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Abstract

Developing an analytical theory for atomic coherence driven by ultrashort laser pulses has proved to
be challenging due to the breakdown of the rotating wave approximation (RWA). In this paper, we
present an approximate analytical solution that describes a two-level atom under the excitation of a
far-off-resonance, few-cycle pulse of arbitrary shape without invoking the RWA. As an example of its
applicability, a closed-form solution for Gaussian pulses is explicitly given, and the result is used to
analyse the impact of carrier envelope phase on atomic population ratios. Comparisons with
numerical solutions validate the accuracy our solution within the scope of the approximation. Finally,
we outline an alternative approach that can lead to a more accurate solution by capturing the nonlinear
behaviors of the system. The work lays out feasible theoretical paths toward analytically describing
two-level atoms driven by ultrashort pulses.

1. Introduction

Quantum coherent control (QCC) is of great importance in fundamental physics as well as a breadth of
emerging applications [ 1]. With the emergence of femtosecond and attosecond light sources, control of atomic
coherence using ultrafast laser pulses with very few optical cycles has attracted growing interest in recent years
[2—15]. Apart from its significance in quantum theories, ultrafast QCC has profound implications in practical
applications. For example, in certain QCC schemes, using ultrashort, broadband pulses allows the first
electronic states of molecules to be accessible and, at the same time, enables fast population transfer that occurs
well within the typical collision times [ 16, 17]. Few-cycle pulses can also excite coherence on high-frequency
transitions that enables efficient generation of extreme ultraviolet (XUV) radiations [12, 18].

Studying ultrafast QCC in the few-cycle regime faces unique challenges. The ultrashort pulse duration
invalidates the slowly-varying envelope approximation (SVEA) [19], while the high peak field causes breakdown
of the rotation-wave approximation (RWA) [13]. As a result, the well-established theoretical framework based
on the optical Bloch equations and the area theorem ceases to apply [20, 21]. Theoretical analysis has to rely on
the Bloch equations or the Schrédinger equation in their original forms without simplifications, which are often
highly nonlinear. This significantly increases the difficulty of developing analytical theories. In most cases,
numerical simulations have to be used when dealing with few-cycle light—matter interactions [21-24].

Meanwhile, there has been a continued effort to develop analytical theories for atomic coherence driven by
few-cycle pulses [2, 7—15]. Such an effort is motivated by the fact that analytical theories are able to offer general
pictures of the atomic responses, which is often lacking in numerical solutions. For example, carrier envelope
phase (CEP) is an important factor in coherent excitation by few-cycle pulses [7]. It has been shown that a
closed-form relation between atomic inversion and pulse CEP can be obtained under certain conditions [15],
which provides valuable insight and general guidance in the study of CEP-sensitive quantum coherence. A
notably successful theory, proposed first by Rostovtsev et al, considers the coherence of a two-level atom under
the excitation of a far-off-resonance strong ultrashort pulse [9]. Through a perturbative scheme, the model gives
rise to a general solution of the Schrédinger equation without invoking the RWA. The original solution,
however, is not in closed form, and the analysis of its features useful for practical applications still has to rely
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largely on numerical computations. Several attempts have been made to derive more explicit solutions under
specific conditions [11, 15, 25]. In particular, it has recently been shown that a simple, closed-form analytical
solution of the Schrodinger equation can be obtained for few-cycle square pulses [15].

The apparent limitation of this solution is that it only works for a highly idealized pulse shape, which restricts
its applicability. In the current paper, an analytical theory encompassing arbitrary pulse shapes is presented.
Atomic inversion driven by a few-cycle Gaussian pulse is analysed as an example of the general solution, and an
explicit, closed-form solution is given. The solution is then used to examine the impact of CEP on the population
ratio between the two states for Gaussian pulses. The accuracy of the solution is verified by comparing it to the
exact numerical solution of the general equations of motion. Finally, an alternative approach to simplify the
theory is suggested and is shown to produce a potentially more accurate solution with a closer representation of
the nonlinear behaviors of the system and a broader scope of applicability.

2. An analytical general solution

2.1. General model

Our general model follows the theoretical framework described in [9]. A quick outline is given below. We
consider a two-level system (TLS) under the influence of an electromagnetic field. The Hamiltonian of the
system is

H = 7wdle) (| — pE®)|e) (d] — [uE®T*|d)(d, (1

where |c), |d) are upper and lower levels, respectively, w, is the transition frequency, £(¢) is the electric field, and
1 is the dipole moment of the system. We are interested in the electric field of the form £(¢) = E(t)cos(wt + ¢),
where E(¢) is the pulse envelope function and ¢ is optical phase, also called carrier-envelope phase(CEP). Note
that ¢ isincluded here as an extra degree of freedom for the consideration of CEP, an important concept in the
context of few-cycle excitation [15, 24]. It also allows the theory to potentially analyse chirped pulses, which can
be described via a time-dependent ¢(t).

