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Abstract: The response of a two-level system to a few-cycle pulse pair has been investigated
with a special focus on the relation between population inversion and the carrier-envelope phases
(CEPs) of the two pulses. The goal is to explore possible schemes of coherent control based
on sequential ultrafast pulses. Simulation results indicate a close CEP-inversion relation, which
stems from the coherent nature of the interaction. The impact of the pulse amplitudes is evaluated
and is shown to create weak-field and strong-field interaction regions with drastically different
characteristics. The important role of carrier-wave Rabi flopping in defining these characteristics
is also analyzed. Finally, advantages of the method and experimental realization are discussed.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Coherent control with sequential optical pulses or pulse trains has attracted a lot of interest in
recent years because of its unique capability in achieving coherent population transfer among
quantum states [1–7]. Within this context, schemes such as adiabatic passage [2–5], coherent
accumulation [6,7], and coherent population oscillation [8] have been investigated. Earlier studies
on pulse trains interacting with atomic systems focus exclusively on pulses with durations much
longer than the optical cycles [9–12]. With recent advance in femtosecond lasers, ultrafast pulses
containing only few optical cycles have become experimentally attainable [13]. This triggers
growing interest in understanding the interactions between atomic systems and few-cycle pulse
(FCP) sequences [3,8,14].

From a theoretical point of view, several unique aspects arise when pulse width enters the
few-cycle regime. Strong field typically has to be assumed [15] and the slowly-varying-envelope
approximation (SVEA) is no longer valid [16,17]. The near-resonance approximation also
becomes invalid in general because of the ultra-broad pulse spectrum as well as the possible
large detuning between carrier frequencies and atomic transition frequencies. These new features
lead to the breakdown of the rotating-wave approximation (RWA) and the concept of pulse area
[18–20], which form the foundation of the widely accepted optical Bloch equations [21]. As
a result, theoretical models for atom-field interactions in the few-cycle regime are generally
more complicated and solving these problems usually involve numerical simulations, although
some success has been achieved in finding analytical solutions under specific conditions (e.g.,
far-off-resonant excitation [22,23]).

One important concept associated with FCP is carrier-envelope phase (CEP), which is defined
as the phase of carrier field relative to the peak of pulse envelope. When pulse width is
comparable to the carrier cycle, the impact of CEP on the exact pattern of electromagnetic
field within the pulse becomes much more significant [24]. Over the last decade, the effect
of CEP in coherent control of atomic systems has been the topic of several reports [25–29].
Notably, Mücke et al. studied the role of CEP in carrier-wave Rabi flopping [25]; Jirauschek et
al. reported CEP-sensitive inversion in two-level atomic systems [26]; Wu and Yang showed the
profound effects of CEP on atomic coherence and quantum beats [27]; Yang et al. investigated
CEP-dependent coherence in an artificial atomic system made of semiconductor quantum wells
[28]; and more recently, Li et al. successfully probed and modeled CEP-dependent interference
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between one-photon and multi-photon transitions excited by few-cycle radio-frequency pulses
[29]. All these prior efforts, however, dealt with individual FCP. To the best of our knowledge,
the impact of CEP on coherent control has not been explicitly studied in the context of sequential
pulses. Yet, light-matter interactions under FCP sequences are fundamentally significant because
their ramifications strongly depend on the coherence properties of the atomic system in a highly
nonlinear fashion, which is generally not revealed in the interactions with single pulses.
In the current paper, we numerically investigate the response of a two-level system (TLS) to

a FCP pair, with a special emphasis on the relations between population inversion and various
parameters of the two pulses. We also seek to identify the role pulse amplitudes play in such a
relation and explore the physical picture underlying the simulation results. Finally, we attempt
to put our results into experimental contexts and discuss the potential of using FCP pairs as a
practical scheme for coherent control. The paper is organized as follows: Section II outlines the
theoretical model, Section III reports the numerical results, and Section IV presents discussions
and conclusions.

2. Theoretical model

Our analysis considers two consecutive FCPs interacting with a TLS medium. The medium is
treated as optically thin so that propagation effects can be neglected. This allows the Maxwell-
Bloch equations to be simplified to the Bloch equations. For the current work, we choose the
general form of the Bloch equations within the dipole approximation but without invoking the
RWA [8]. For a TLS defined by a transition frequency ωba and a Bloch vector (u, v, w), the Bloch
equations can be written as:

Ûu = ωbav −
u
T2

, (1a)

Ûv = −ωbau − 2ΩR(t)w −
v
T2

, (1b)

Ûw = 2ΩR(t)v −
w + 1

T1
, (1c)

where the overdot denotes time derivative. T1 and T2 are spontaneous decay time and dipole
dephasing time, respectively. ΩR(t)= µE(t)/-h is instantaneous Rabi frequency, with E(t) repre-
senting the driving field and µ representing the transition dipole moment. Note that the factor 2 in
front of ΩR(t) is due to the assumption of a ∆m= 0 transition [30]. Since the focus of our analysis
is on the coherent dynamics of the TLS and the pulse durations and the relative pulse delay used
in the simulations are smaller than the typical values of T1 and T2, the terms associated with T1
and T2 are neglected in the current study.

