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 A B S T R A C T

In this paper, we analyze the impact of velocity on the optical response of a passive Fabry–Perot interferometer 
(FPI), seeking to establish an analytical framework that describes the transmission and reflection properties 
of the FPI when key components in its operation system, including the light source, the detector and the 
interferometer itself, have relative motions relative to each other along their common optical axis. Our analysis 
indicates that these movements result in additional Doppler-induced factors in the transmission and reflection 
coefficients, and these factors lead to new effects that are sensitive to velocity. To demonstrate its potential 
application, the theory is applied to the Pound-Drever-Hall frequency-locking technique. It is shown that 
velocity-induced frequency modulations are effectively added to the laser frequency due to the motions, and 
such excess frequency noise can be impactful in certain applications.
1. Introduction

The Fabry–Perot interferometer (FPI) is a versatile optical device 
widely used in precision measurement, sensing, and spectroscopy [1]. 
It is capable of achieving very high wavelength resolutions through 
the phenomenon of multiple beam interference between two parallel 
reflective surfaces. Since its invention more than a century ago [2], 
considerable effort has been devoted to expanding the applications of 
the FPI. Much less attention, however, has been paid to scrutinizing its 
basic operating principle, especially when motion is involved.

The impact of motion on the optical properties of the FPI has be-
come a relevant question in recent years, largely due to the emergence 
of hybrid interferometers, where an FPI is often nested in a host in-
terferometer to serve as a multiplier of the optical path [3–6]. Because 
the host interferometer is very sensitive to the transmission phase of the 
FPI, any phase shift induced by the motion of the FPI would contribute 
to the output of the hybrid interferometer. To accurately analyze such 
scenarios, a generalization of the conventional theory of FPI to include 
the effects of motion becomes necessary.

Meanwhile, optical clocks and high-precision frequency references 
often rely on passive FPIs to regulate optical frequencies [7]. However, 
mechanical instabilities often become a limiting factor in their perfor-
mance [8,9]. The impacts of such instabilities have been extensively 
studied by examining induced displacements [8,10]. But never before 
has velocity been considered as a potential source of excess noise. A 
thorough investigation of that aspect would also require a generalized 
FPI theory with the effects of motion incorporated in it.

E-mail address: lingze.duan@uah.edu.

Previously, we discussed the difference between a moving FPI and 
a conventional scanning FPI. A moving FPI refers to an FPI moving as 
a rigid body with its length (i.e., the spacing between its two mirrors) 
remaining constant, whereas in a scanning FPI, the spacing between the 
two mirrors is tuned so that the length of the FPI changes, as illustrated 
in Fig.  1. While it is well known that scanning the mirror spacing leads 
to a change of the free spectral range (FSR), it is less obvious what 
optical property changes when the FPI moves as a whole. In our prior 
report [11], we studied the transmission properties of a moving FPI 
and pointed out that a uniform motion of the FPI along its optical axis 
results in a velocity-dependent rescaling of the round trip phase in the 
transmission coefficient.

However, an important aspect that was not addressed in our previ-
ous work is the fundamental cause of this phase rescaling. It is tempting 
to simply attribute this new velocity-dependent factor to the Doppler 
shift caused by the relative motion between the FPI and the incident 
light source. This perception turns out to be inaccurate as it fails to 
account for the impact of the observer in the overall FPI operation 
scheme, as will be shown later in this paper. It hence becomes clear 
that a thorough understanding of the optical properties of a moving 
FPI requires a theory that takes into account not only the FPI itself, but 
also its interrogation system. Moreover, many practical applications of 
the FPI use it in reflection rather than in transmission. This necessitates 
a close look at the reflection coefficient of a moving FPI in addition to 
its transmission coefficient.
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Fig. 1. The conceptual difference between (a) a scanning FPI, where a moving mirror changes the effective length of the FPI, and (b) a moving FPI, where the entire FPI moves 
as a rigid body with its length remaining constant.
The current paper seeks to address this inadequacy by expanding the 
discussion of a moving FPI to include the states of motion of the light 
source and the detector, effectively treating the FPI as part of a “three-
body”system rather than as an isolated device. We will also investigate 
the reflection of the FPI in addition to the transmission. As such, we 
are able to establish an expanded theory for the FPI when motion 
is involved in its operation. In the second half of the paper, we will 
showcase the application of the new theory by evaluating the impacts 
of motions on laser frequency locking based on the Pound-Drever-Hall 
(PDH) technique.

