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Fabry–Perot interferometers have been widely studied and
used for well over a century. However, they have always been
treated as stationary devices in the past. In this Letter, we
investigate the optical transmission of a longitudinally mov-
ing Fabry–Perot interferometer within the framework of
relativity and establish a general relation between the trans-
mission coefficient and the velocity for uniform motions.
Several features of the transmission spectrum are analyzed,
with special attentions given to the non-relativistic regime,
where application prospects are evaluated. New, to the best
of our knowledge, potential interferometric schemes, such
as velocity-scanning interferometry and hybrid interferom-
eters based on nested configurations, are proposed. Finally,
a special case of non-uniform motion is also investigated. ©
2024 Optica Publishing Group

https://doi.org/10.1364/OL.505622

Introduction. The Fabry–Perot interferometer (FPI) is one of
the most well-known optical instruments and has been widely
used in many fields of science and technology [1,2]. In recent
years, the advances in hybrid interferometers have created a new
modality of utilizing the FPI. These hybrid schemes typically
involve nesting the FPI in a "host" interferometer, such as a
Michelson interferometer [3–5] or a Mach–Zehnder interferom-
eter [6]. When the FPI operates under the resonance condition,
it folds a long optical path inside and hence extends the effec-
tive arm length of the host interferometer, which often leads to
much improved phase sensitivities. Such schemes have found
tremendous success in gravitational wave detection [7] and
have achieved record-setting strain resolutions in fiber-optic
sensing [6].

Making the FPI a part of another interferometer also provokes
an interesting thought: what if the FPI is moving relative to the
host interferometer? The question stems from an intuitive ratio-
nale: since the FPI is intimately linked to the optical path length
in a nested interferometer, any potential phase change induced
by a longitudinal motion of the FPI could result in a detectable
signal at the output of the host interferometer. Answering this
question necessitates a thorough understanding of the transmis-
sion properties of an FPI in relative motion with respect to its
interrogation system, which usually includes the light source
and the detector. Surprisingly, despite being extensively studied
for over a hundred years [8], the FPI has always been treated as a
“stationary”device. This may sound erroneous at first, because,

after all, one of the most common ways of using the FPI is by
scanning its mirrors [9]. However, there is a fundamental distinc-
tion between a conventional “scanning”FPI and a “moving”FPI
to be discussed here, as illustrated in Fig. 1. In the former case,
the length of the FPI is tuned by changing the position of one
of the mirrors. Since position is inherently a stationary quan-
tity, the scanning FPI still operates on the premise that the FPI
remains stationary with respect to its interrogation system in the
lab frame. In the latter case, however, the FPI under concern is
rigid and moves as a unit. The relevant question becomes how
the states of motion, such as velocity and acceleration, impact
the optical properties of the FPI.

This Letter presents our study of motion-induced transmission
properties for a moving FPI. Before analyzing specific cases, let
us first define the general problem under investigation. Consider
an FPI formed by two-plane mirrors facing each other, with
an optical medium set in between. The FPI is situated on a
moving stage, which travels along the optical axis as indicated
in Fig. 1(b). A collimated beam of light propagating along the
optical axis interrogates the FPI under normal incidence, and
the transmitted light is monitored by a photodetector. Both the
light source and the detector are located in the lab (rest) frame.

In the following, we will examine the transmission coefficient
of the FPI under uniform motion and discuss how its velocity
dependence affects the amplitude, frequency, and phase of the
transmitted light. New interferometric schemes are proposed for
velocity and acceleration measurements by means of a moving
FPI. The theoretical framework is also generalized to certain
cases of arbitrary motion.