With this Hamiltonian, the equations of motion for the system are given by

C(t) = —iQ(t)cos(wt + ¢)e™D(t), (2a)
D(t) = —i¥*(t)cos(wt + P)e ™! C(1), (2b)

where C(¢) and D(¢) are the amplitudes of the two states |c) and |d), respectively, i.e.,
|¥) = C(t)e ™|c) + D(t)|d),and Q(t) = pE(t)/his the Rabi frequency.
It proves useful to introduce the following quantity to simplify our equations at this point

0(t) = f t Q") cos(wt’ + p)er'dt’. 3)

With this definition, the equations (2a), (2b) become
C(t) = —if(t)D(t), (4a)
D(t) = —i0* (HC®). (4b)

In this paper, we also assume the ultrashort pulse excitation to be non-zero only within a finite time interval
t € [ — 7, 7], and to have a sharp cut-off outside of this interval. We will imply this throughout the paper, even
when we use the limits of integration that startat — co .

By introducing the quantity

_ 0

f_Dm

(€)

the equations of motion (4) can be simplified to
f@ =" ®f ) — i (6)

The main objective of this paper is to analyse the equation (6), and specifically to find approximate analytical
solutions to this equation.

2.2. First step: a sequence of approximate solutions

To accomplish our goal, we consider a sequence of successive approximate solutions. The zeroth-order
approximate solution fy(t) of (6) is obtained by neglecting the f %(£) term in (6). To be specific, we assume that fo(®)
satisfies the equation
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fo() = 0" O f2 1) — ib, @)
and also the condition
fin < 1, (8)
which simplifies the equation to
fo®) = =i (). ©)

Next, we want to find a first-order approximate solution f;(#). Intuitively, we want this first-order solution to
be close to the zeroth order: f; ~ fq. Specifically, the condition that is of importance is that

() = () < fL0). (10)

The strategy that makes use of this condition to simplify equation (6) was introduced in [9], where the
identity

fi=U—fP + %51 (1
is used to obtain the relation
fE=Auh — 15 (12)
Hence, the first-order approximation must satisfy (6),
£ =i 0 — i, (13)
which can be simplified using (12) to yield
£ = 20007 (O, () + 02(0)0* (1) — i (1). (14)
Note that unlike (13), this equation is linear. The general solution to (14) is, as was already found in [15],
A= —2160) + [ o@enoar) (1)

where a(t/, 1) = 2 [ Lot rydr.

The above strategy based on the condition (10) and the identity (11) can be generalized to obtain further
approximate solutions to the main equation (6). In fact, let us suppose that the kth-order approximate solution
fi(?) is already found, and then assume that the (k + 1) th-order approximate solution f;, 1(#) satisfies the
condition

(fei1(® — f)? < fL. (16)
Next, apply the identity
foon = Gy = K> + 26 fiy — f7 (17)
to find that
fk2+1 ~ 2 fin — fi- (18)
Assuming that f., ; satisfies the main equation (6),
foa®) = 0D, @) — ib, (19)
we can use (18) to get a simplified equation
fion = 2O Of () — ifZO0 @) — i0(2). (20)

This recursive equation is once again linear in f;  ;(#), and hence can be solved explicitly, although the solution is
rather cumbersome:

fk+1 = exp (Zif fk(t/) Q*U/) dt')
x ( [ TR i — i) dt/). 1)

To simplify it, we integrate the first integrand by parts and bring the outside exponential inside the integral to get:

1 boa £l 0 (4! /
fk+1(t) = E(fk(t) _L e'dk(t’t)(fk(t) + Zle(t ))dt )) (22)
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where

. t / 5k , ,
Gk, 1) = eZ’L KT @hde' .

2.3. Second step: analytical solutions
Although the first-order approximate solution (15) and the arbitrary kth-order approximate solution (22) are
generic, the integral on the right-hand side of either equation cannot be evaluated in closed-form for any realistic
pulse shape. As our main goal in this paper is to find such a solution, we set out to achieve it by making a series of
further approximations to the functions G, (¢/, t) defined above in (23). Let us start by considering the first
function a(t/, t).