2. General theory of moving FPI

Let us first define the system under study. In this work, we focus 
on passive FPIs, whose operation involves three key components: a 
light source, an FPI, and a detector, as shown conceptually in Fig. 
2(a). In principle, all three components can move independently along 
their common optical axis. Since the action of “observation” is carried 
out effectively by the detector in the current context, without losing 
any generality, we consider the detector as the “observer” and define 
its frame as the “lab frame”. The states of motion of the other two 
components in the lab frame create four scenarios, depicted here in Fig. 
2(a)–(d): (a) both the light source and the FPI are stationary; (b) the 
light source is stationary while the FPI is moving; (c) the light source is 
moving while the FPI is stationary; (d) both the light source and the FPI 
are moving. Note that these are four distinct scenarios, which cannot 
be duplicated by one another as will be discussed in the following.

Here are some general conditions we follow throughout this paper. 
The FPI is treated as a rigid body without deformation. All motions 
are considered uniform, that is, at constant velocities. This generally 
suffices because, as previously shown [11], nonuniform motions can be 
fairly well described by a simple generalization of the uniform motion 
model within a wide range of accelerations. Finally, all discussions are 
confined to the nonrelativistic regime given the negligible impact of 
relativistic effects for most applications [11].

2.1. Stationary light source and stationary FPI

We begin with the simplest case, where both the light source and 
the FPI are fixed in the lab frame and hence remain stationary to 
the detector (i.e., the observer) as shown in Fig.  2(a). This is the 
conventional way of operating the FPI. We can directly write out the 
transmission and the reflection coefficients of the FPI as 

𝑇 ≡
𝑇
𝐼

=
(1 − 𝑟2)𝑒−𝑖𝑛𝑘𝑑

1 − 𝑟2𝑒−2𝑖𝑛𝑘𝑑
, (1)

and 

𝑅 ≡
𝑅
𝐼

=
𝑟(1 − 𝑒−2𝑖𝑛𝑘𝑑 )
1 − 𝑟2𝑒−2𝑖𝑛𝑘𝑑

, (2)

where 𝐼 , 𝑅 and 𝑇  are the electric fields of the incident, reflected 
and transmitted waves, respectively, and 𝑘 is the wave number in 
2 
vacuum. The reflection coefficients of the two mirrors are assumed to 
be identical here and are denoted as 𝑟. With a proper length 𝑑, the FPI is 
considered to be made of a homogeneous, isotropic, and lossless optical 
medium of refractive index 𝑛. The corresponding FPI transmittance and 
reflectance are given by 

|𝑇 |2 = 1
1 + (2∕𝜋)2 sin2 (𝑛𝑘𝑑)

, (3)

and 

|𝑅|2 =
(2∕𝜋)2 sin2 (𝑛𝑘𝑑)

1 + (2∕𝜋)2 sin2 (𝑛𝑘𝑑)
, (4)

where  = 𝜋𝑟∕(1 − 𝑟2) is the finesse of the FPI.

2.2. Stationary light source and moving FPI

Let us move on to the second case, where the light source is fixed in 
the lab frame while the FPI is traveling uniformly along the optical axis, 
as shown in Fig.  2(b). We have previously analyzed this case for optical 
transmission and have shown that a velocity-dependent scaling factor 
needs to be added to the round-trip phase to account for the effect of 
the uniform motion [11]. The resulting transmission coefficient can be 
written as 

𝑇 =
(1 − 𝑟2)𝑒−𝑖𝜁𝑛𝑘𝑑

1 − 𝑟2𝑒−2𝑖𝜁𝑛𝑘𝑑
, (5)

where 𝜁 is defined as 

𝜁 =
√

𝑐 − 𝑣𝑖
𝑐 + 𝑣𝑖

, (6)

with 𝑣𝑖 and 𝑐 being the velocity of the interferometer and the speed of 
light in vacuum, respectively.