Uniformly moving FPI. General theory. In the case of a
stationary FPI, given an incident wave EI , the transmitted wave
ET can be found by summing up all the transmitted wavefronts
across many round trips, as illustrated in Fig. 2(a):

ET = E0 + E1 + E2 + · · · . (1)

Assuming the two mirrors of the FPI have the same transmission
and reflection coefficients t and r, respectively, and taking into
account the round-trip phase delay, it is easy to show that

ET = EIt2e−inkd
∞∑︂

N=0

r2Ne−2iN·nkd, (2)

where n is the refractive index of the material that the FPI is
composed of, k is the wave number in vacuum, and d is the
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Fig. 1. Conceptual schemes of (a) a conventional scanning FPI
and (b) a moving FPI.

Fig. 2. (a) Concept of multiple wave superposition for a uniformly
moving FPI. (b) Finding the round-trip phase delay by following the
propagation of a wavefront.

length of the FPI. By defining the transmission coefficient of the
FPI, T ≡ ET/EI , we have

T =
t2e−inkd

1 − r2e−2inkd
. (3)

This derivation may be straightforwardly generalized to the
case of a uniformly moving FPI, with the only change appearing
in the phase of each wavefront EN . Consider two successive
wavefronts W1 and W2 as shown in Fig. 2(b). While W2 completes
a round trip inside the FPI, W1 travels a distance c∆τ, where ∆τ
is the round-trip time of the cavity. When W2 finishes its trip
inside the FPI and emerges from the mirror M2, the FPI has
already moved forward by a distance v∆τ. Therefore, the phase
difference between W1 and W2 is

∆ϕ = k(c − v)∆τ. (4)

Meanwhile, it can be shown that the round-trip time inside the
FPI is given by

∆τ =
d′

(c/n−) + v
+

d′

(c/n+) − v
, (5)

where d′ is the length of the cavity measured in the lab frame and
n− and n+ are the refractive indices experienced by the backward
and forward traveling waves, respectively. Note that, due to the
relativistic transformation of refractive index, the medium inside
a moving FPI becomes anisotropic. This effect is called Fizeau’s
light-dragging effect [10–12]. The n+ and n− can be found by
[13,14]

n± =
n ± β

1 ± nβ
, (6)

where β = v/c. Notice further that, due to relativistic length
contraction, d′ = d/γ, where γ = 1/

√︁
1 − β2. Substituting n+,

n− and d′ into Eq. (5) yields

∆τ =
2nd
c
γ. (7)

The phase delay between consecutive wavefronts is given by

∆ϕ = 2nkd

√︄
1 − β

1 + β
. (8)

This round-trip phase shift is used to replace ∆ϕ = 2nkd in
Eq. (3), and the transmission coefficient for a uniformly moving
FPI can be written as

T =
t2e−iζnkd

1 − r2e−2iζnkd
, (9)

where ζ is defined as

ζ =

√︄
1 − β

1 + β
. (10)

Comparing Eq. (9) with Eq. (3), it is evident that the impact of
the uniform motion on the transmission property of the FPI is to
introduce a velocity-dependent scaling factor ζ(v) in the round-
trip phase. In fact, it can be shown that ζ simply represents a
relativistic Doppler shift [15] associated with frame changes.

Frequency rescaling. The scaling factor ζ(v) causes some
interesting changes to the transmission spectrum of a moving
FPI. This becomes clear when we examine the transmittance of
the FPI, which takes the form of the well-known Airy function,
with an added velocity dependence:

|T |2 =
1

1 + (4F 2/π2) sin2 (ζ(v)nkd)
, (11)

where F ≡ πr/(1 − r2) is the finesse of the FPI. Clearly, this is
a generalization of the FPI transmittance for a stationary cavity,
which now becomes a special case of Eq. (11) with ζ(v) = 1
(v = 0). The resonance condition of the FPI is now given by
ζ(v)nkd = mπ, where m is an integer representing the index of
the resonance mode. The condition can be rewritten in terms of
wavelength as mλ = 2ζ(v)nd or in terms of optical frequency as
νm = m/[ζ(v)∆τ0], where νm is the frequency of the mth mode
and ∆τ0 = 2nd/c is the cavity round-trip time at rest.

