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Abstract
Developing an analytical theory for atomic coherence driven by ultrashort laser pulses has proved to
be challenging due to the breakdown of the rotatingwave approximation (RWA). In this paper, we
present an approximate analytical solution that describes a two-level atomunder the excitation of a
far-off-resonance, few-cycle pulse of arbitrary shapewithout invoking the RWA.As an example of its
applicability, a closed-form solution forGaussian pulses is explicitly given, and the result is used to
analyse the impact of carrier envelope phase on atomic population ratios. Comparisons with
numerical solutions validate the accuracy our solutionwithin the scope of the approximation. Finally,
we outline an alternative approach that can lead to amore accurate solution by capturing the nonlinear
behaviors of the system. Thework lays out feasible theoretical paths toward analytically describing
two-level atoms driven by ultrashort pulses.

1. Introduction

Quantumcoherent control (QCC) is of great importance in fundamental physics as well as a breadth of
emerging applications [1].With the emergence of femtosecond and attosecond light sources, control of atomic
coherence using ultrafast laser pulses with very few optical cycles has attracted growing interest in recent years
[2–15]. Apart from its significance in quantum theories, ultrafastQCChas profound implications in practical
applications. For example, in certainQCC schemes, using ultrashort, broadband pulses allows the first
electronic states ofmolecules to be accessible and, at the same time, enables fast population transfer that occurs
well within the typical collision times [16, 17]. Few-cycle pulses can also excite coherence on high-frequency
transitions that enables efficient generation of extreme ultraviolet (XUV) radiations [12, 18].

Studying ultrafast QCC in the few-cycle regime faces unique challenges. The ultrashort pulse duration
invalidates the slowly-varying envelope approximation (SVEA) [19], while the high peak field causes breakdown
of the rotation-wave approximation (RWA) [13]. As a result, thewell-established theoretical framework based
on the optical Bloch equations and the area theorem ceases to apply [20, 21]. Theoretical analysis has to rely on
the Bloch equations or the Schrödinger equation in their original formswithout simplifications, which are often
highly nonlinear. This significantly increases the difficulty of developing analytical theories. Inmost cases,
numerical simulations have to be usedwhen dealingwith few-cycle light–matter interactions [21–24].

Meanwhile, there has been a continued effort to develop analytical theories for atomic coherence driven by
few-cycle pulses [2, 7–15]. Such an effort ismotivated by the fact that analytical theories are able to offer general
pictures of the atomic responses, which is often lacking in numerical solutions. For example, carrier envelope
phase (CEP) is an important factor in coherent excitation by few-cycle pulses [7]. It has been shown that a
closed-form relation between atomic inversion and pulse CEP can be obtained under certain conditions [15],
which provides valuable insight and general guidance in the study of CEP-sensitive quantum coherence. A
notably successful theory, proposed first by Rostovtsev et al, considers the coherence of a two-level atomunder
the excitation of a far-off-resonance strong ultrashort pulse [9]. Through a perturbative scheme, themodel gives
rise to a general solution of the Schrödinger equationwithout invoking theRWA. The original solution,
however, is not in closed form, and the analysis of its features useful for practical applications still has to rely
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largely on numerical computations. Several attempts have beenmade to derivemore explicit solutions under
specific conditions [11, 15, 25]. In particular, it has recently been shown that a simple, closed-form analytical
solution of the Schrödinger equation can be obtained for few-cycle square pulses [15].

The apparent limitation of this solution is that it onlyworks for a highly idealized pulse shape, which restricts
its applicability. In the current paper, an analytical theory encompassing arbitrary pulse shapes is presented.
Atomic inversion driven by a few-cycleGaussian pulse is analysed as an example of the general solution, and an
explicit, closed-form solution is given. The solution is then used to examine the impact of CEPon the population
ratio between the two states forGaussian pulses. The accuracy of the solution is verified by comparing it to the
exact numerical solution of the general equations ofmotion. Finally, an alternative approach to simplify the
theory is suggested and is shown to produce a potentiallymore accurate solutionwith a closer representation of
the nonlinear behaviors of the system and a broader scope of applicability.