To find the FPI reflection coefficient, we follow the same strategy as 
previously used to derive the transmission coefficient and construct the 
superposition of consecutively reflected wavefronts [11]. Fig.  3 concep-
tually illustrates this process. First, we note that, unlike transmission, 
waves reflected off a uniformly moving FPI have a different frequency 
from the incident wave due to the Doppler effect. At any moment of 
time, if the incident field on the input plane of the FPI is denoted as 
𝐼 = 𝐸𝑖𝑒𝑖𝜔𝑡, and the total reflected field on the same plane is written as 
𝑅 = 𝐸𝑟𝑒𝑖𝜔𝑑𝑟𝑡, then 𝜔 and 𝜔𝑑𝑟 are related through the relation [12,13] 

𝜔𝑑𝑟 = 𝜔
𝑐 − 𝑣𝑖
𝑐 + 𝑣𝑖

, (7)

where 𝑣𝑖 is positive when the FPI is moving along the same direction as 
the incident wave. 𝐸𝑖 and 𝐸𝑟 are complex amplitudes for incident and 
reflected fields, respectively. When the FPI moves uniformly, there is a 
steady relation between 𝐸𝑟 and 𝐸𝑖, which can be derived through the 
multiple-wave superposition as shown in Fig.  3(a). It is straightforward 
to verify that such an analysis results in a general relation 

𝐸 =
𝑟(1 − 𝑒−𝑖𝛿)

𝐸 , (8)
𝑟 1 − 𝑟2𝑒−𝑖𝛿 𝑖
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Fig. 2. The three key components in the operation system of a passive FPI and the four motion schemes ((a)–(d)) studied in this work. LS: light source, D: detector.
where 𝛿 is the round-trip phase delay in a uniformly moving FPI. To 
find 𝛿, we follow two consecutive wavefronts 𝑊1 and 𝑊2 through a 
round trip, as illustrated in Fig.  3(b). Their phase delay is given by 
𝛿 =

𝜔𝑑𝑟
𝑐

(𝑐 + 𝑣𝑖)𝛥𝜏, (9)

where 𝛥𝜏 is the round-trip time of the wavefront 𝑊2 inside the FPI. 
Previously [11], we have shown that 𝛥𝜏 is given by, 

𝛥𝜏 = 2𝑛𝑑
√

𝑐2 − 𝑣2𝑖

. (10)

Applying (7) and (10) to (9) leads to 
𝛿 = 2𝜁𝑛𝑘𝑑, (11)

which is the same round-trip phase used in the transmission coefficient 
(5) with 𝜁 given by (6).

Combining (8) and (11) yields the total reflected field 

𝑅 =
𝑟(1 − 𝑒−2𝑖𝜁𝑛𝑘𝑑 )
1 − 𝑟2𝑒−2𝑖𝜁𝑛𝑘𝑑

𝐸𝑖𝑒
𝑖𝜔𝑑𝑟𝑡. (12)

Taking the ratio of 𝑅 and 𝐼  results in the reflection coefficient of a 
uniformly moving FPI 

𝑅 =
𝑟(1 − 𝑒−2𝑖𝜁𝑛𝑘𝑑 )
1 − 𝑟2𝑒−2𝑖𝜁𝑛𝑘𝑑

𝑒−2𝑖
( 𝑣𝑖

𝑐

)

𝜔𝑡, (13)

where the nonrelativistic condition 𝑣𝑖 ≪ 𝑐 has been used to simplify 
the Doppler-shift term. This coefficient (13) clearly shows the impact 
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of motion to the reflected field in two aspects: (i) a velocity-dependent 
scaling factor 𝜁 in the round-trip phase (same as the transmission 
scaling factor), and (ii) a Doppler frequency shift proportional to twice 
the velocity of the FPI, which does not exist in the transmitted field.

