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Abstract— Conventional laser spectral analysis relies on direct 

measurement of power spectral density (PSD), which is not able 
to distinguish certain types of phase and frequency modulations 
without ambiguity. In this paper, we propose and demonstrate a 
modified scheme aimed at improving the specificity in laser 
frequency analysis. Our method is based on PSD measurement of 
the downshifted laser spectrum in the radio-frequency range but 
introduces an electronic frequency divider (EFD) prior to the 
spectrum analyzer. By monitoring the spectral changes caused by 
the EFD, we show, both theoretically and experimentally, that 
common scenarios of phase and frequency modulations, such as 
wideband frequency modulation (FM) and broadband phase 
modulation, can be differentiated without ambiguity. Moreover, 
the new method allows for quantitative assessment of wideband 
FM parameters such as modulation frequency, modulation index 
and frequency deviation, which is not possible with any 
conventional spectral analysis methods. This technique may find 
potential applications in laser frequency metrology, microwave 
photonics, optical sensing, and radar/lidar technologies. 
 

Index Terms—Frequency division, frequency measurement, 
frequency modulation, laser noise, microwave photonics, phase 
noise, radar, spectral analysis.  
 

I. INTRODUCTION 
LTRALOW-noise and ultra-stable sources of reference 
signals in the optical domain have become indispensable 

for applications such as precision measurements, optical 
frequency metrology, coherent optical communications, and 
microwave photonics [1]. As the demand for such 
high-spectral-purity light sources continues to increase, there 
arises the need for instrumentation with improved capabilities 
in characterizing key performance metrics of these sources. 
One area of particular interest is the specificity in laser 
phase/frequency noise (PFN) measurement. 

Various techniques have been exploited to determine the 
PFN of lasers. In the optical domain, the most straightforward 
approach is the delay-line scheme, in which an interferometer 
with highly imbalanced arm lengths is combined with a 
homodyne (or heterodyne) detector for linewidth evaluation 
[2]–[4]. Despite its simplicity and cost effectiveness, this 
method is only suitable for characterizing the Lorentzian 
linewidth of a source and is unable to provide a true picture of 
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the PFN when the source is subject to large frequency 
modulations (FM) [5]. Other optical schemes to measure PFN 
usually rely on optical frequency discriminators (OFD), which 
convert PFN into amplitude variations. Typical OFDs are 
gratings [6], optical resonators [7], as well as atomic 
transitions [8]. Methods based on OFDs are low cost and easy 
to implement, but they suffer from limitations in frequency 
resolution, signal to noise ratio and stability [9]. Laser PFN 
can also be measured in the radio-frequency (RF) range by 
employing appropriate frequency downshifting [9], [10]. The 
downshifting is normally accomplished by heterodyning the 
laser under test with a reference laser to produce a beat note at 
the difference frequency. It can also be done with the help of 
certain optoelectronic devices such as a photoconductive 
mixer [11], [12]. The RF methods typically have much higher 
frequency resolutions and signal-to-noise ratios compared to 
the OFD-based methods [3]. Its drawbacks in system 
complexity and cost have also been significantly mitigated in 
recent years by the advance in optical frequency comb 
technologies [13].  

From a fundamental point of view, all of these conventional 
methods ultimately rely on direct measurement of power 
spectral density (PSD) of modulation sidebands to characterize 
phase and frequency fluctuations. As a result, they suffer from 
a common limitation, which is the intrinsic ambiguity between 
FM modulation frequency and instantaneous frequency. This 
can be understood by the fact that knowing solely the PSD of 
a modulation sideband cannot lead to a definitive distinction 
between a broadband noise source with a low modulation 
index across its entire bandwidth (known as a broadband 
phase modulation) and a low-frequency fluctuation with a 
very large modulation index (known as a wideband FM). 
Moreover, in the latter case, conventional methods are 
incapable of providing quantitative assessment of key FM 
parameters such as modulation frequency and modulation 
index. Yet, in practice, information about the nature and the 
scale of noise sources is often critical for pinning down their 
causes and mitigating them. For example, when designing 
active locking systems for laser frequency stabilization, it is 
paramount to understand the exact factors contributing to laser 
instability and their scales [14]. Systems optimized to suppress 
slow but large frequency modulations are typically different 
from systems optimized to suppress broadband phase noise. 
Unfortunately, this kind of assessment is often performed in 
the labs based on experience and repeated tests.  
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In this report, we present a simple but elegant method to 
improve the specificity of laser spectral analysis. Our method 
is based on the RF-discriminator scheme mentioned above but 
makes a crucial change by introducing an electronic frequency 
divider (EFD) before the PSD measurement. EFD is a 
common electronic component that is widely available in a 
variety of forms and packages (e.g., Analog Devices HMC 
Series). Interested readers can find detailed descriptions about 
EFD in classic papers such as [15] and [16]. By showing the 
differences in the response of EFD to various FM scenarios, 
we demonstrate the feasibility to differentiate common laser 
PFN situations and quantify large FM parameters via a simple 
modification to the existing technique. 