2. An analytical general solution

2.1. Generalmodel
Our generalmodel follows the theoretical framework described in [9]. A quick outline is given below.We
consider a two-level system (TLS) under the influence of an electromagnetic field. TheHamiltonian of the
system is

ˆ ∣ ∣ ( )∣ ∣ [ ( )] ∣ ∣ ( )*H c c t c d t d c , 1cw m m= ñá - ñá - ñá  

where |c〉, |d〉 are upper and lower levels, respectively,ωc is the transition frequency, ( )t is the electric field, and
μ is the dipolemoment of the system.We are interested in the electric field of the form ( ) ( ) ( )t E t tcos w f= + ,
where E(t) is the pulse envelope function andf is optical phase, also called carrier-envelope phase(CEP). Note
thatf is included here as an extra degree of freedom for the consideration of CEP, an important concept in the
context of few-cycle excitation [15, 24]. It also allows the theory to potentially analyse chirped pulses, which can
be described via a time-dependentf(t).

With thisHamiltonian, the equations ofmotion for the system are given by

( ) ( ) ( ) ( ) ( )C t i t t e D t acos , 2i tc w f= - W + w

( ) ( ) ( ) ( ) ( )*D t i t t e C t bcos , 2i tc w f= - W + w-

whereC(t) andD(t) are the amplitudes of the two states |c〉 and |d〉, respectively, i.e.,
∣ ( ) ∣ ( )∣C t e c D t di tcYñ = ñ + ñw- , andΩ(t)= μE(t)/ÿ is the Rabi frequency.

It proves useful to introduce the following quantity to simplify our equations at this point

( ) ( ) ( ) ( )t t t e dtcos . 3
t

i tcòq w f= W ¢ ¢ + ¢w

-¥

¢

With this definition, the equations (2a), (2b) become

( ) ( ) ( ) ( )C t i t D t a, 4 q= -

( ) ( ) ( ) ( )*D t i t C t b. 4 q= -

In this paper, we also assume the ultrashort pulse excitation to be non-zero onlywithin a finite time interval
tä [− τ, τ], and to have a sharp cut-off outside of this interval.Wewill imply this throughout the paper, even
whenwe use the limits of integration that start at−∞ .

By introducing the quantity

( )
( )

( )f
C t

D t
5=

the equations ofmotion (4) can be simplified to

( ) ( ) ( ) ( )*f t i t f t i 62  q q= -

Themain objective of this paper is to analyse the equation (6), and specifically tofind approximate analytical
solutions to this equation.

2.2. First step: a sequence of approximate solutions
To accomplish our goal, we consider a sequence of successive approximate solutions. The zeroth-order
approximate solution f0(t) of (6) is obtained by neglecting the f

2(t) term in (6). To be specific, we assume that f0(t)
satisfies the equation
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( ) ( ) ( ) ( )*f t i t f t i , 70 0
2  q q= -

and also the condition

( ) ( )f t 1, 8
0
2 

which simplifies the equation to

( ) ( ) ( )f t i t . 90 q= -

Next, wewant tofind afirst-order approximate solution f1(t). Intuitively, wewant thisfirst-order solution to
be close to the zeroth order: f1≈ f0. Specifically, the condition that is of importance is that

( ( ) ( )) ( ) ( )f t f t f t . 101 0
2

0
2-

The strategy thatmakes use of this condition to simplify equation (6)was introduced in [9], where the
identity

( ) ( )f f f f f f2 11
1
2

1 0
2

0 1 0
2= - + -

is used to obtain the relation

( )f f f f2 . 12
1
2

0 1 0
2» -

Hence, thefirst-order approximationmust satisfy (6),

( ) ( ) ( ) ( )*f t i t f t i , 131 1
2  q q= -

which can be simplified using (12) to yield

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* *f t t t f t i t t i t2 . 141 1
2   q q q q q= + -

Note that unlike (13), this equation is linear. The general solution to (14) is, as was already found in [15],

( ) [ ( ) ( ) ] ( )( )f t
i

t t e dt
2

, 15
t

t t
1

,òq q= - + ¢ ¢
t

a

-

¢

where ( ) ( ) ( )*t t t t dt, 2
t

t òa q q¢ =   
¢

.