2.3. Moving light source and stationary FPI

The next case to be considered is the scenario where the FPI is fixed 
in the lab frame while the light source is uniformly moving along the 
optical axis as shown in Fig.  2(c). Since the FPI is stationary relative to 
the detector, from the observer point of view, its behavior is same as in 
Case A. The moving light source, however, introduces a Doppler shift 
that has to be factored in when considering the round-trip phase inside 
the FPI. With this basic understanding, we can utilize the relations 
(1) and (2) to construct the transmission coefficient and the reflection 
coefficient of the FPI as 

𝑇 =
(1 − 𝑟2)𝑒−𝑖𝑛𝑘𝑑𝑑

1 − 𝑟2𝑒−2𝑖𝑛𝑘𝑑𝑑
, (14)

and 

𝑅 =
𝑟(1 − 𝑒−2𝑖𝑛𝑘𝑑𝑑 )
1 − 𝑟2𝑒−2𝑖𝑛𝑘𝑑𝑑

, (15)

where 𝑘𝑑 is the wave number after the Doppler shift. Given the Doppler-
shifted wavelength 𝜆𝑑 = 𝜆(1−𝑣𝑠∕𝑐), where 𝜆 is the actual wavelength of 
the light source and 𝑣  is the velocity of the light source (positive when 
𝑠
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Fig. 3. (a) The concept of multiple-wave superposition for a uniformly moving FPI. (b) Finding the round-trip phase delay by following the propagation of a wavefront.
moving toward the FPI), it is straightforward to show that 𝑘𝑑 can be 
written as 
𝑘𝑑 = 𝑘

(

1 +
𝑣𝑠
𝑐

)

, (16)

where 𝑘 = 2𝜋∕𝜆 is the wave number when the light source is at rest.

2.4. Moving light source and moving FPI

Finally, in the case shown in Fig.  2(d), we analyze the most generic 
scenario, where both the light source and the FPI move independently 
along the optical axis in the lab frame, at 𝑣𝑠 and 𝑣𝑖, respectively. 
Based on the discussions in the previous sections, we can qualitatively 
summarize the impacts of motion in the operation of an FPI as: a 
nonzero velocity of the FPI introduces a scaling factor 𝜁 in the round-
trip phase, while a nonzero velocity of the light source changes the 
wave number through the Doppler-shifted wavelength.

Since these two processes are independent from each other, it is 
conceivable that, when they are present at the same time, the overall 
response of the FPI is a simple combination of the two effects. In the 
case of transmission, combining (5) and (14) leads to 

𝑇 =
(1 − 𝑟2)𝑒−𝑖𝜁𝑛𝑘𝑑𝑑

1 − 𝑟2𝑒−2𝑖𝜁𝑛𝑘𝑑𝑑
, (17)

where 𝜁 and 𝑘𝑑 are defined by (6) and (16), respectively. For reflection, 
a similar treatment to (13) and (15) yields 

𝑅 =
𝑟(1 − 𝑒−2𝑖𝜁𝑛𝑘𝑑𝑑 )
1 − 𝑟2𝑒−2𝑖𝜁𝑛𝑘𝑑𝑑

𝑒−2𝑖
( 𝑣𝑖

𝑐

)

𝜔𝑡. (18)

In the end, we summarize the latter three cases by giving the general 
form of the transmittance and the reflectance of the FPI when motion is 
considered. Comparing (17) and (18) with (1) and (2), it immediately 
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becomes clear that a straightforward generalization of (3) and (4) leads 
to 
|𝑇 |2 = 1

1 + (2∕𝜋)2 sin2 (𝜁𝑛𝑘𝑑𝑑)
, (19)

and 

|𝑅|2 =
(2∕𝜋)2 sin2 (𝜁𝑛𝑘𝑑𝑑)

1 + (2∕𝜋)2 sin2 (𝜁𝑛𝑘𝑑𝑑)
. (20)

3. Impact of motion in PDH frequency locking

To demonstrate the application of this general theory, let us evalu-
ate the impact of motion in a PDH frequency locking system [14]. The 
PDH technique has been widely used in fields such as laser frequency 
stabilization [15,16], precision metrology [17,18], and optical sens-
ing [19,20]. Its operation involves comparing the laser frequency with a 
resonance peak of a reference FPI and subsequently generating an error 
signal that is proportional to this frequency difference [21]. The error 
signal is then used to correct the laser frequency through a feedback 
system. Prior work investigating frequency shifts and excess noise in 
PDH locking focused primarily on fluctuations in cavity length [22–24]. 
No work has been reported on the motion of the cavity as a whole.