The paper is organized as follows. In Section II, we present 
a theoretical description of angle-modulated signals under the 
operation of frequency division and outline the principle of the 
proposed technique. Section III describes an experiment that 
verifies the theory developed in Section II. Section IV reports 
a case study in which our technique is applied to the frequency 
analysis of a realistic laser beat note. Finally, we conclude in 
Section V. 

II. PRINCIPLE OF OPERATION 
In this section, we first overview the mathematical 

framework for angle modulation (a general term for phase and 
frequency modulations [17]). We then discuss the limitations 
of conventional PSD measurement. After that, we describe the 
effects of frequency division in various modulation scenarios. 
Finally, we present the operating principle of the new method. 

A. Mathematical Framework 
In general, a sinusoidal carrier with constant amplitude but 

time-varying phase can be mathematically described by [17]  

            
x(t) = Ac exp jθ(t)⎡⎣ ⎤⎦ = Ac exp j 2π fct +φ(t)⎡⎣ ⎤⎦{ } ,  (1) 

where  Ac  is carrier amplitude,   θ(t)  is total instantaneous 

angle,  fc  is carrier frequency, and   φ(t)  is time-dependent 
phase angle. If the phase is subject to a modulation, it can be 
further expressed as 

                                
φ(t) = 2πK f m(τ )dτ

0

t

∫ ,  (2) 

where 
 
K f  is frequency sensitivity of the modulator and   m(τ )  

is the modulation signal. The instantaneous frequency of the 
signal is defined as 

                           
f (t) ≡ 1

2π
!θ(t) = fc + K f m(t) .  (3) 

Since an arbitrary modulation signal can be decomposed 
into a collection of single-frequency components via Fourier 
transform, it is worthwhile to take a closer look at the so called 
tone modulation, where   m(τ )  takes the form of a sinusoidal 

function   m(τ ) = Am cos(2π fmτ ) , with  Am  being modulation 

amplitude and  fm  representing modulation frequency. Then 

(1) can be rewritten as  

                
x(t) = Ac exp j2π fct( ) ⋅exp jβ sin(2π fmt)⎡⎣ ⎤⎦ ,  (4) 

where 
  
β = K f Am / fm  is commonly known as modulation index. 

By defining peak FM frequency deviation 
 
Δf ≡ K f Am , modulation 

index can also be expressed as   β = Δf / fm . Expanding the second 
exponential term in (4) into an infinite series yields [17] 

                   
x(t) = Ac Jn β( )exp j2π fc + nfm( )t⎡⎣ ⎤⎦

n=−∞

+∞

∑ ,  (5) 

where   Jn(β )  is Bessel’s function of the first kind of order n 
and argument β . In the special case of small modulation 
index, i.e.,  β <<1 , all terms except the 0th and the 1st orders 
in (5) are negligible, yielding 

  
x(t) ≈ Ac J0 β( )exp j2π fct( ) ± J1 β( )exp j2π fc ± fm( )t⎡⎣ ⎤⎦{ }  (6) 

Fourier transform of (6) gives the spectrum of the signal, 

         
X ( f ) =

Ac

2
J0 β( )δ f − fc( ) ± J1 β( )δ f − fc ∓ fm( )⎡⎣ ⎤⎦ ,  (7) 

which consists of the carrier  fc  along with two sidebands at 

 fc ± fm .  
 

 
Fig. 1. Ambiguity in direct PSD measurement: (a) the PSD of a white phase noise, and 
(b) the PSD caused by a wideband tone-modulation. Both spectra are recorded with a 
Tektronix MDO 4104B mixed domain oscilloscope with a resolution bandwidth of 300 
Hz. 