The above strategy based on the condition (10) and the identity (11) can be generalized to obtain further
approximate solutions to themain equation (6). In fact, let us suppose that the kth-order approximate solution
fk(t) is already found, and then assume that the (k+ 1) th-order approximate solution fk+1(t) satisfies the
condition

( ( ) ( )) ( )f t f t f . 16k k k1
2 2-+

Next, apply the identity

( ) ( )f f f f f f2 17
k k k k k k1
2

1
2

1
2= - + -+ + +

tofind that

( )f f f f2 . 18
k k k k1
2

1
2» -+ +

Assuming that fk+1 satisfies themain equation (6),

( ) ( ) ( ) ( )*f t i t f t i , 19k k1 1
2  q q= -+ +

we can use (18) to get a simplified equation

( ) ( ) ( ) ( ) ( ) ( ) ( )* *f if t t f t if t t i t2 . 20k k k k1 1
2   q q q= - -+ +

This recursive equation is once again linear in fk+1(t), and hence can be solved explicitly, although the solution is
rather cumbersome:

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( ) ( )

[ ( ) ( ) ( )] ( )( ) ( )

*

**

f i f t t dt

e if t t i t dt

exp 2

. 21

k

t

k

t
i f t t dt

k

1

2 2
t

k



 

ò

ò ò

q

q q

= ¢ ¢ ¢

´ - ¢ ¢ - ¢ ¢q

+
-¥

-¥

-   
-¥

¢

To simplify it, we integrate thefirst integrand by parts and bring the outside exponential inside the integral to get:

⎛
⎝

⎞
⎠

( ) ( ) ( ( ) ( )) ( )( )f t f t e f t i t dt
1

2
2 , 22k k

t
t t

k1
0

,k  ò q= - ¢ + ¢ ¢b
+

¢
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where

( ) ( )( ) ( )*
t t e, . 23k

i f t t dt2
t

t

k
òb ¢ = q¢ ¢ ¢

¢

2.3. Second step: analytical solutions
Although thefirst-order approximate solution (15) and the arbitrary kth-order approximate solution (22) are
generic, the integral on the right-hand side of either equation cannot be evaluated in closed-form for any realistic
pulse shape. As ourmain goal in this paper is tofind such a solution, we set out to achieve it bymaking a series of
further approximations to the functions ( )t t,kb ¢ defined above in (23). Let us start by considering the first
function ( )t t,a ¢ .

First, we expand ( )t t,a ¢ in powers of t td = - ¢ and approximate

( ) ( ) ( ) · [ ] ( )* *t t dt t t t t, 2 2 , 24
t

t
 òa qq q q¢ =  = - ¢

d

¢

+ ¢

to the leading term in δ.While this approximationmay seem rather crude for large values of t td = - ¢, as
demonstrated in [15], the quantity ( )t t,a ¢ is linear to a surprisingly high extent, and the approximation (24)
proves to be quite valuable.

Secondly, using the fact that all quantities considered here are assumed to be limited to afinite time interval
tä [− τ, τ], we can further simplify (24) by approximating the product ( ) ( )*t tq q as its average over the interval
[− τ, τ]:

( ) ( ) ( ) ( ) ( )* *t t t t dt
1

2
. 25 òq q

t
q q=   

t

t

-

Substituting this back into (24) yields

( ) ( ) ( ) ( ) ( ) ( )*t t t t t t dt i t t, 2
1

2
, 260

òa
t

q q a¢ = - ¢    = - - ¢
t

t

-

where

( ) ( ) ( )*i
t t dt 270
òa

t
q q=   

t

t

-

is a constant, and τ is once again such that the ultrashort excitation is only non-zero on [− τ, τ].
While the seemingly crude zeroth-order averaging (25)may look unwarranted, it is central to being able to

simplify our solutions to an analytical form.On that path, let us nowuse the final form (26) to simplify thefirst-
order approximate solution (15).