The driving field consists of two transform-limited (no chirp) Gaussian pulses separated by a
time delay. The corresponding time-dependent Rabi frequency is given by

ΩR(t) = Ω01 exp[−(t/τ)2] cos(ωct + ϕCE1)

+Ω02 exp{−[(t − ∆t)/τ]2} cos[ωc(t − ∆t) + ϕCE2]
, (2)

where ωc is the carrier frequency and τ represents the pulse width. Ω01 and Ω02 are the peak
Rabi frequencies of the leading and the trailing pulses, respectively. ϕCE1 and ϕCE2 are the CEPs
of the two pulses. ∆t is the relative pulse delay.
In order to put our numerical results into a context, we follow a similar treatment by Mücke

et al. [14] and choose the transition energy between the two levels to be 1.424 eV (coinciding
with the GaAs band gap) and a typical value of the transition dipole moment to be µ = 0.5e nm.
Throughout the work, we assume the two pulses have the same full-width-at-half-maximum
(FWHM) duration of 5 fs. The carrier wavelength is set to be 800 nm (the typical wavelength
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of Ti:Sapphire lasers), which leads to a carrier frequency detuning of ∆=ωc - ωba = 0.089ωba.
The initial values of the Bloch vector are (0, 0, -1) for all the simulations while five parameters
are considered adjustable: the peak Rabi frequencies of the two pulses, the CEPs of the two
pulses, and relative pulse delay. The standard fourth-order Runge-Kutta method is used to solve
Eq. (1a)–(1c).

3. Numerical results

3.1. Effects of the trailing pulse

First, we investigate the impact of the trailing pulse on the inversion of the TLS. The questions
we seek to answer here are: Given a known initial state, which is defined by fixing the parameters
of the leading pulse as well as the relative pulse delay, what is the relation between ϕCE2 and the
final inversion wf and how does Ω02 affect this relation? The leading pulse is chosen in such a
way that it drives the inversion from w= -1 to w= 0. The relative pulse delay is set at 50 fs. This
choice of initial state, although somewhat arbitrary, does not qualitatively impact the results to
be discussed. Ω02 is varied within the range of 0 to 3.2 ωc, and in each case, ϕCE2 is adjusted
between -π and +π.

The time-evolutions of the inversion under several values of ϕCE2 are summarized in Fig. 1(a).
The peak Rabi frequency of the trailing pulse is fixed at Ω02 = 0.833ωc in this case. The trailing
pulse induces a transient process in which the inversion oscillates. The final inversion level upon
the passage of the trailing pulse exhibits a clear dependence on ϕCE2. The exact form of this
dependence is revealed by plotting wf directly against ϕCE2, which is shown in Fig. 1(b) for
several values of Ω02. When Ω02 is below a certain level, the relation between wf and ϕCE2 is
found to be very close to a sinusoidal relation, with the corresponding “amplitude” and “phase”
varying with Ω02. When Ω02 is high enough, however, the inversion-phase dependence begins to
deviate from a simple oscillation (blue dash-dotted trace in Fig. 1(b)), suggesting the onset of a
strong nonlinear interaction between the pulse and the TLS. Our simulation indicates that this
change of behavior occurs when Ω02 reaches about 1.57ωc.

Fig. 1. (a) Inversion evolution in the simulated TLS due to a pair of 5-fs pulses. The leading
pulse (at t= 0) drives the inversion from w= -1 to w= 0. The trailing pulse (delayed by 50
fs), with an amplitude equivalent to a peak Rabi frequency of 0.833ωc and a CEP varying
between -π/2 and +π/2, generates a final inversion level that clearly depends on the CEP. (b)
The final inversion wf versus the CEP of the trailing pulse ϕCE2 for several values of peak
Rabi frequency Ω02.

