors in the figure(s), the reader is referred to the web version of 
this article.)

The above comparisons suggest that the analytical solution (16)
is a valid solution for the Schrödinger equation (2) under the con-
ditions of far off-resonance excitation and a small peak incident 
field, where “small” is in reference to the threshold of carrier-wave 
Rabi flopping. To further verify this conclusion, the difference be-
tween the analytical and the numerical results, �|Cfinal|, is plotted 
on the two-dimensional space formed by �0/ω and ω/ωc . The re-
sults are summarized by the surface plot shown in Fig. 4(a) and, 
equivalently, by the contour plot shown in Fig. 4(b). A diagonal 
guideline is added to Fig. 4(b) to highlight the boundary between 
the area where �|Cfinal| = 0 and the area where nonzero �|Cfinal|
is generally observed. It is easy to see that the resulted valid con-
dition qualitatively agrees with the theoretical prediction given by 
(17).

4. CEP-dependence of the final inversion

The analytical solution given by (16) offers some interesting 
physical insights that numerical solutions would not be able to 
provide. For example, many prior studies have pointed out that 
the inversion of a TLS can be controlled by the CEP of a few-cycle 
pulse [17,19,26]. This bears some practical implications given that 
the inversion is a direct measurable and hence can be used for 
experimental verification of quantum coherence. However, such a 
dependence has never been explicitly shown in closed form. The 
current theory has made it possible to derive such a relation.

We begin by recognizing that the inversion w of a TLS can be 
expressed as w = |C |2 − |D|2 = (| f |2 − 1)/(| f |2 + 1), where | f |2
can be derived from (16),

| f |2 = 1

2

(
1 + cosη2ωct

)
|θ |2. (18)

Using (12a) and (12b), it is straightforward to express |θ |2 as
4

Fig. 5. (a) The CEP-dependence of the final inversion, where �w f ≡ (w f + 1)/2. 
The solid trace is obtained by numerically solving the Schrödinger equation for a 
square-pulse (SP), while the dotted trace is directly from the analytical solution (21). 
ω/ωc = 0.366 and �0/ω = 0.181 are used in both cases. The dashed trace is a nu-
merical solution based on a two-cycle top-hat (TH) pulse (inset) with �0/ω ≈ 0.28. 
(b) The relation of w f vs. peak field �0/ω, obtained from (23) for three different 
CEP values. The solid trace is a numerical solution based on a 1.5-cycle Gaussian 
pulse (inset) with a zero CEP.

|θ |2 ≡ θθ∗ = η2{cosh 2β · (1 − cosωt cosωct)

+ cos (ωt + 2ϕ)(cosωt − cosωct)

− sinh 2β · sinωt · sinωct}.
(19)

Typically, we are interested in the final inversion of the TLS at the 
end of the driving pulse. For simplicity, we further assume that the 
square pulse contains an integer number of optical cycles. We then 
replace all the t in (19) by 2Nπ/ω, which leads to

|θ f |2 = 2η2 cos2 ϕ ·
(

1 − cos 2N
ωc

ω
π

)
, (20)

where N is a nonzero integer and the subscription f indicates the 
final state upon the passage of the driving pulse. Note that the 
relation cosh 2β = (ω2

c + ω2)/(ω2
c − ω2) ≈ 1 has been used in (20)

under the far-detuning condition ω 	 ωc . Substituting (20) into 
(18) and applying the definition of w yield a concise expression of 
the final inversion

w f = Q η2 cos2 ϕ − 1

Q η2 cos2 ϕ + 1
, (21)

where

Q =
(

1 + cos 2Nη2 ωc

ω
π

)(
1 − cos 2N

ωc

ω
π

)
. (22)

Equation (21) highlights the direct impact of CEP on the inver-
sion of a TLS. An immediate finding is that this CEP-dependence 
takes the form of cos2 ϕ , which means ϕ = 0 and ϕ = π result 
in the same inversion. In the current case, the minimum inversion 
occurs when ϕ = ±π/2. These qualitative observations have been 
confirmed by comparing the numerical solution of the Schrödinger 
equation (2) with the results given by (21), as shown in Fig. 5(a) by 
the solid (numerical) and the dotted (analytical) traces. Aside from 
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a small discrepancy in the absolute value, which results from the 
approximation of cosh 2β ≈ 1, (21) offers a fairly accurate picture 
of the behaviors of the final inversion versus the CEP. Moreover, it 
is believed that these behaviors can be generalized to more realis-
tic pulse shapes. As evidence, we show in Fig. 5(a) the numerical 
result based on a two-cycle top-hat pulse (depicted in the inset). 
The solution shares a similar CEP-dependence as the square pulse, 
albeit in a smaller variation scale.

Further insights can be obtained by using the fact that
Q η2 cos2 ϕ is typically much less than 1 and hence rewriting (21)
as

w f ≈ −1 + 2Q η2 cos2 ϕ. (23)

Clearly, the effect of the CEP on w f is modulated by η2 and, 
more importantly, by Q , which is given by (22). The value of Q
is bounded within 0 ≤ Q ≤ 4, with Q = 0 occurring periodically 
when ωc/ω is an integer or η2ωc/ω is a half integer. This leads 
to an important realization that, when seeking an CEP-dependent 
inversion, it is critical to properly choose ω, ωc and �0 to max-
imize Q . On the other hand, the final inversion is locked to −1
when Q = 0, regardless of the CEP value. This is especially inter-
esting from the view point of η2ωc/ω (the first term in (22)), as 
it suggests that certain peak-field values can override the effect of 
the CEP. Such a phenomenon has been observed in numerical stud-
ies in the past, but has not been given a clear explanation before 
[19,27]. To further elucidate this point, Fig. 5(b) shows the depen-
dence of the final inversion over the peak field of the square pulse 
for three different CEP values. Despite their different oscillation 
amplitudes, all three traces reach w f = −1 at the same values of 
�0/ω. Once again, these conclusions are not restricted to square-
pulse excitation. For instance, we have numerically calculated the 
CEP-dependence of w f with various �0 for a 1.5-cycle Gaussian 
pulse and found similar characteristics. One of these traces with 
CEP = 0 is included in Fig. 5(b). The trace shares the same fea-
tures as the square-pulse traces with an oscillatory behavior and 
multiple minima at w f = −1.

5. Conclusion

In conclusion, a closed-form analytical solution of the Schrö-
dinger equation has been derived to describe the excitation of a 
TLS by a far-detuned, few-cycle square pulse without invoking the 
RWA or the SVEA. Despite its mathematical simplicity, the solu-
tion appears to capture some of the key aspects of the interac-
tion, including its dependence on the CEP, and has shown very 
good agreements with numerical solutions. Some of the predic-
tions of the theory prove to be robust against change of pulse 
shapes, demonstrating the potential of this analytical formalism as 
a generic description of light-matter interactions in the few-cycle 
regime. It is hoped that this work can shed some light on the path 
towards highly efficient control of quantum coherence along with 
other relevant topics.
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