For the purpose of the current analysis, we neglect the ancillary 
components of the PDH system such as the electro-optic modulator and 
all the electronics, keeping only the core optical components: a laser, 
an FPI, a beamsplitter and a photodetector. A conceptual layout of the 
scheme is shown in Fig.  4. We further assume that the laser and the FPI 
can move along their common optical axis while the beamsplitter and 
the photodetector remain stationary in the lab frame.

Once again, we will start with simpler cases and gradually proceed 
toward more complex situations.
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Fig. 4. Simplified optical layout for a typical Pound-Drever-Hall frequency locking system. In the current discussion, the laser and the FPI are considered movable in the longitudinal 
direction.
3.1. Only laser moves

Let us first examine the case with a moving laser and a fixed FPI 
(see Fig.  2(c)). The reflection coefficient of the FPI is given by (15). 
Following the discussions and notations outlined by Black [21] while 
incorporating (16), we rewrite the round-trip phase as 

𝛿 = 2𝑛𝑘𝑑𝑑 =
𝜔 + 𝛿𝜔𝑠
𝛥𝜈𝑓𝑠𝑟

, (21)

where 𝜔 is the original frequency of the laser, i.e., the frequency in 
its rest frame, 𝛿𝜔𝑠 = 𝜔(𝑣𝑠∕𝑐) is the Doppler shift caused by the laser 
movement, and 𝛥𝜈𝑓𝑠𝑟 = 𝑐∕(2𝑛𝑑) is the free spectral range of the FPI. 
Eq. (21) suggests that a longitudinal motion of the laser effectively 
introduces a frequency drift to the laser, which is proportional to the 
velocity of the movement. For a PDH locking system, such a frequency 
drift is indistinguishable from an intrinsic laser frequency change. In 
other words, the motion effectively adds a velocity-induced frequency 
noise to the laser.

3.2. Only FPI moves

Next, we analyze the case where the laser is fixed while the FPI 
is moving (see Fig.  2(b)). This scenario is more complex because two 
factors are involved in the process: an oscillation term representing a 
Doppler shift of −2(𝑣𝑖∕𝑐)𝜔 and a rescaling factor 𝜁 in the round-trip 
phase, as pointed out earlier in Section 2. B.

First, let us focus on the reflection-induced Doppler term exp
[−2𝑖(𝑣𝑖∕𝑐)𝜔𝑡]. It introduces a universal frequency shift to any wave 
reflected by the FPI. In the PDH scheme, the wave incident in the FPI is 
a frequency-modulated (FM) optical carrier [14,21]. It has been shown 
that a periodically modulated wave reflected off a uniformly moving 
target remains as a periodically modulated wave, but with a Doppler-
shifted modulation frequency [25,26]. This feature can be easily seen 
in the current context by inspecting how the optical carrier and its two 
FM sidebands change frequencies upon reflection from the FPI. If we 
denote the frequency of the laser as 𝜔 and the frequencies of the FM 
sidebands as 𝜔 + 𝛺 and 𝜔 − 𝛺, where 𝛺 is the modulation frequency 
of the electro-optic modulator, then according to (13), a reflection off 
the moving FPI causes the three frequencies to shift to 
⎧

⎪

⎨

⎪

⎩

𝜔 → 𝜔 +𝐾𝜔 = (1 +𝐾)𝜔,
𝜔 +𝛺 → (𝜔 +𝛺) +𝐾(𝜔 +𝛺) = (1 +𝐾)𝜔 + (1 +𝐾)𝛺,
𝜔 −𝛺 → (𝜔 −𝛺) +𝐾(𝜔 −𝛺) = (1 +𝐾)𝜔 − (1 +𝐾)𝛺,

(22)

where 𝐾 = −2(𝑣𝑖∕𝑐). It is evident from the above result that the light 
reflected off a moving FPI contains a Doppler-shifted optical carrier 
(1 +𝐾)𝜔 and a Doppler-shifted FM frequency (1 +𝐾)𝛺. Since the PDH 
technique is insensitive to the carrier frequency [21], the impact of 
the Doppler term exp [−2𝑖(𝑣 ∕𝑐)𝜔𝑡] is mainly contributed by the FM 
𝑖

5 
frequency shift 𝐾𝛺. In principle, such a change would introduce addi-
tional noise to the PDH error signal through the subsequent homodyne 
process. Practically, the severity of this additional noise depends on the 
velocity of the FPI, as well as the noise budget of the locking system. 
As will be shown later, a reasonable speed range for the FPI is on 
the order of mm/s or cm/s. This leads to a 𝐾 factor of the order of 
10−11 − 10−10. The absolute frequency shift for a typical FM frequency 
𝛺 = 10MHz is about 0.1 − 1mHz. For most common applications, this 
level of uncertainty can be well within the tolerable range.