3.2. Strong field vs. weak field

To investigate the inherent impact of Rabi oscillation on the CEP-sensitive inversion, we vary the
peak Rabi frequency Ω02 while keeping ϕCE2 fixed at certain values. Figure 2(a) shows wf as a
function of Ω02 at three different choices of ϕCE2. Once again, the relation between wf and Ω02
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appears to be oscillatory and quasi-periodic until Ω02 reaches approximately 1.57ωc, at which
point the behavior of the inversion becomes highly irregular. This characteristic change suggests
that the atom-field interaction enters a highly nonlinear regime. To understand the underlying
physics, we notice that Ω02 corresponds to the absolute maximum value of the instantaneous
Rabi frequency the trailing pulse can possibly generate. However, for gauging the overall impact
of the pulse, it is reasonable to use a somewhat “averaged” field instead of the absolute peak
field. One plausible strategy is to average a sinusoidally oscillating field over a half cycle. If we
define an average field based on the center half cycle of a cosine pulse, the corresponding average
Rabi frequency is related to Ω02 through the simple relation ΩRa2 =(2/π) Ω02. In the case of Ω02
=1.57ωc, the average Rabi frequency is approximately equal to the carrier frequency: ΩRa2 ≈ ωc.
It is therefore clear that the irregular behavior of wf under strong field is due to carrier-wave Rabi
flopping, which occurs when Rabi frequency becomes comparable to the carrier frequency [14].

Fig. 2. (a) The final inversion wf versus the peak Rabi frequency of the trailing pulse Ω02
with ϕCE2 equal to -π/2, 0 and +π/2. (b) A contour plot of wf as a function of both ϕCE2
and the average Rabi frequency ΩRa2 (expressed in terms of Ω02 and ωc).

The overall dependence of the final inversion on both the average Rabi frequency and the
CEP of the trailing pulse can be revealed by mapping wf on a two-dimensional space formed
by ϕCE2 and ΩRa2 in a contour plot. This is shown in Fig. 2(b). Two distinctive regions can
be identified on the plot. When the average Rabi frequency is below the carrier frequency, wf
follows a regular, periodic relation over ϕCE2. This can be viewed as a “weak-field” region. As
the average Rabi frequency grows past ωc, however, the regular pattern gradually gives way to an
irregular, patchy pattern, indicating the dominance of strong nonlinear interactions. This can be
defined as a “strong-field” region. The two regions are separated by the ΩRa2 =ωc condition,
demonstrating the critical role of carrier-wave Rabi flopping in determining the characteristics of
atom-field interactions.

3.3. Effects of the leading pulse

The impact of the leading pulse on the final inversion wf is studied following a similar approach
as the analysis of the trailing pulse. In this case, Ω02 and ϕCE2 are fixed and so is the relative
pulse delay ∆t. Ω01 and ϕCE1 are adjusted and the corresponding levels of wf are computed.
Figure 3 summarizes key results of the analysis, where Ω02 = 0.117ωc and ϕCE2 = -0.779π are
used. Qualitatively, wf exhibits a similar dependence on ϕCE1 as it does on ϕCE2. This similarity
is clearly evident when comparing Fig. 3(a) with Fig. 1(b). Furthermore, the CEP sensitivity
of wf is modulated by Ω01 in a similar fashion as it is modulated by Ω02. A regular, periodic
dependence over ϕCE1 is featured in the weak-field region, which is in contrast to a highly
irregular relation in the strong-field region, as shown in Fig. 3(b). The two regions are separated
by the leading-pulse version of carrier-wave Rabi flopping, i.e. ΩRa1 = (2/π) Ω01 =ωc.

The similarity between the leading pulse and the trailing pulse in their effects on wf highlights
the coherent nature of the current scheme. Here, the leading pulse serves as a “stimulator” to
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Fig. 3. (a) The final inversion wf versus the CEP of the leading pulse ϕCE1 for several
values of peak Rabi frequency Ω01. (b) A contour plot of wf as a function of both ϕCE1 and
the average Rabi frequency ΩRa1 (expressed in terms of Ω01 and ωc).