In almost all practical cases, the FPI operates in the nonrela-
tivistic limit, where β ≪ 1. Under this condition, the resonance
frequencies are given by

νm =
m
∆τ0

(︂
1 +

v
c

)︂
. (12)

This resonance condition is similar to that of a stationary FPI
except for the extra scaling factor 1 + v/c. With a positive veloc-
ity, i.e., when the FPI travels in the same direction as the incident
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Fig. 3. (a) Transmittance of a velocity-scanning FPI has periodic
transmission peaks against velocity v. FSR and FWHM can be
defined accordingly. (b) The transmission phase has a near linear
velocity dependence when |βnkd | is small.

light, this scaling factor is greater than 1, which means the mode
spacing grows larger than a stationary FPI. The actual frequency
shift for the mth mode is mv/(∆τ0c). Such a frequency shift can
be well within the detectable range even for small velocities,
e.g., 1 cm/s. This is because the index m for a typical-sized FPI
operating at an optical wavelength is very large (106–107).

It is also interesting to point out that the motion of the FPI also
causes a rescaling of the transmission linewidth of the FPI by
the factor ζ(v). For example, a positive nonrelativistic velocity
would broaden the transmission line by a factor 1 + v/c.

Velocity-scanning FPI. Meanwhile, the velocity dependence
of FPI transmission leads to a new way to operate the FPI:
scanning its longitudinal velocity. In the nonrelativistic regime,
the transmittance of a moving FPI can be written as

|T(v)|2 =
1

1 + (2F/π)2 sin2 [nkd(1 − v/c)]
. (13)

|T(v)|2 is a periodic function of v, as illustrated in Fig. 3(a). Such
a relationship is analogous to that of a scanning FPI, where
|T(d)|2 is a periodic function of the cavity length d. The res-
onance peaks appear when the velocity satisfies the condition
v/c = 1 − m(λ/2nd), where λ ≡ 2π/k is the wavelength. A free
spectral range (FSR) vfsr can be defined as the spacing between
adjacent resonance peaks, and vfsr is given by

vfsr =
λ

2nd
c =

λ

∆τ0
. (14)

The linewidth of the resonance peaks is characterized by their
full-width at half-maximum (FWHM) ∆vFWHM , which is given
by

∆vFWHM =
λ

∆τ0

1 − r2

πr
=

vfsr

F
. (15)

To put the above analysis in a practical context, a 1 m glass (n =
1.5) FPI interrogated by a laser of λ = 600 nm would have a FSR
vfsr = 60 m/s. If the FPI has a finesseF = 1000, the characteristic
width of the resonance peaks is ∆vFWHM = 6 cm/s, which gives
the velocity resolution of the FPI as a velocity discriminator.
Such velocity discriminators offer a complementary approach

to existing FPI-based velocimetry schemes, which typically rely
on either scanning FPI discriminators [16] or stationary FPI
discriminators [17].

Velocity discriminator. The concept of using a moving FPI
as a velocity discriminator can also be investigated from the
perspective of transmission phase. In general, the transmission
coefficient of an FPI can be written as T = |T | exp (−iΦ), where
Φ is the transmission phase. From Eq. (9), it is easy to show that
Φ is given by

Φ = ζnkd + arctan
(︃

r2 sin (2ζnkd)
1 − r2 cos (2ζnkd)

)︃
, (16)

or equivalently

tanΦ =
1 + r2

1 − r2 tan(ζnkd). (17)

Taking ζ ≈ 1 − β for nonrelativistic motion and using the res-
onance condition that requires nkd to be an integer multiple of
π, the transmission phase can be rewritten as Φ = Φ0 + δΦ(v),
where Φ0 = nkd is the steady-state transmission phase when
the FPI is stationary. δΦ(v) is a small velocity-dependent phase
change caused by the motion and is given by

δΦ(v) = −βnkd − arctan
(︃

r2 sin (2βnkd)
1 − r2 cos (2βnkd)

)︃
. (18)