First, we expand «(¢', t) in powers of 6 = ¢t — t’ and approximate

5+t
a(t', 1) = 2f g0 ar = 20000% ) - [t — t'], (24)
t/

to the leading term in 8. While this approximation may seem rather crude for large valuesof 6 = t — t/,as
demonstrated in [15], the quantity « (¢, #') is linear to a surprisingly high extent, and the approximation (24)
proves to be quite valuable.

Secondly, using the fact that all quantities considered here are assumed to be limited to a finite time interval
t € [ — 7, 7], we can further simplify (24) by approximating the product 0 (¢) 0% () asits average over the interval
[—77]

emmnzijfmmﬁwmﬂ (25)
Substituting this back into (24) yields
aucnzzu—ﬂijﬂeawﬁu%w”z—m“w—w, (26)
27 J—7
where
aozleTHUUﬁﬁﬁdﬂ 7)
T V-7

is a constant, and 7 is once again such that the ultrashort excitation is only non-zeroon [ — 7, 7].

While the seemingly crude zeroth-order averaging (25) may look unwarranted, it is central to being able to
simplify our solutions to an analytical form. On that path, let us now use the final form (26) to simplify the first-
order approximate solution (15).

First, we note

ft Otyex Dt
:ft Q") cos(wt’ + @)eet'emiant=t gy
—o0

=gt ft Q(t")cos(wt’ + @)el@etant'qe!, (28)
At this point, it is convenient to introduce w, as an explicit parameter on which 6(f) depends, so that

m%ozfsw%mw+@wwﬂ (29)
With this notation, we can write (28) simply as

ft O(t") e Dt = e~ (w, + a, t). (30)
Substituting (30) back into (15), we have a closed-form solution for pulses of arbitrary shapes:

RO = ~L100 0 + e + a0, 1, (31)

where ay is a constant given by (27). From now on, tilde will be used to denote the simplified analytical solutions,
while a notation without tilde denotes an approximate solution without further simplification.

2.4. Sequence of analytical solutions and their limit

We can repeat the steps we just carried out for the first-order approximate solution for an approximate solution
of arbitrary order, and obtain a sequence of analytical solutions in this way. We can further take the limit

k — oo which will give us an even better approximation.

4
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Using the same idea as with (31), we approximate 3, defined in (23) as a linear function of (t — t'):
B, t) = —iog(t — t'), op = — 2 fT 0" (. (32)
T YT

Notice that we have used fk , which is yet to be found, in the expression for o above. Substituting this back into
(22), and using the same trick as in (30), we have

~ ~ . t . N
i = %{ Fut) — 2ie 0 (w, + o £) — f eiont=F (1 dr'}, (33)

—00
where we again note that all f; are tilded.

From (33), it is possible to derive an accurate solution for fk 41 and then to take the limit k — oo . Although
this would be the cleanest way to derive the limiting solution, it is very tedious. Here, we offer a more elegant
approach. Assume that all functions in (33) are continuous and that taking the limit commutes with integration.
Take the limit k — oo on both sides and denote foo = limy_ fk and a,, = limy_, o, . We then have

- . . s
%foc(t) — —ie (W, + e, 1) — %e‘mwt [ e har, (34)
Introducing g (t) = eiamtjfoc (t) + 0 (w, + o, t) and integrating the exponential by parts lead to
Lot == [ @) — i) — i + aw N, (3)
and, after differentiation,
80 = 200 + 200 + a1, (36)
which yields
g(t) = e"“z*f( f toc e’iimf’o‘Twe(% + Quo, )t + c). (37)

Applying the initial condition g(0) = 0 and integrating by parts, g(¢) is simplified to

Qoo

g(1) = i0(w, + awe, 1) — i 10 (w, + =50, (38)

Substituting g(#) back to fx, we have
fo(t) = —ie7 20 (we + A, 1), (39)

where A = a,/2 is a constant frequency that we will find next. At this point, let us immediately recognize that
the final solution (39) we just obtained is essentially the same as the zeroth-order solution (9), but with an
introduced frequency shift A (note that the phase factor does not have any bearing on the physically observable
quantities) to the system resonance frequency w.. The most valuable part of our finding is the realization that the
most accurate approximate analytical solution is of this form. Next, we must discuss how to obtain the specific
value of this frequency shift A.

The downfall of the above shortcut derivation is that we do not immediately have an expression for A (or
Qo). However, a closer inspection reveals that A can be found in the following way. Consider A to be an
arbitrary frequency shift and try to identify the value of A that would make our final approximate solution (39)
most accurate. Substituting (39) back into (6), we find

A = i0* W, He 20w, + A, 1), (40)

which provides an equation the optimal A should satisfy. Notice that the right hand side is time-dependent, so
averaging it and using 9*(%, tye ¥ = 9*(% + v, t)lead us to the equation for the optimal A,

A = ifT 0w + A, 0w, + A, t)dt. (41)
T J0

Admittedly, (41) does not provide an explicit expression for A. However, the role of A is that of a
particularly suitable frequency shift that makes the approximate solution of the form (39) most accurate. For any
arbitrary pulse shape, once the envelope profile €2(¢) is given, in principle one can always numerically solve (41)
to extract A.