excite atomic coherence in the TLS. The TLS in turn becomes a “messenger” to transfer phase
coherence from the leading pulse to the trailing pulse. Through this process, the population
inversion of the TLS is modulated by the CEPs of both pulses. Such a coherence-transfer process
is clearly revealed by examining the impact of relative pulse delay ∆t on CEP-sensitive inversion.
Figure 4(a) shows wf plotted as a function of both ∆t and ϕCE2. The results are obtained with the
same combination of Ω01, ϕCE1, and Ω02 as in Fig. 1(a), with Ω01 and Ω02 both in the weak-field
region. The apparent periodicity along the axis of ∆t suggests that the dipole moment of the TLS
oscillates at an intrinsic frequency in the absence of external excitation. This intrinsic cycle is
found to be 2.904 fs based on the period shown in Fig. 4(a). The corresponding frequency of
344.3 THz exactly matches the transition frequency ωba used in the simulation. The physical
picture of this coherent oscillation is easy to understand by inspecting the Bloch equations. In
the absence of external field and relaxations, the general solution for the Bloch equations is
(sinωbat, cosωbat, w0), where w0 is a constant defined by the initial condition. In our case, w0
is the inversion caused by the leading pulse, which is chosen to be zero (see Fig. 1(a)). This
corresponds to the scenario where the Bloch vector rotates along the equator of the Bloch sphere
at a rate equal to ωba. When the trailing pulse arrives, its electromagnetic field interacts with the
TLS in a manner similar to interference between two oscillatory signals, with both the CEP of
the pulse and the phase of the Bloch vector directly dictating the outcome of the interaction. This
is evident from the straight-line pattern displayed in Fig. 4(a), which, in essence, is a map of

Fig. 4. (a) The final inversion wf as a function of both ϕCE2 and the relative pulse delay ∆t.
The periodic straight diagonal pattern indicates coherent beating between the pulse and the
atomic dipole moment. Ω02 = 0.833ωc is assumed in this case. (b) Bloch vector trajectories
under the excitation of the leading pulse (blue) and the trailing pulse (red). The inversion
is driven from w= -1 to w= 0 by the leading pulse and then from w= 0 to w=+1 by the
trailing pulse.
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equal-phase lines. A numerical demonstration of the entire process is shown in Fig. 4(b), where
the Bloch vector migrates from the w= -1 pole to the equator under the excitation of the leading
pulse (blue) and, after a brief delay, continues to travel upward until finishing at the w=+1 pole
under the action of the trailing pulse (red).

3.4. CEP dependence of the final inversion

Finally, we investigate how the final inversion depends on the CEPs of both pulses. Here, we fix
Ω01, Ω02 and ∆t while leaving ϕCE1 and ϕCE2 as adjustable parameters in the calculation of wf .
The scheme is further divided into four scenarios based on the relative scales of Ω01 and Ω02, and
the results are summarized in Fig. 5. Figure 5(a) shows the dependence of wf on ϕCE1 and ϕCE2
when both Ω01 and Ω02 are in the weak-field region. The straight diagonal pattern suggests that
the final inversion is determined by the CEP difference between the two pulses, i.e. ϕCE2 – ϕCE1,
in this scenario. This result is in agreement with the physical picture of coherence transfer by
the TLS. Figure 5(b) and (c) correspond to the cases where one of the peak amplitudes (Ω02 for
Fig. 5(b) and Ω01 for Fig. 5(c)) is in the strong-field region. Under such conditions, the diagonal
contour lines are distorted so the simple dependence of wf on ϕCE2 – ϕCE1 no longer holds true.
But the distortion nevertheless only occurs along one dimension. Figure 5(d) shows the scenario
with both Ω01 and Ω02 in the strong-field region. Distortions of the contour lines can be seen
along both dimensions and the overall pattern becomes more irregular.

Fig. 5. The final inversion wf as a function of both ϕCE1 and ϕCE2 with various scale
combinations of Ω01 and Ω02: (a) Ω01 = 0.111ωc, Ω02 = 0.117ωc. (b) Ω01 = 0.111ωc,
Ω02 = 2.443ωc. (c) Ω01 = 2.708ωc, Ω02 = 0.231ωc. (d) Ω01 = 2.708ωc, Ω02 = 2.378ωc.

4. Discussions and conclusion

The result shown in Fig. 5 highlights some of the key advantages of coherent inversion control
using FCP pairs. Compared to schemes based on a single FCP, which often require the peak Rabi
frequency of the pulse be comparable to the carrier frequency in order to produce appreciable
effects [23,26], the pulse-pair scheme best operates in the weak-field region, where the peak Rabi
frequencies of both pulses can be at least one order of magnitude lower without compromising
phase sensitivity (see Fig. 5(a) caption). This means the peak power requirement can be reduced
by at least two orders of magnitude, making the schememuch easier to realize experimentally. The
underlying physics for this lower power requirement is the excitation of atomic coherence in the
TLS by the leading pulse. The dipole moment oscillation leads to an atom-field interaction (with
the trailing pulse) much like interference between two oscillatory signals, where the outcome
is highly sensitive to the phases of the oscillations. Moreover, as shown in Fig. 5(a), the final
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inversion only depends on the CEP difference between the two pulses once the pulse amplitudes
are fixed (under weak-field conditions). This eliminates the needs for CEP control of individual
pulses, which significantly simplifies the experimental system.
Of course, when the current scheme is brought into the broader context of coherent quantum