In Fig. 3(b), δΦ(v) is plotted against βnkd with both positive and
negative velocities. Apparently, when |βnkd | is small, δΦ(v) has
a linear dependence over v. This linear relation can be found by
taking the first-order approximation of Eq. (18), which yields

δΦ(v) ≈ −Φ0
1 + r2

1 − r2

v
c

. (19)

We are now ready to revisit the question raised at the beginning
of the Letter: in a hybrid interferometer, where an FPI is used
to fold the optical path, what would happen if the FPI begins
to move? When an FPI operating in resonance begins to move
longitudinally, albeit “slowly”, the transmitted light experiences
a small phase shift given by Eq. (19). The “−”sign indicates that,
when the FPI moves toward the same direction as the optical
wave, the phase change is negative. The amount of this phase
shift is proportional to the steady-state transmission phase Φ0,
the velocity v, as well as the factor (1 + r2)/(1 − r2). Clearly,
long cavity length (large Φ0) and high finesse (r → 1) leads to
high velocity sensitivity of δΦ(v).

It should be noted that the approximation Eq. (19) is only
valid when 2βnkd ≪ 1, or in other words, v ≪ c/2nkd. To put
this condition in context, for a 1-cm-thick glass etalon operating
at a wavelength of 600 nm, c/2nkd ≈ 1 km/s, i.e., about three
times the speed of sound in the air. Therefore, for cavities of
common sizes, Eq. (19) remains valid for most practical cases.

Hybrid interferometers. The velocity sensitivity of the
transmission phase enables highly sensitive velocity measure-
ment using hybrid interferometer configurations. Two possible
schemes are shown in Fig. 4, and more variations can poten-
tially be conceived. In the first scheme [Fig. 4(a)], a balanced
Mach–Zehnder interferometer (MZI) is used as the host inter-
ferometer, with two identical FPIs serving as optical path
multipliers. Such a hybrid configuration has been experimen-
tally demonstrated in fiber-optic systems [6]. Now, if one of the
FPIs begins to move longitudinally while the other remains sta-
tionary, an extra phase difference is generated between the two
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Fig. 4. Examples of hybrid interferometers with a moving FPI
incorporated: (a) balanced Mach–Zehnder interferometer and (b)
Sagnac interferometer.

arms according to Eq. (19), causing a detectable signal at the
output of the MZI.

In the second scheme, a single FPI is integrated into a Sagnac
interferometer (SI), as shown in Fig. 4(b). Under the steady state
with the FPI at rest, the clockwise and the counterclockwise
circulating beams experience the same optical path inside the
FPI. When the FPI moves toward one direction, however, this
symmetry between the two directions is broken, and a phase
shift δΦSI is created between the two beams at the output port of
the SI. Note that the velocity sensitivity of the SI configuration
is twice as large as the MZI configuration:

δΦSI = 2Φ0
1 + r2

1 − r2

v
c

. (20)

Therefore, for velocity and acceleration measurements using
moving FPIs, the simpler SI configuration may be a more
preferable scheme.

Adiabatic non-uniform motion. The above theory for a uni-
formly moving FPI can be easily generalized to describe the
adiabatic non-uniform motion (ANUM). Here, the term “adi-
abatic”refers to the condition where the change of velocity is
so “slow”that, at any moment of time, the FPI can be approxi-
mately treated as being in a state of uniform motion. Physically,
this requires the change of velocity during the effective “storage
time”of the FPI to be less than what the FPI can discrimi-
nate. Analytically, we can describe this condition simply as
(dv/dt)τcav<∆vFWHM , where τcav is the cavity storage time for
an FPI and is typically given by τcav = 2ndF/(πc) [18]. Using
Eq. (15), the ANUM condition can be written as

a<
πλ

∆τ2
0 F

2
, (21)

where a ≡ dv/dt is acceleration. Again, let us put this relation
into context by applying the following typical values: d = 0.1 m,
n = 1, F = 1000, and λ = 600 nm. The corresponding ANUM
condition is a<4 × 106 m/s2, which is about 4 × 105 times the
Earth’s gravity acceleration. Therefore, for most foreseeable
applications, the ANUM condition should be well satisfied.