B. Limitations of Direct PSD Measurement 
In the current context, we are specifically interested in the 

comparison between two hypothetical scenarios. The first 
scenario is a broadband modulation with a constant but small 
modulation index (i.e.,  β <<1 ) across the entire modulation 
band. In reality, this closely resembles the case of white phase 
noise. According to (7), each Fourier component (denoted 
here as  fi ) of such a modulation generates a pair of sidebands 

at  fc ± fi  with an amplitude equal to   ( Ac / 2)J1(β ) , which is a 
constant. As a result, the overall sideband, after considering all 
possible values of  fi , has a constant PSD throughout its span. 
Such a feature is demonstrated in Fig. 1(a), which shows the 
measured PSD of a white phase-noise sideband.  

The second scenario is a single-tone modulation at  fm , with 

a frequency deviation  Δf >> fm  and hence a modulation index 

 β >>1 . The spectral feature due to this modulation is better 
captured by invoking the concept of instantaneous frequency. 
According to (3), the instantaneous frequency under such a 
modulation is given by   f (t) = fc + Δf cos(2π fmt) , which 

represents a frequency sweep between  fc ± Δf  at a rate of  fm . 
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A direct measurement of the signal spectrum would result in a 
constant PSD throughout the frequency sweeping range, as 
demonstrated in Fig. 1(b). 

The above two scenarios show that completely different 
fluctuation mechanisms may yield very similar PSD profiles 
under direct PSD measurement, which can potentially cause 
ambiguity in practice. Such a limitation of the conventional 
methods is particularly problematic for high precision laser 
frequency analysis, where the nature of the fluctuation in 
question is often critical for determining effective approaches 
of mitigation. Methods capable of improving the specificity of 
PSD measurement thus become highly desirable. 

C. The Effects of Frequency Division 
Now let us analyze how the operation of frequency division 

impacts an angle-modulated signal. Once again, we focus on 
the case of tone modulation with the understanding that a 
general modulation scenario can always be decomposed into a 
collection of tone modulations through the Fourier transform. 
Consider a single-tone-modulated signal as shown in (4). 
When it passes through a frequency divider with a division 
ratio N, both terms on the exponents are divided by N and the 
output signal is given by 

               
y(t) = Ac exp j2π

fc

N
t

⎛
⎝⎜

⎞
⎠⎟
⋅exp j β

N
sin(2π fmt)⎡

⎣
⎢

⎤

⎦
⎥ .  (8) 

A similar series expansion as the one performed on (4) yields 

                 
y(t) = Ac Jn

β
N

⎛
⎝⎜

⎞
⎠⎟

exp j2π
fc

N
+ nfm

⎛
⎝⎜

⎞
⎠⎟

t
⎡

⎣
⎢

⎤

⎦
⎥

n=−∞

+∞

∑ .  (9) 

Taking the Fourier transform of (9) results in an expression for 
the spectrum of a tone-modulated sinusoidal carrier after an 
N-fold frequency division, 

                  
Y ( f ) =

Ac

2
Jn

β
N

⎛
⎝⎜

⎞
⎠⎟
δ f −

fc

N
+ nfm

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

n=−∞

+∞

∑ .  (10) 

Equations (10) shows that frequency division causes two 
changes on a tone-modulated signal: it divides the carrier 
frequency  fc  by N and it divides the modulation index β  by 
N. On the other hand, frequency division does not change the 
modulation frequency  fm  and hence the sideband spacing 

remains the same.  
The effect of frequency division can also be understood 

through the concept of instantaneous angle and instantaneous 
frequency defined in (1) and (3). A divider effectively divides 

  θ(t)  and   f (t)  by its division ratio N. For tone modulation, the 
divided instantaneous frequency becomes 

                            
f (t)
N

=
fc

N
+ Δf

N
cos(2π fmt) .  (11) 

From the viewpoint of frequency sweeping, this indicates that 
the operation of frequency division causes a reduction of both 
the carrier frequency and the frequency sweeping range by the 
same ratio. However, it should be noted that such a picture is 
only valid when   Δf / N >> fm , which essentially requires both 

 β >>1  and   β / N >>1 . A comparison between (10) and (11) 

also indicates that a division of β  is equivalent to a division 
of  Δf . 
 