The second effect caused by a moving FPI is the velocity-dependent 
scaling factor 𝜁 . It is not hard to see by comparing (13) and (15) that 𝜁
and 𝑘𝑑 play similar roles in the FPI reflection coefficient, namely adding 
a Doppler drift to the optical frequency. This becomes more clear when 
(6) is rewritten as 𝜁 ≈ (1 − 𝑣𝑖∕𝑐) and substituted into the round-trip 
phase given by (11), which yields 

𝛿 =
𝜔 − 𝛿𝜔𝑖
𝛥𝜈𝑓𝑠𝑟

, (23)

where 𝛿𝜔𝑖 = 𝜔(𝑣𝑖∕𝑐) is an equivalent Doppler drift in the optical 
frequency. Note that this result is consistent with our previous report, 
in which we concluded that a nonzero velocity of the FPI would rescale 
its resonance peaks by a factor of (1 + 𝑣𝑖∕𝑐) [11].

3.3. Both laser and FPI move

Finally, we discuss the general case where both the laser and the FPI 
are moving (see Fig.  2(d)). A quick comparison of the general reflection 
coefficient (18) with the previous two cases (13) and (15) indicates that 
the overall impact of these motions on a PDH locking system combines 
all the effects considered above. Of particular interest here is the overall 
round-trip phase, where two separate Doppler drifts must be factored 
in. Combining (11), (21) and (23), it is straightforward to show that 
the general round-trip phase is given by 

𝛿 = 𝜔
𝛥𝜈𝑓𝑠𝑟

(

1 −
𝑣𝑖
𝑐

)(

1 +
𝑣𝑠
𝑐

)

≈
𝜔 − 𝛿𝜔𝑖 + 𝛿𝜔𝑠

𝛥𝜈𝑓𝑠𝑟
, (24)

where the second-order term has been neglected. Evidently, the mo-
tions of both the laser and the FPI contribute to the overall frequency 
drift. The different signs between 𝛿𝜔𝑖 and 𝛿𝜔𝑠 are simply due to the 
different definitions of positive 𝑣𝑖 and 𝑣𝑠.

An interesting observation is worth being pointed out here. When 
𝑣𝑖 and 𝑣𝑠 are equal and in the same direction, the 𝛿𝜔𝑖 and 𝛿𝜔𝑠 terms in 
(24) cancel out, leaving 𝛿 ≈ 𝜔∕𝛥𝜈𝑓𝑠𝑟 = 2𝑛𝑘𝑑 taking the form as if the 
laser and the FPI are both stationary. This suggests that, by keeping 
the laser and the FPI relatively stationary to each other, the impact of 
velocity can be mitigated. In other words, a relative motion between the 
detector and the laser-FPI pair is far less influential to the PDH error 
signal than a relative motion between the detector and either the laser 
or the FPI individually.
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3.4. Discussions

In reality, it is highly unlikely that a PDH system involves uniformly 
moving components. A more realistic scenario has to do with the 
mechanical vibration of the optical fixtures. Optical components, as 
well as their mounting and storage structures, are inevitably subject 
to spontaneous vibrations. The impacts of such vibrations have been 
extensively studied [7–10], but never from a velocity point of view. 
Although an in-depth analysis based on first principles is beyond the 
scope of this report, we can nevertheless utilize the results developed 
above to loosely gauge the scales of the excess noises caused by 
vibration velocities.