Opverall, our general solution for the equations of motion (4) is given by (39) and (41), where the parameter 6
depends on frequency v and time ¢ through the general relation

O, t) = ft Q") cos(wt’ + p)edr’. (42)
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Figure 1. The percent L? error of the respective approximate solution as compared to the exact numerical solution of (6). Top left: the
zero-order approximation (9). Top right: the first-order approximate solution (31). Bottom left: the infinite-limit approximate
solution (39). Bottom right: the exact numerical solution of the linear equation (14). The solid black line is the contour on which the
error is equal to 10%.

3. Gaussian pulse excitation

Let us study the conditions for which our solutions (31) and (39) are applicable, as well as their accuracy.

First of all, it should be pointed out that the main result of [ 15] can be obtained from our solution (31). For
that, let us assume oy < w, 50 that O(w, + v, 1) = O(w,, £). In this case, denoting oy = 1°w,, equation (31)
becomes

) = —é(l ety g (u, 1), 43)

which is exactly the equation (16) in [15]. The latter solution was shown to be accurate for a square pulse under

the condition [15]
2 2
(ﬁ) + (&) < L (44)
wWe w

Next, we examine how accurate the solution (31) and its generalization (39) are for more realistic pulses. As a
quantity that expresses the accuracy of a solution, we choose the L*-norm of the deviation of the solution from
the exact solution. More specifically, the ratio of the latter quantity to the L*-norm of the exact solution itself—
we call this ratio the relative L* error. We numerically calculate this quantity for a Gaussian pulse with a Rabi
frequency

Q) = Qe 2o, (45)

where we mainly explore the dependence of the relative error described above on the quantities 2 /wand w./w,
since they were shown in [15] to be the relevant parameters that determine applicability of a solution.

In figure 1, we plot the relative error described above for the approximate solutions (9), (31) and (39). As one
can see, our most recent solution is the most accurate of the three, especially in the region where the previous
solutions did not apply, namely, when w, > w. At the same time, we can see that the current theoretical
framework in general does not work well in the upper-middle regions of the plots, which exactly are the regions

6
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where the condition (44) is not satisfied. Therefore, these results also reconfirm the applicability condition of the
current theory.

However, a slight modification of (44) is in order. Notice that our solution applies not only for the situations
when w/w, < 1, butalso w/w, > 1. As aresult, the following condition is more appropriate

2 2 2 2
min (ﬁ) , d + min (&) R il < 1. (46)
w We w Qo
As demonstrated in figure 1, our solution accurately predicts the behavior of the TLS driven by a realistic
Gaussian pulse. While the solution applies to arbitrary pulse shapes, a Gaussian pulse offers an exclusively

convenient property under the current context, namely, the function 8(w,, t) defined by (29) can be evaluated
explicitly in closed-form for a Gaussian pulse,

eGaussian(wD t) = U?O (C(wc - W, t)e_iO + C:(wc + w, t)eia)) (47)
PRI t iov t iov

s — e 27V f _— f e — . 48

Cw,t)=c¢e (er( o _2)+er( _zg—i— E)) (48)

Such closed-form solutions have not been found for other common pulse shapes, such as the Lorentzian or
the hyperbolic secant pulses. Using the closed form (47) and our main solution (39), we can also find the final
population ratio between the upper and the lower state at the end of the pulse duration t = 7, and we can study its
dependence on the carrier-envelope phase ¢.

a2

I(¢) = |f(T)|2 = |0Gaussian (We + A, T) |2 =

+ @ — w, T)C(@ + w, T e ¥ + (@ — w, V(@ + w, T)e??}, (49)

{IC@ — w, DI + 1@ + w, I

where &, = w, + A.
Note, however, that from (48), we have manifestly ( (v, £)* = { (v, t). Therefore, (49) can be simplified to

2002

01?0 @ = w, ) + (@ + w, 7 + 20(@ — w, (@ + w, T)cos2¢). (50)
Equation (50) provides a simple and explicit relation between the final population ratio and the CEP of the
driving pulse, which is only possible with a closed-form solution such as (47). It offers some interesting insights
into the CEP-dependence of the inversion. For example, the cos 2¢ dependence indicates that I(¢) has a period
of 7 rather than 27, and the maximum population ratio is achieved for the CEP value ¢ = 0, regardless of the
other parameters of the system. These results can be of important value in designing potential CEP-detection
schemes based on atomic systems.

