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Abstract: We report a new time-wavelength mapping scheme based on optical sampling by cavity 
tuning and demonstrate its application in absorption spectroscopy.  
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1. Introduction 

Wavelength-to-time mapping is a technique that uses a linear dispersive medium (e.g., optical fiber) to stretch 
ultrashort pulses so that their wavelength components are linearly mapped onto different temporal positions of the 
stretched pulses. One can then characterize or control the spectral properties of these pulses with time-domain 
approaches, which are often less complex than comparable frequency-domain methods. Because of its simplicity 
and elegence, wavelength-to-time mapping has generated much interest in such fields as optical sensing, analog-to-
digital conversion, spectroscopy, and arbitrary waveform generation [1-5]. However, conventional wavelength-to-
time mapping suffers a key drawback: its need for extra-long pulse stretching and fast photodetection [4]. In order to 
achieve satisfactory spectral resolutions, ultrashort pulses have to be stretched to hundreds of picoseconds or even 
nanoseconds, and high-speed detectors such as >10-GHz photodiodes and sampling oscilloscopes, are usually 
required [1]. The heavy pulse stretching also leads to a reduction of the signal-to-noise ratio on the detector, which 
in turn adds to the power requirement at the input end.  

Here we present a new scheme called time-wavelength optical sampling (TWOS), which combines wavelength-
to-time mapping with the concept of optical sampling to alleviate the above restrictions. Instead of directly probing 
the temporal profiles of the stretched pulses with a fast photodetector, our scheme measures the cross-correlation 
between the stretched pulses and a series of femtosecond reference pulses, with the relative delays between the 
stretched pulses and the reference pulses being continuously scanned. The reference pulses work as ultrafast gating 
signals and the relative pulse delay scan allows these gating signals to sample different parts of the stretched pulses 
to produce a full pulse profile. Measuring cross-correlations improves the signal-to-noise ratio and allows the use of 
slow photodetectors. It also relaxes the need for severe pulse stretching.  

We have demonstrated the application of TWOS in near-infrared spectroscopy by using our existing capability in 
optical sampling by cavity tuning (OSCAT). OSCAT enables rapid scan of relative pulse delays with large scan 
depths [6]. It achieves such performances with the combination of laser cavity-length tuning (often by fast PZT 
actuators on cavity mirrors) and an arm-length mismatched interferometer [7]. It holds a number of advantages over 
conventional techniques to generate tunable optical delays and hence has been widely applied in many areas such as 
optical metrology [6,8,9], spectroscopy [10,11], and imaging [12]. 

 
Fig. 1. Schematic of time-wavelength optical sampling system. CPL: optical coupler; CLM: fiber collimator; DCF: dispersion compensating fiber 
and SMF: single-mode fiber. 

2. Experimental Setup 

The experimental setup is shown in Fig. 1. Details about the OSCAT system can be found elsewhere [6,12]. The 
difference of the current system is the addition of a 26-m section of single-mode fiber (Corning SMF-28) in the short 
interferometer arm. This extra piece of fiber introduces a linear dispersion of 17 ps/(nm·km) and stretches 250-fs 
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output pulses from the femtosecond fiber laser to 30 ps. On the other hand, the combination of SMF-28 and 
dispersion compensating fiber in the long interferometer arm results in reference pulses below 500 fs. The pulses are 
combined at fiber coupler CPL2, where they are evenly split and launched into free space by two collimators. One 
beam is directly detected to produce the background trace while the other passes through a 50-mm-long Hydrogen 
Cyanide (HCN) gas cell (300 Torr) multiple times before being collected by a second detector. Crosscorrelation 
traces between the stretched pulsess and the reference pulses are generated on the two detectors when the laser pulse 
repetition rate is scanned via cavity length tuning. The background trace and the sample trace are collected by a data 
acquisition system and are subsequently compared to produce the absorption spectrum of HCN.  