Suppose that one of the optical components (laser or FPI) is
mounted on a mechanical structure that vibrates in the direction of 
the laser beam at an intrinsic resonance frequency of 1 kHz, with a 
peak-to-peak amplitude of 1 μm. Vibrations of such a scale are quite 
common in optical structures [27,28]. According to (24), a frequency 
modulation at 1 kHz is effectively added to the laser frequency. To 
evaluate the scale of this additional frequency noise, we use the peak-
to-peak velocity swing 𝛥𝑣𝑝𝑝 as an indicator, and 𝛥𝑣𝑝𝑝 ∼ 6mm/s in 
the current case, which leads to a Doppler ratio 𝛥𝑣𝑝𝑝∕𝑐 ∼ 2 × 10−11. 
For a typical laser frequency at 400THz (750 nm), the corresponding 
frequency swing is about 8 kHz. This level of excess FM noise is 
non-negligible for today’s narrow-linewidth lasers, which are often 
employed in high-precision PDH locking systems [29]. An important 
consequence of this additional noise is an increased noise budget for 
the locking electronics. In other words, the feedback control system 
must be equipped with a sufficient bandwidth in order to suppress the 
velocity-induced frequency fluctuations.

Another way to gauge the impact of Doppler frequency instability 
is to compare it with an existing frequency instability standard. To 
do that, we use a commercial FPI frequency reference as an example. 
Thorlabs/MenloSystems XM-ORC15 is an ultra-stable optical reference 
cavity that operates at 1064 nm. It is made of an ultra-low expansion 
(ULE) glass body of 12.1 cm and has a specified thermal noise Allan 
deviation limit (ADEV) of 1.6 × 10−16 when averaged over 1 s [30]. If 
the cavity mounting structure experiences vibrations, motion-induced 
fluctuations will be added to the overall frequency instability. To assess 
the impact of the vibration, we can calculate how much vibration can 
cause a fractional frequency uncertainty that rivals the thermal noise 
ADEV. Following the same strategy as in the above example, it is easy 
to show that the peak-to-peak fractional frequency fluctuation induced 
by a harmonic vibration is given by 2𝜋𝛥𝑥𝑝𝑝𝑓∕𝑐, where 𝛥𝑥𝑝𝑝 is the peak-
to-peak vibration amplitude and 𝑓 is the vibration frequency. We are 
particularly interested in vibration at 𝑓 = 0.5  Hz here because it can 
create the greatest frame-to-frame frequency swing when frequencies 
are measured with a 1-s averaging time. To keep this vibration-induced 
frequency uncertainty below the thermal noise limit (1.6 × 10−16), the 
estimated vibration amplitude is 𝛥𝑥𝑝𝑝 ≈ 0.02 μm. In reality, such small 
mechanical vibrations could be difficult to completely prevent.

Finally, it is worth stressing again that the above evaluation is 
based on the assumption of a rigid FPI without deformation. The 
only displacements considered here are those caused by the relative 
movements between different optical components. Under conventional 
theory, such displacements would not directly impact the frequency 
accuracy of a PDH system because neither the laser nor the FPI incurs 
any frequency change. Therefore, by factoring in the effects of velocity, 
this generalized FPI theory reveals a new aspect of the PDH scheme that 
can be nontrivial in certain applications.

4. Conclusion

In conclusion, we have formulated an expanded theory to describe 
the transmission and reflection behaviors of an FPI when key optical 
components in its operating system move relative to each other along 
their common optical axis. Our analysis shows that, when the light 
6 
source and the FPI move independently against the detector (observer), 
they each introduce a velocity-dependent factor in the FPI round-trip 
phase, which effectively adds a Doppler shift to the transmission and 
the reflection coefficients. An independent FPI motion, meanwhile, 
exerts an additional global frequency shift proportional to −2(𝑣𝑖∕𝑐) on 
the reflected wave. On the other hand, when the light source and the 
FPI move together against the detector, their effects on the round-trip 
phase cancel out, leading to a much reduced velocity sensitivity. To 
showcase the applications of this generalized theory, we have inves-
tigated the potential impact of velocity-induced excess noise in PDH 
laser frequency locking. Our evaluation indicates that tiny mechanical 
vibrations of the laser and the FPI can effectively introduce additional 
FM noise to the laser frequency, which should be taken into account in 
high-precision laser frequency stabilization. Overall, it is our hope that 
this work helps bring necessary attention to the overlooked aspect of 
velocity-induced effects in metrological systems involving the FPI.
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