First, we note

( )

( ) ( )

( ) ( ) ( )

( )

( )

( )

t e dt

t t e e dt

e t t e dt

cos

cos . 28

t
t t

t
i t i t t

i t
t

i t

,

c

c

0

0 0

ò

ò

ò

q

w f

w f

¢ ¢

= W ¢ ¢ + ¢

= W ¢ ¢ + ¢

a

w a

a w a

-¥

¢

-¥

¢ - - ¢

-

-¥

+ ¢

At this point, it is convenient to introduceωc as an explicit parameter onwhich θ(t) depends, so that

( ) ( ) ( ) ( )t t t e dt, cos . 29c

t
i tcòq w w f= W ¢ ¢ + ¢w

-¥

¢

With this notation, we canwrite (28) simply as

( ) ( ) ( )( )t e dt e t, . 30
t

t t i t
c

,
0

0ò q q w a¢ ¢ = +a a

-¥

¢ -

Substituting (30) back into (15), we have a closed-form solution for pulses of arbitrary shapes:

˜ ( ) [ ( ) ( )] ( )f t
i

t e t
2

, , , 31c
i t

c1 0
0q w q w a= - + +a-

whereα0 is a constant given by (27). Fromnowon, tildewill be used to denote the simplified analytical solutions,
while a notationwithout tilde denotes an approximate solutionwithout further simplification.

2.4. Sequence of analytical solutions and their limit
Wecan repeat the steps we just carried out for the first-order approximate solution for an approximate solution
of arbitrary order, and obtain a sequence of analytical solutions in this way.We can further take the limit
k→∞whichwill give us an even better approximation.
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Using the same idea as with (31), we approximate βk defined in (23) as a linear function of ( )t t- ¢ :

( ) ( ) ( ) ˜ ( ) ( )*t t i t t t f t dt, ,
2

. 32k k k k
òb a a

t
q¢ = - - ¢ = - ¢ ¢ ¢

t

t

Notice thatwe have used f̃k, which is yet to be found, in the expression forαk above. Substituting this back into
(22), and using the same trick as in (30), we have

˜ ( ) { ˜ ( ) ( ) ˜ ( ) } ( )( )f t f t ie t e f t dt
1

2
2 , , 33k k

i t
c k

t
i t t

k1
k k òq w a= - + - ¢ ¢a a

+
-

-¥

- - ¢

wherewe again note that all fk are tilded.
From (33), it is possible to derive an accurate solution for f̃k 1+ and then to take the limit k→∞ . Although

this would be the cleanest way to derive the limiting solution, it is very tedious. Here, we offer amore elegant
approach. Assume that all functions in (33) are continuous and that taking the limit commutes with integration.
Take the limit k→∞ on both sides and denote ˜ ˜f flimk k=¥ ¥ and limk ka a=¥ ¥ .We then have

˜ ( ) ( ) ˜ ( ) ( )f t ie t e e f t dt
1

2
,

1

2
. 34i t

c
i t

t
i t òq w a= - + - ¢ ¢a a a

¥
-

¥
-

-¥

¢
¥

¥ ¥ ¥

Introducing ( ) ˜ ( ) ( )g t e f t i t,i t
cq w a= + +a

¥ ¥¥ and integrating the exponential by parts lead to

( ) ( ( ) ( ( ) ( ))) ( )g t g t i g t i t dt
1

2

1

2
, , 35

t

cò a q w a= - ¢ - ¢ - + ¢ ¢
-¥

¥ ¥

and, after differentiation,

( ) ( ) ( ) ( )g t
i

g t t
2 2

, , 36c a a
q w a= + +¥ ¥

¥

which yields

⎛
⎝

⎞
⎠

( ) ( ) ( )g t e e t dt C
2

, . 37t
t

t
c

i i
2 2ò

a
q w a= + ¢ ¢ +

-¥

¢ ¥
¥

a a¥ - ¥

Applying the initial condition g(0)= 0 and integrating by parts, g(t) is simplified to

( ) ( ) ( ) ( )g t i t ie t,
2

, . 38c
t

c
i

2q w a q w
a

= + - +¥
¥a¥

Substituting g(t) back to f̃¥, we have

˜ ( ) ( ) ( )f t ie t, , 39i t
cq w= - + D¥

- D

whereΔ= α∞/2 is a constant frequency that wewillfind next. At this point, let us immediately recognize that
thefinal solution (39)we just obtained is essentially the same as the zeroth-order solution (9), but with an
introduced frequency shiftΔ (note that the phase factor does not have any bearing on the physically observable
quantities) to the system resonance frequencyωc. Themost valuable part of ourfinding is the realization that the
most accurate approximate analytical solution is of this form.Next, wemust discuss how to obtain the specific
value of this frequency shiftΔ.