Under the ANUM condition, the transmission coefficient of
the FPI adiabatically follows the change of the velocity such

that
T(τ) =

t2e−iζ (τ)nkd

1 − r2e−2iζ (τ)nkd
, (22)

where ζ(τ) is defined as

ζ(τ) =

√︄
1 − v(τ)/c
1 + v(τ)/c

. (23)

Conclusion. In conclusion, we have analyzed the transmission
coefficient of a uniformly moving FPI and have shown the impact
of velocity on the frequency rescaling. A close look at the
transmittance of the FPI has led to the definitions of FSR and
FWHM on the scale of velocity as well as the new concept
of velocity-scanning Fabry–Perot. Meanwhile, the transmis-
sion phase of the FPI is shown to feature a sharp linear slope
around the resonance velocities, which allows a moving FPI to
be used directly for velocity and acceleration measurements.
As examples, hybrid interferometric schemes based on nested
MZI-FP and SI-FP configurations are proposed. We hope that
this work can offer a new perspective to the century-old device
FPI.

Funding. National Science Foundation (ECCS-1606836).

Disclosures. The authors declare no conflicts of interest.

Data availability. No data were generated or analyzed in the presented
research.

REFERENCES
1. G. Hernandez, Fabry–Perot Interferometers, Cambridge Studies in

Modern Optics, 3rd ed. (Cambridge University Press, 1988).
2. J. M. Vaughan, The Fabry–Perot Inteferometer: History, Theory,

Practice and Applications, 1st ed. (Routledge, 1989).
3. B. P. Abbott, Rep. Prog. Phys. 72, 076901 (2009).
4. C. Gräf, S. Hild, H. Lück, et al., Classical Quantum Gravity 29, 075003

(2012).
5. T. A. Al-Saeed and D. A. Khalil, Optik 242, 167170 (2021).
6. N. M. R. Hoque and L. Duan, Sci. Rep. 12, 12130 (2022).
7. R. Weiss, Rev. Mod. Phys. 90, 040501 (2018).
8. C. Fabry and A. Perot, Ann. de Chim. et de Phys. 16, 115 (1899).
9. J. V. Ramsay, Appl. Opt. 1, 411 (1962).

10. H. Fizeau, Comptes Rend. Acad. Sci. 33, 349 (1851).
11. H. A. Lorentz, Proc. K. Ned. Akad. Wet. 6, 809831 (1904).
12. P. C. Kuan, C. Huang, W. S. Chan, et al., Nat. Commun. 7, 13030

(2016).
13. W. Chyla, Optik 124, 1477 (2013).
14. The relativistic transformations for the optical constants of media.
15. S. Ataman, Eur. J. Phys. 42, 025601 (2021).
16. A. Courteville, Y. Salvadé, and R. Dändliker, Appl. Opt. 39, 1521

(2000).
17. C. F. McMillan, D. R. Goosman, N. L. Parker, et al., Rev. Sci. Instrum.

59, 1 (1988).
18. M. J. Lawrence, B. Willke, M. E. Husman, et al., J. Opt. Soc. Am. B

16, 523 (1999).

https://doi.org/10.1088/0034-4885/72/7/076901
https://doi.org/10.1088/0264-9381/29/7/075003
https://doi.org/10.1016/j.ijleo.2021.167170
https://doi.org/10.1038/s41598-022-16474-y
https://doi.org/10.1103/RevModPhys.90.040501
https://doi.org/10.1364/AO.1.000411
https://doi.org/10.1007/978-94-015-3445-1_5
https://doi.org/10.1038/ncomms13030
https://doi.org/10.1016/j.ijleo.2012.04.012
https://doi.org/10.1088/1361-6404/abbf3f
https://doi.org/10.1364/AO.39.001521
https://doi.org/10.1063/1.1140014
https://doi.org/10.1364/JOSAB.16.000523