 
Fig. 2. The effects of frequency division in different angle-modulation scenarios: (a) a 
reduction of sideband amplitude (vertical) in the case of narrowband tone modulation; (b) 
a reduction of frequency span (horizontal) in the case of wideband tone modulation and 
small division ratios; (c) a change of characteristics from frequency sweeping to discrete 
sidebands in the case of wideband tone modulation and large division ratios; and (d) a 
universal reduction of sideband amplitude (by 20logN dB in PSD scale) in the case of 
broadband phase modulation. 

D. Spectral Changes due to Frequency Division 
With the understanding of the effects of frequency division, 

let us now examine the spectral changes caused by frequency 
dividers under various circumstances. We shall broadly group 
these different scenarios into two categories: tone modulation 
and broadband modulation. Within tone modulation, we 
further break down the discussion into three different cases 
based on the relative scales of the modulation index and the 
division ratio:  
 
1) Narrowband FM (NBFM) 

This is the case where the FM frequency deviation is small 
compared to the modulation frequency, i.e.,  Δf ≤ fm , or 
equivalently,  β ≤1. According to (5), the modulation can 
be treated as consisting of a series of harmonic 
components at the multiples of  fm . Moreover, since β  is 
small, only the first few orders of Bessel’s function have 
significant contributions in the expansion. As a result, the 
original spectrum consists of several discrete sidebands on 
both sides of the carrier. The frequency-divided signal is 
described by (10), where the carrier frequency and the 
modulation index are both divided by N. The modulation 
frequency, however, remains unchanged. The result is a 
second set of discrete sidebands centered at   fc / N , with 
the same sideband spacing but reduced amplitudes. Such a 
spectral change is illustrated in Fig. 2(a). Evidently, the 
main characteristic difference before and after the divider 
is a reduction in the “vertical” scale of the sidebands (i.e., 
amplitude or power). 

2) Wideband FM (WBFM) with small division ratio 
This is the case where the FM frequency deviation is large 
compared to the modulation frequency, i.e.  Δf >> fm  and 
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 β >>1 , but the division ratio N is small relative to β  so 
that   β / N >>1 . Under such conditions, it is more 
convenient to use the concept of instantaneous frequency 
defined in (3) and treat the modulation as a frequency 
sweeping, both before and after the divider. The effect of a 
frequency divider can be described by (11), which 
indicates a simultaneous reduction of the carrier frequency 
and the frequency-sweeping range, as illustrated in Fig. 
2(b). Clearly, the main characteristic change in the 
spectrum is a reduction in the “horizontal” scale (i.e., 
frequency span). 

3) WBFM with large division ratio  
This case is similar to the previous one except the division 
ratio N becomes comparable to or greater than β  so that 

  β / N ≤1 . The original signal has a large β  and acts as a 
frequency sweeping. But the divided modulation index is 
so small that the divided spectrum only consists of discrete 
sidebands, as conceptually depicted in Fig. 2(c). Evidently, 
such a characteristic transition requires the division ratio to 
be at least comparable to the original modulation index, 
i.e.,  N ≈ β . This interesting feature can be used to 
quantify the scale of β  as will be discussed in the 
following.   

 
As a summary of tone modulation, the above three cases can also 

be qualitatively understood through the so-called Carson’s rule [17], 
which states that the bandwidth of an angle-modulated signal can be 
approximately predicted by the relation   BW ≈ 2 fm(β +1) .  When 

 β <<1 , the bandwidth is dominated by the second term on the 
right-hand side so that   BW ≈ 2 fm . Since  fm  does not change 
through frequency division, the signal bandwidth remains the same 
after the divider while the sideband amplitudes reduce. On the other 
hand, when  β >>1 , the first term in the parentheses dominates so 
that   BW ≈ 2 fmβ = 2Δf . Now the bandwidth is mainly determined 
by the FM frequency deviation  Δf , which defines the span of 
frequency sweeping. Under frequency division, the bandwidth 
reduces following the reduction of β  (and hence  Δf ). However, 
once   β / N  becomes comparable to 1, the first term is no longer 
dominant and discrete sidebands once again appear in the spectrum.   

Finally, the above discussions based on single-tone modulation in 
principle also apply to multi-tone and broadband modulations. In 
particular, broadband modulations with small index are especially 
common in practice and hence should be discussed separately. 