The downfall of the above shortcut derivation is that we do not immediately have an expression forΔ (or
α∞). However, a closer inspection reveals thatΔ can be found in the followingway. ConsiderΔ to be an
arbitrary frequency shift and try to identify the value ofΔ that wouldmake ourfinal approximate solution (39)
most accurate. Substituting (39) back into (6), wefind

( ) ( ) ( )*i t e t, , , 40c
i t

c
q w q wD = + D- D

which provides an equation the optimalΔ should satisfy. Notice that the right hand side is time-dependent, so
averaging it and using ( ) ( )* *t e t, ,c

i t
c

 q w q w n= +n- lead us to the equation for the optimalΔ,

( ) ( ) ( )*i
t t dt, , . 41c c

0

òt
q w q wD = + D ¢ + D ¢ ¢

t

Admittedly, (41) does not provide an explicit expression forΔ. However, the role ofΔ is that of a
particularly suitable frequency shift thatmakes the approximate solution of the form (39)most accurate. For any
arbitrary pulse shape, once the envelope profileΩ(t) is given, in principle one can always numerically solve (41)
to extractΔ.

Overall, our general solution for the equations ofmotion (4) is given by (39) and (41), where the parameter θ
depends on frequency ν and time t through the general relation

( ) ( ) ( ) ( )t t t e dt, cos . 42
t

i tòq n w f= W ¢ ¢ + ¢n

-¥

¢
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3.Gaussian pulse excitation

Let us study the conditions forwhich our solutions (31) and (39) are applicable, as well as their accuracy.
First of all, it should be pointed out that themain result of [15] can be obtained fromour solution (31). For

that, let us assumeα0= ωc so that θ(ωc+ α0, t)= θ(ωc, t). In this case, denotingα0= η2ωc, equation (31)
becomes

˜ ( ) ( ) ( ) ( )f t
i

e t
2

1 , , 43i t
c1

c
2 q w= - + h w-

which is exactly the equation (16) in [15]. The latter solutionwas shown to be accurate for a square pulse under
the condition [15]

⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )1. 44
c

2
0

2

w
w w

+
W

Next, we examine how accurate the solution (31) and its generalization (39) are formore realistic pulses. As a
quantity that expresses the accuracy of a solution, we choose the L2-normof the deviation of the solution from
the exact solution.More specifically, the ratio of the latter quantity to the L2-normof the exact solution itself—
we call this ratio the relative L2 error.We numerically calculate this quantity for aGaussian pulse with a Rabi
frequency

( ) ( )t e , 450
t2

2 2W = W -
s

wherewemainly explore the dependence of the relative error described above on the quantitiesΩ0/ω andωc/ω,
since theywere shown in [15] to be the relevant parameters that determine applicability of a solution.

Infigure 1, we plot the relative error described above for the approximate solutions (9), (31) and (39). As one
can see, ourmost recent solution is themost accurate of the three, especially in the regionwhere the previous
solutions did not apply, namely, whenωc? ω. At the same time, we can see that the current theoretical
framework in general does notworkwell in the upper-middle regions of the plots, which exactly are the regions

Figure 1.The percent L2 error of the respective approximate solution as compared to the exact numerical solution of (6). Top left: the
zero-order approximation (9). Top right: thefirst-order approximate solution (31). Bottom left: the infinite-limit approximate
solution (39). Bottom right: the exact numerical solution of the linear equation (14). The solid black line is the contour onwhich the
error is equal to 10%.
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where the condition (44) is not satisfied. Therefore, these results also reconfirm the applicability condition of the
current theory.