 
Fig. 2. (a) Time domain crosscorrelation traces collected on both the background (blue) and the sample (orange) detectors. (b) Absorption 
spectrum of HCN based on the time-domain data shown in (a). 

3. Results and Conclusion 

The time domain crosscorrelation traces collected on the two detectors are shown in Fig. 2(a). The blue trace is 
collected from the background path in air and its power envelope reflects the laser spectrum without absorption. The 
orange trace is collected after multi-pass through the HCN cell and its envelope represents the absorbed spectrum. 
Significant power loss due to sample absorption is evident in Fig. 2(a). With the help of linear pulse stretching, a 
number of absorption peaks, located around the envelope of the orange trace, can be clearly resolved. By subtraction 
between the envelopes of the absorbed trace and the background trace, the absorption spectrum of HCN is obtained, 
as shown in Fig. 2(b). The spectral fingerprints of HCN between 1535 nm and 1545 nm are clearly resolved.  

In conclusion, a new time-wavelength mapping method based on optical sampling is presented. Without heavy 
pulse stretching and high-speed detectors, OSCAT-based TWOS has demonstrated the ability to perform absorption 
spectroscopy. 

This work is in part supported by NSF under the grants ECCS-1254902 and ECCS-1606836. 

4. Reference 
[1] P.V. Kelkar, F. Coppinger, A.S. Bhushan and B. Jalali, “Time-domain optical sensing,” Electron. Lett 35, 1661-1662 (1999). 
[2] F. Coppinger, A. S. Bhushan, and B. Jalali, “Photonic time stretch and its application to analog-to-digital conversion,” IEEE Trans. Microw. 

Theory Techn. 47, 1309-1314 (1999). 
[3] D. R. Solli, J. Chou and B. Jalali, “Amplified wavelength–time transformation for real-time spectroscopy,” Nat. Photon. 2, 48-51 (2007). 
[4] C. Wang and J. Yao, “Simultaneous optical spectral shaping and wavelength-to-time mapping for photonic microwave arbitrary waveform 

generation,” IEEE Photon. Technol. Lett. 21, 793-795 (2009). 
[5] A. Dezfooliyan and A. M. Weiner, “Photonic synthesis of high fidelity microwave arbitrary waveforms using near field frequency to time 

mapping,” Opt. Express 21, 22974-22987 (2013). 
[6] L. Yang, J. Nie and L. Duan, “Dynamic optical sampling by cavity tuning and its application in lidar,” Opt. Express 21, 3850-3860 (2013).  
[7] T. Hochrein, R. Wilk, M. Mei, R. Holzwarth, N. Krumbholz, and M. Koch, “Optical sampling by laser cavity tuning,” Opt. Express 18, 

1613-1617 (2010). 
[8] S. Boudreau and J.  Genest, “Range-resolved vibrometry using a frequency comb in the OSCAT configuration,” Opt. Express 22, 8101-

8113 (2014). 
[9] H. Wu, F. Zhang, T. Liu, and X. Qu, "Glass thickness and index measurement using optical sampling by cavity tuning," Appl. Opt. 55, 

9756-9763 (2016). 
[10] R. Wilk, T. Hochrein, M. Koch, M. Mei, and R. Holzwarth, “Terahertz spectrometer operation by laser repetition frequency tuning,” J. Opt. 

Soc. Am. B 28, 592-595 (2011).  
[11] K. Lee, J. Lee, Y. Jang, S. Han, H. Jang, et al. “Fourier-transform spectroscopy using an Er-doped fiber femtosecond laser by sweeping the 

pulse repetition rate,” Scientific Reports 5, 15726 (2015).  
[12] L. Yang and L. Duan, “Depth-resolved imaging based on optical sampling by cavity tuning,”	IEEE Photon. Technol. Lett. 27, 1761 - 1764 

(2015). 

Time Delay ( ps ) Wavelength ( nm ) 

(a) (b) 

A
bs

or
pt

io
n 

( d
B

 ) 

a.
u.

 