 
4) Broadband phase modulation (BBPM) 

This is the case where the modulation is composed of a 
continuous band of mf  and  β <<1  holds true across the 
entire band. This case can be more conveniently described 
by directly invoking (1) and assuming   φ(t) = φΔa(t) , where 

φΔ  represents the maximum phase shift produced by a 

general modulation function   a(t)  with φΔ ≤ π . It is 

straightforward to show that [17], as long as 
  
φ(t) <<1  is 

satisfied (which leads to the name phase modulation), the 
Fourier transform of   x(t)  can in general be written as 

            
X ( f ) =

Ac

2
δ f − fc( ) + jφΔ A f − fc( )⎡⎣ ⎤⎦ ,  (12) 

where   A( f )  is the Fourier transform of   a(t) . With an 
N-fold frequency division,  fc  and φΔ  are both divided by 
N, and signal spectrum becomes 

        
X1/N ( f ) =

Ac

2
δ f −

fc

N
⎛
⎝⎜

⎞
⎠⎟
+ j

φΔ

N
A f −

fc

N
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ .  (13) 

Apparently, the entire sideband downshifts to a new center 
frequency   fc / N , with a universally reduced amplitude 

  φΔ / N . The characteristic change of the spectrum is a 
reduction in the “vertical” scale, as depicted in Fig. 2(d), 
which is in essence similar to the behavior of NBFM 
except this is for a continuous band. It is also interesting to 
point out that, according to (13), the PSD of the divided 
spectrum has an identical profile as the undivided spectrum 
but   20log10 N  dB lower. 

 

E. Operating Principle of EFD-Aided Frequency Analysis 
Overall, the characteristic difference in spectral behaviors under 

frequency division makes it possible to distinguish different types of 
angle modulation by means of frequency dividers. Especially, in the 
context of laser frequency analysis, by introducing an EFD preceding 
a spectrum analyzer and comparing the PSD measurements with and 
without the EFD, one can easily draw distinctions between a laser 
spectrum caused by slow but large frequency fluctuations (Fig. 2(b)) 
and a laser spectrum dominated by white phase noise (Fig. 2(d)). 
Such differentiation cannot be accomplished without ambiguity with 
the conventional direct PSD measurement as pointed out in Section II 
B. Moreover, by finding that “magic” division ratio N at which a 
WBFM sideband transitions into a NBFM sideband as shown in Fig. 
2(c), one can deduce the approximate value of β  through the 
relation N≈β . The resulted NBFM spectrum allows for easy 
determination of mf  (keeping in mind that mf  remains invariant 
through frequency division). The FM frequency deviation, fΔ , can 
be estimated based on the relation mffΔ=β . Evidently, the 
approach outlined above enables systematical decoding of the 
modulation parameters of an arbitrary WBFM signal, which is not 
possible using any conventional spectral analysis methods. 

 

III. EXPERIMENT VERIFICATION 
In order to verify the capability of EFD-aided frequency 

analysis in discriminating various types of angle modulation 
and quantifying WBFM parameters, we set up an experiment 
in which an arbitrary angle-modulated signal can be loaded 
onto low-noise laser light. We then use the EFD-aided method 
to measure the laser spectrum and compare it with theoretical 
predictions.  

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/JLT.2018.2820020

Copyright (c) 2018 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



JLT-21620-2017 
 

5 

 
Fig. 3. Schematic of experimental setup. AMP: RF amplifier; AOM: acousto-optic 
modulator; DL: diode laser; EOM: electro-optic phase modulator; PD: photodetector; 
VCO: voltage-controlled oscillator. Solid red lines represent optical paths and dotted blue 
lines represent electronic paths. 

Fig. 3 shows a schematic of the experimental system. The light 
source is a narrow-linewidth, low-noise diode laser (RIO Orion, < 1 
kHz linewidth). An acousto-optic modulator (AOM) splits the laser 
output into two beams with a frequency offset governed by the 
driving signal of the AOM. The AOM is driven by a 
voltage-controlled oscillator (VCO) operating at 80 MHz. FM can be 
applied to the +1-order output of the AOM by modulating the control 
voltage of the VCO. The 0th-order output of the AOM passes 
through an electro-optic phase modulator (EOM), which provides an 
alternative port for loading BBPM onto the laser light. The two 
beams recombine on a photodetector, which serves as a heterodyne 
receiver to downshift the laser spectrum to the RF band so that it can 
be analyzed by EFDs. Two programmable EFDs (Valon 3008) are 
used, each with a maximum division ratio of 32. When arranged in 
series, they are able to provide an overall frequency division up to 
1024. The divided laser spectra are saved and analyzed with an RF 
spectrum analyzer (Tektronix RSA 306B). 