I(¢) =

4. Discussion

Another insightful comparison of (39) is with the classical rotating-wave approximation(RWA) regime. Under
the RWA, the equations of motion (2) become

¢ = ~200D), (51)
D(t) = —;—‘Q(t)C(t). (52)
Introducing the area of the pulse A (t) = fo ' Q(t")dt’, we can find a general solution of the TLS in the form of
C(t) = —isin %, (53)
D(t) = cos A;”. (54)
Since f(t) = C(¢)/D(t), we have
f=—i tan% (55)

as the general solution under the RWA.

To appreciate the similarity of our solution, notice that we have the closed-form solution (39) and that for an
arbitrary pulse, we can put 8(w,, t) in the following form, just using the definition (3) and expanding
cos(wt + ¢) in exponentials and simplifying:
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ePA(we + w, t) + e PA(w. — w, 1)

0w, t) = 56
(we, 1) 3 (56)
where
~ t )
A, t) = f Q@tye'dt!, (57)
can be considered as a generalization of the classical RWA pulse area A(%).
Under RWA, A(w, + w, t) = 0and A(w, — w, t) = A(t), which means that up to a phase factor, our
solution gives
= A
INOES *lz- (58)

This suggests that, near resonance (which is outside of its region of applicability), our solution corresponds to
the linearization of the RWA solution. This apparently is the result of multiple linearizations we have taken in
deriving fk to obtain the closed-form solution. With this observation in mind, we aim to overcome the
oversimplification of our approximations and try to capture more of the nonlinear behaviors of the original
equation (6). One approach is outlined as follows.

Consider again the general equation (6) and use O(t) = Qt)cos(wt + P)e . Taking
g(t) = Q(t)cos(wt + ¢)and multiplying through by e =™, we arrive at

e tf (1) = ig (e 22 () — ig(t). (59)
Substituting z(t) = e~™“*'f (¢) into the above equation leads to
z2(t) = ig(H)Z2(t) — iwez(t) — ig(t). (60)
Now expanding z(t) as a perturbation series in w,, we obtain for the zeroth order
20(t) = ig (1) (z5 (1) — 1), (61)
which gives
t
zo(t) = cosh™! (zf g(t)dt). (62)
0

Meanwhile, the nth-order can be written as

n—1
24(t) = 2ig(Dz,(D)z0(t) + 1Y 2j()zu—j(t) — izg_1(t). (63)

j=1

The general solution to this linear equation, given the initial condition z(0) = 0, is:

n—1

2,(1) = ie"® fo t eW“”(Zz;—(t’)zn-J—(t') - zn_1<r'>)dt', (64)
=1

where w(t) = 2i fo ' g(tNzo(t")dt’. Together with (62), (64) defines a sequence of functions that converge to the

solution, similar to the sequence fi(#) discussed in section 2.

Note that, compared to the linearized sequence fi(t), the sequence of z,(f) is a much closer approximation to
the accurate solution. Even the first-order approximation (62) captures the nonlinear behavior of the system. Ifa
sequence of closed-form approximations to (64) could be found, similar to the sequence ka presented in
section 2, the limit of such sequence z., would be a promising approximation for capturing the nonlinear
behaviors of the system. It seems plausible that a combination of such solution with the solution (39) would
allow us to extend the conditions of applicability of (39) to the case when w ~ w,, w ~ €2y, and capture RWA
better than a simple linear approximation. However, so far, we have been unable to find any approach to obtain a
closed-form solution in this way. The difficulty is precisely the nonlinear features embedded into each (64).

5. Conclusion

In this work, we have developed an analytical general solution that describes a TLS driven by a far-off-resonance
few-cycle pulse of arbitrary pulse shapes without using the RWA. We have identified the conditions under which
our solution accurately predicts the behaviors of the system, and have demonstrated that the new solution offers
improved accuracy compared to the previous solution under similar conditions. We have also applied the
general solution to Gaussian pulses as a demonstration of its applicability, which results in an explicit closed-
form solution. The solution is then used to examine the impact of CEP on the population ratio between the two
states for Gaussian pulses. Finally, we suggest a possible alternative approach that can lead to a more accurate
solution by capturing the nonlinear behaviors of the system and extending the applicability of the solution to the

8
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case of w ~ w,, w~ §. Itis our hope that this work can lay out a potential pathway toward an analytical theory
for ultrafast QCC beyond the RWA.
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