state control, it is inevitable to draw comparison between this method and the standard approach
based on pulse area [21]. A natural question to ask at this point is: Beyond pure theoretical
interest, does the FCP-pair scheme possess any practical significance when similar inversion
control can be accomplished with much longer pulses? To address this question, it is worthwhile
to point out that the standard pulse-area approach only works on-resonance or near-resonance.
This means that a TLS under study must be paired with a laser whose operating wavelength
matches the transition wavelength of the TLS. However, in practice, such a requirement may not
always be satisfied due to the availability of laser media, and this wavelength specificity in turn
limits what kind of atomic systems a particular type of laser can serve. Meanwhile, a scheme
based on FCP is able to tolerate a very large detuning as shown in our analysis (∆ ≈ 0.089ωba
in the current case). This also implies that a single laser can potentially serve a wide range of
atomic transitions. From these points of view, the FCP-pair scheme outlined above indeed offers
a unique addition to the existing approaches of coherent control with experimental implications.
As an example, a hypothetical experimental scheme is conceived as follows. A free-run

few-cycle ultrafast laser serves as the light source. There is no need for complicated CEP
stabilization here because the final inversion depends only on the CEP difference between the two
pulses. The laser output is split into two paths with a fixed path-length difference (e.g., 50 fs). A
CEP tuning mechanism, such as a CaF2 wedge pair, is introduced in the longer path, which allows
the CEP of the trailing pulse to be precisely adjusted. The two paths then converge onto the
two-level atomic sample to be controlled. An independent and weaker pulse can be introduced
to probe the inversion state of the sample. It can also be used to calibrate the exact relation
between wf and ϕCE2. The pulse amplitudes in both paths can remain unchanged throughout the
experiment. This not only simplifies the control scheme but also prevents any amplitude-induced
inversion variation. A simple estimation shows that the field strength required in Fig. 5(a) is easily
attainable with a 5-fs Ti:Sapphire oscillator of 100mW average power and 80MHz repetition
rate. By adjusting ϕCE2, the inversion of the atomic system is expected to change following a
regular sinusoidal relation as shown in Fig. 1(b).

It should be noted that coherent atom-field interactions involving femtosecond pulse sequences
have been subjects of research in other contexts. For example, Scherer et al. used phase-
locked sequences of femtosecond pulses to study time-resolved dynamics of isolated molecular
systems [31] and wave packet interferometry [32,33]. Brinks et al. reported the observation
and manipulation of vibrational wave-packet interference in individual molecules at ambient
conditions [34]. The same group later demonstrated that quantum coherences in single organic
molecules can be established, probed and controlled in highly disordered solid environments by
applying femtosecond phase-locked double-pulse sequences [35]. More recently, Svidzinsky et
al. showed that atomic coherence initiated by a leading pulse helps a trailing pulse generate Rabi
oscillations in a TLS even when the latter pulse is a highly detuned adiabatic pulse [36].
The current research shares similar general ideas with these prior works but with a more

specific emphasis on few-cycle pulses and CEP. Moreover, it must be clarified here that, although
our findings identify CEP difference as the key factor determining the final inversion in the
weak-field region, the effect should not be misunderstood as merely depending on the relative
phase between the two pulses. The concept of CEP is crucial in the current context and the above
reported effects cannot be produced by a pair of pulses much longer than the optical cycle, where
CEP is no longer well-defined.
Finally, we would like to point out that all the results presented above are obtained under the

relaxation-free approximation. We have, however, performed simulations with both T1 and T2
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considered. The results generally show a time-dependent reduction of the CEP sensitivity of the
final inversion, which appears to be a straightforward extension of the relaxation-free results and
provides little information fundamentally different. Therefore, these results are not presented
here.
In conclusion, we have presented a numerical study on CEP-sensitive population inversion

in a TLS induced by a FCP pair. Strong correlations are found between the final inversion and
the CEPs of both pulses. Such inversion-CEP relations are modulated by peak Rabi frequencies
(proportional to pulse amplitudes), creating distinctive weak-field and strong-field regions with
markedly different characteristics. Carrier-wave Rabi flopping is identified as the key mechanism
separating the two regions. Within the weak-field region, the inversion is found to only depend
on the difference between the two CEPs. This is believed to be the result of coherence transfer
executed by the TLS between the two pulses. The finding can potentially lead to a new scheme
for coherent control based on FCP pairs. Its low power requirement offers a clear advantage over
the single-pulse schemes, and its broadband nature results in improved wavelength flexibility
when compared to the traditional method based on pulse area.
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