Fig. 4 summarizes the main results of the experiment. In order to 
make comparisons with theory, we plot all traces as single-sided 
spectra, with solid black traces representing experimental results and 
dashed red traces representing theoretical predictions. Fig. 4(a) and 
(b) correspond to the case of NBFM, where the phase of the laser is 
modulated at 100 kHz with  β = 0.34  (see Fig. 4(a)). A 4-fold 
division by an EFD results in discrete sidebands of the same spacing 
but reduced amplitudes, as shown in Fig. 3(b). This result is 
consistent with theoretical calculations based on (10). Fig. 4(c)–(f) 
represent the case of WBFM, with a modulation frequency of 1 kHz 
and an FM frequency deviation of 242 kHz (that is  β = 242 ). The 
original spectrum (see Fig. 4(c)) is a quasi-continuous, flattop 
sideband extending up to about 250 kHz. As the signal goes through 
the EFDs, the spectral width is reduced according to the division ratio 
but the overall profile of the sideband remains approximately the 
same, as demonstrated in Fig. 4(d) and (e). However, when the 
divided β  becomes comparable to 1 (in this case when  N = 128 ), 
the divided spectrum begins to transform into a series of discrete 
sidebands at the harmonics of 1 kHz, as shown in Fig. 4(f), which 
resembles a NBFM spectrum. Once again, these experimental results 
agree well with theoretical predictions. We have also investigated 
multi-tone modulations with independently controlled parameters 
and the results are generally simple combinations of the above two 
special cases. Finally, Fig. 4(g) and (h) show the case of BBPM, 
where the modulation consists of a continuous band of frequencies, 

all at low modulation indices. The measured result indicates that a 
4-fold division causes the entire sideband to lower by 12 dB (see Fig. 
4(h)). This is in good agreement with the theoretical prediction based 
on (13). 

 

 
Fig. 4. The responses of EFD to various types of angle modulation: experimental (solid 
black) vs. theoretical (dashed red). (a) and (b): NBFM (undivided and divided by 4, 
respectively). (c)–(f): WBFM (undivided, divided by 2, 8, and 128, respectively). (g) and 
(h): BBPM (undivided and divided by 4, respectively). 

IV. APPLICATION 
In order to put our scheme to the test under more realistic 

conditions, we deliberately generate a noisy RF spectrum by 
beating a diode laser (DL) with an optical frequency comb 
(OFC). Such a beat note is frequently used in practice to 
facilitate DL-OFC locking [13]. Understanding the physical 
mechanisms behind the PFN of the beat note is essential to 
designing proper locking systems. In the current case, the 
diode laser is the same narrow linewidth laser mentioned 
above. The OFC (Menlo Systems FC1500) has a 250-MHz 
repetition rate, which is stabilized against a Rubidium 
frequency standard (SRS FS725). The carrier-envelope offset 
(CEO) frequency, however, is not stabilized. The RF beat note 
feeds into the two EFDs under various division-ratio settings, 
producing a series of spectra, which are summarized in Fig. 5. 
Fig. 5(a) shows the PSD spectra of the original beat note as 
well as the beat note divided by 4, 8, 16 and 32. All traces are 
re-centered to frequency zero for the sake of comparison. The 
undivided beat note features a flattop profile across over 300 
kHz. As the division ratio gradually increases, the bandwidth 
of the beat note decreases in proportion, displaying a WBFM 
behavior similar to those shown in Fig. 2(b) and Fig. 3(c)–(e). 
It should be noted that the small sidebands in Fig. 5(a) at about 
44 kHz and 87 kHz are introduced by the dividers as opposed 
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to the beat note. Increasing the division ratio further, the trend 
of linewidth reduction continues, as shown in Fig. 5(b) for N = 
64, 128 and 256. A close look at the center regions of all these 
traces reveals a similar flattop feature, suggesting that the 
divided β  remains large throughout the frequency division 
thus far and the divided beat note maintains its WBFM nature. 
However, when the division ratio is raised to 512, a set of 
discrete peaks at the harmonics of 1.8 kHz appears (upper 
trace in Fig. 5(c)). In addition, possible NBFM sidebands 
emerge at about 180 Hz from the carrier peak (upper trace in 
Fig. 5(c) inset). Finally, at N = 1024, the peaks at the 
harmonics of 1.8 kHz remain at the same frequencies but their 
amplitudes reduce by about 6 dB (lower trace in Fig. 5(c)), 
confirming their NBFM nature. Meanwhile, several other 
NBFM sidebands are clearly revealed at lower frequencies, 
including ones near 180 Hz, 300 Hz, 420 Hz, 620 Hz and 920 
Hz (lower trace in Fig. 5(c) inset).  