However, a slightmodification of (44) is in order. Notice that our solution applies not only for the situations
whenω/ωc= 1, but alsoω/ωc? 1. As a result, the following condition ismore appropriate

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎛

⎝
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠

⎛

⎝
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞

⎠
( )min , min , 1. 46c

c

2 2
0

2

0

2

w
w

w
w w

w
+

W
W

As demonstrated infigure 1, our solution accurately predicts the behavior of the TLS driven by a realistic
Gaussian pulse.While the solution applies to arbitrary pulse shapes, aGaussian pulse offers an exclusively
convenient property under the current context, namely, the function θ(ωc, t) defined by (29) can be evaluated
explicitly in closed-form for aGaussian pulse,

( ) ( ( ) ( ) ) ( )t t e t e,
4

, , , 47c c
i

c
i

Gaussian
0q w

s
z w w z w w=

W
- + +f f-

⎜ ⎟
⎛
⎝

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠

( ) ( )t e
t i t i

, erf
2 2

erf
2 2

. 48
1
2

2 2z n
s

sn
s

sn
= - + +s n-

Such closed-form solutions have not been found for other common pulse shapes, such as the Lorentzian or
the hyperbolic secant pulses. Using the closed form (47) and ourmain solution (39), we can alsofind thefinal
population ratio between the upper and the lower state at the end of the pulse duration t= τ, andwe can study its
dependence on the carrier-envelope phasef.

( ) ∣ ( )∣ ∣ ( )∣ {∣ ( ˜ )∣ ∣ ( ˜ )∣

( ˜ ) ( ˜ ) ( ˜ ) ( ˜ ) } ( )* *

I f

e e

,
16

, ,

, , , , , 49

c c c

c c
i

c c
i

2
Gaussian

2
2

0
2

2 2

2 2

f t q w t
s

z w w t z w w t

z w w t z w w t z w w t z w w t

= = + D =
W

- + +

+ - + + - +f f-

where ˜ c cw w= + D.
Note, however, that from (48), we havemanifestly ( ) ( )*t t, ,z n z n= . Therefore, (49) can be simplified to

( ) ( ( ˜ ) ( ˜ ) ( ˜ ) ( ˜ ) ) ( )I
16

, , 2 , , cos 2 . 50c c c c

2
0
2

2 2f
s

z w w t z w w t z w w t z w w t f=
W

- + + + - +

Equation (50) provides a simple and explicit relation between the final population ratio and theCEP of the
driving pulse, which is only possible with a closed-form solution such as (47). It offers some interesting insights
into theCEP-dependence of the inversion. For example, the cos 2f dependence indicates that I(f) has a period
ofπ rather than 2π, and themaximumpopulation ratio is achieved for theCEP valuef= 0, regardless of the
other parameters of the system. These results can be of important value in designing potential CEP-detection
schemes based on atomic systems.

4.Discussion

Another insightful comparison of (39) is with the classical rotating-wave approximation(RWA) regime. Under
the RWA, the equations ofmotion (2) become

( ) ( ) ( ) ( )C t
i

t D t
2

, 51 = - W

( ) ( ) ( ) ( )D t
i

t C t
2

. 52 = - W

Introducing the area of the pulse ( ) ( )A t t dt
t

0ò= W ¢ ¢, we canfind a general solution of the TLS in the formof

( ) ( ) ( )C t i
A t

sin
2

, 53= -

( ) ( ) ( )D t
A t

cos
2

. 54=

Since f (t)= C(t)/D(t), we have

( )f i
A

tan
2

55= -

as the general solution under the RWA.
To appreciate the similarity of our solution, notice that we have the closed-form solution (39) and that for an

arbitrary pulse, we can put θ(ωc, t) in the following form, just using the definition (3) and expanding
( )tcos w f+ in exponentials and simplifying:

7

J. Phys. Commun. 6 (2022) 075005 NPyvovar et al



( )
˜ ( ) ˜ ( ) ( )t

e A t e A t
,

, ,

2
, 56c

i
c

i
cq w

w w w w
=

+ + -f f-

where

˜ ( ) ( ) ( )A t t e dt, , 57
t

i tòn = W ¢ ¢n

-¥

¢

can be considered as a generalization of the classical RWApulse areaA(t).
Under RWA, ˜( )A t, 0cw w+ = and ˜( ) ( )A t A t,cw w- = , whichmeans that up to a phase factor, our

solution gives

˜ ( ) ( )f t i
A

2
. 58= -¥

This suggests that, near resonance (which is outside of its region of applicability), our solution corresponds to
the linearization of the RWA solution. This apparently is the result ofmultiple linearizations we have taken in
deriving f̃k to obtain the closed-form solution.With this observation inmind, we aim to overcome the
oversimplification of our approximations and try to capturemore of the nonlinear behaviors of the original
equation (6). One approach is outlined as follows.

Consider again the general equation (6) and use ( ) ( ) ( )t t t ecos i tcq w f= W + w . Taking
( ) ( ) ( )g t t tcos w f= W + andmultiplying through by e i tcw- , we arrive at

( ) ( ) ( ) ( ) ( )e f t ig t e f t ig t . 59i t i t2 2c c = -w w- -

Substituting ( ) ( )z t e f ti tc= w- into the above equation leads to

( ) ( ) ( ) ( ) ( ) ( )z t ig t z t i z t ig t . 60c
2 w= - -

Nowexpanding z(t) as a perturbation series inωc, we obtain for the zeroth order

( ) ( )( ( ) ) ( )z t ig t z t 1 , 610 0
2 = -

which gives

⎛
⎝

⎞
⎠

( ) ( ) ( )z t i g t dtcosh . 62
t

0
1

0
ò= -

Meanwhile, the nth-order can bewritten as

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )z t ig t z t z t i z t z t iz t2 . 63n n
j

n

j n j n0
1

1

1 å= + -
=

-

- -

The general solution to this linear equation, given the initial condition z(0)= 0, is:

⎛

⎝
⎜

⎞

⎠
⎟( ) ( ) ( ) ( ) ( )( ) ( )z t ie e z t z t z t dt , 64n

w t
t

w t

j

n

j n j n
0 1

1

1ò å= ¢ ¢ - ¢ ¢- ¢

=

-

- -

where ( ) ( ) ( )w t i g t z t dt2
t

0 0ò= ¢ ¢ ¢. Together with (62), (64) defines a sequence of functions that converge to the
solution, similar to the sequence fk(t) discussed in section 2.

Note that, compared to the linearized sequence fk(t), the sequence of zn(t) is amuch closer approximation to
the accurate solution. Even the first-order approximation (62) captures the nonlinear behavior of the system. If a
sequence of closed-form approximations to (64) could be found, similar to the sequence f̃k presented in
section 2, the limit of such sequence z∞would be a promising approximation for capturing the nonlinear
behaviors of the system. It seems plausible that a combination of such solutionwith the solution (39)would
allowus to extend the conditions of applicability of (39) to the case whenω∼ ωc, ω∼Ω0, and capture RWA
better than a simple linear approximation. However, so far, we have been unable tofind any approach to obtain a
closed-form solution in this way. The difficulty is precisely the nonlinear features embedded into each (64).

5. Conclusion

In this work, we have developed an analytical general solution that describes a TLS driven by a far-off-resonance
few-cycle pulse of arbitrary pulse shapes without using the RWA.Wehave identified the conditions underwhich
our solution accurately predicts the behaviors of the system, and have demonstrated that the new solution offers
improved accuracy compared to the previous solution under similar conditions.We have also applied the
general solution toGaussian pulses as a demonstration of its applicability, which results in an explicit closed-
form solution. The solution is then used to examine the impact of CEPon the population ratio between the two
states forGaussian pulses. Finally, we suggest a possible alternative approach that can lead to amore accurate
solution by capturing the nonlinear behaviors of the system and extending the applicability of the solution to the
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case ofω∼ ωc, ω∼Ω0. It is our hope that this work can lay out a potential pathway toward an analytical theory
for ultrafastQCCbeyond the RWA.
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