 
Fig. 5. Frequency-divided beat note between the DL and the OFC for division ratios of 
(a) 1 (undivided), 4, 8, 16 and 32; (b) 64, 128 and 256; (c) 512 and 1024. Instrument 
resolution bandwidths are (a) 50 Hz, (b) 50 Hz and (c) 40 Hz.  

Further increasing the division ratio is currently not feasible 
due to the availability of EFDs. However, the analysis so far 
has yielded valuable insights into the properties of the beat 
note. The original beat note is predominantly 
WBFM-broadened, and there are multiple FM mechanisms 

tracing back to the lasers. The most prominent FM frequencies 
are at about 180 Hz and 1.8 kHz. As to the other sideband 
frequencies, e.g., 300 Hz, 420 Hz, 620 Hz and 920 Hz, the 
current spectral resolution and measurement precision are 
inadequate to determine whether they belong to the same 
series as the 180-Hz modulation or other independent 
modulations. However, it is evident that the sideband near 180 
Hz is by far the strongest among all resolvable sidebands. It is 
therefore reasonable to assume the roughly 300-kHz initial 
linewidth of the beat note is primarily caused by this 
low-frequency modulation, which implies a modulation depth 
fΔ  of about 150 kHz and modulation index β  of 

approximately 830. This result is consistent with the fact that 
the 180-Hz sideband appears only when N reaches above 512. 
Since the EFDs divide the modulation indices for different 
modulation frequencies with exactly the same ratio, we can 
also estimate the β  associated with the 1.8-kHz FM based on 
the difference between the 180-Hz peak and the 1.8-kHz peak, 
which is about 40 dB according to Fig. 5(c) inset. This leads to 
an estimation of 8=β  for the FM at 1.8 kHz. All these 
above findings appear to agree with our understanding of the 
physical sources of fluctuations in the current circumstance. 
The broadening of the beat note is primarily due to the 
broadening of the OFC comb lines near the OFC center 
wavelength 1550 nm, which is mainly attributed to 
environmental noise (e.g., cavity length fluctuations) at 
frequencies below a few kilohertz [18]. Our method not only 
determines the FM frequencies but also their modulation 
indices as well.  

It should be noted that both the DL and the CEO frequency 
of the OFC are free-running in this experiment. As a result, the 
beat note constantly drifts throughout the data-acquisition 
process. Such a drift would have greatly hindered the 
conventional techniques for high-resolution spectral analysis 
(e.g., fast Fourier transform (FFT) analysis). Yet our method 
demonstrates a high degree of robustness under frequency 
drift and displays a capability of capturing fine spectral details 
without the need of extensive frequency stabilization.  

V. CONCLUSION 
EFD-aided laser frequency analysis has been proposed and 
demonstrated here as an effective solution to improve the 
specificity of conventional spectral analysis based on direct 
PSD measurement. By applying frequency division prior to 
PSD measurement and monitoring the spectral changes caused 
by the EFD, one can differentiate common PFN situations 
such as WBFM and BBPM without ambiguity. Moreover, the 
new method allows for quantitative determination of WBFM 
parameters such as modulation frequency, modulation index 
and FM frequency deviation, which is not possible with any 
conventional spectral analysis methods. These additional 
capabilities can be of great benefit to the development of laser 
frequency locking systems. It can also find applications in a 
breadth of fields including RF photonics, optical sensing, 
radar/lidar, etc. 
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