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Abstract

There has recently been some interest in the prospect of detecting ionized intergalactic baryons by examining the
properties of incoherent light from background cosmological sources, namely quasars. Although the paper by Lieu
et al. proposed a way forward, it was refuted by the later theoretical work of Hirata & McQuinn and the
observational study of Hales et al. In this paper we investigate in detail the manner in which incoherent radiation
passes through a dispersive medium both from the frameworks of classical and quantum electrodynamics, leading
us to conclude that the premise of Lieu et al. would only work if the pulses involved are genuinely classical ones
containing many photons per pulse; unfortunately, each photon must not be treated as a pulse that is susceptible to
dispersive broadening. We are nevertheless able to change the tone of the paper at this juncture by pointing out that
because current technology allows one to measure the phase of individual modes of radio waves from a distant
source, the most reliable way of obtaining irrefutable evidence of dispersion, namely via the detection of its unique
signature of a quadratic spectral phase, may well be already accessible. We demonstrate how this technique is only
applied to measure the column density of the ionized intergalactic medium.

Key words: cosmological parameters – intergalactic medium – large-scale structure of universe – plasmas –
radiation mechanisms: thermal

Introduction

Recently, there has been discussion of the measurability of
the dispersion of light from steady extragalactic sources, mostly
quasars, by the intervening ionized intergalactic medium (Lieu
& Duan 2013; Lieu et al. 2013; and Hirata & McQuinn 2014).
The topic is of interest to cosmology because if one could infer
the line-of-sight plasma column density between the source and
the observer, the sheer number and uniformity in the
distribution of quasars would enable one to reconstruct the
volume density of intergalactic plasma in various directions
and redshifts, which is an invaluable resource for addressing
one of the great enigmas of cosmology, namely the question of
the whereabouts of the baryons in the near Universe (Cen &
Ostriker 1999; Davé et al. 2001).

The issue at stake here is as follows. On one hand, line-of-
sight dispersions are undoubtedly measurable effects for
unsteady extragalactic sources with clear time signatures like
fast radio bursts (Thornton et al. 2013), which readily afford
one with column density data for the relevant directions and
redshifts. However, the directions to such sources are few and
far between compared to those of quasars, and the source
redshifts are usually unknown. On the other hand, although
quasars are much more numerous, they are not sufficiently
unsteady on the short timescales where the imprints of
dispersion are detectable using conventional and well-estab-
lished methods (or for that matter any method). Indeed, while
Lieu & Duan (2013) and Lieu et al. (2013) suggested possible
ways forward, Lieu et al. (2013) already pointed out why Lieu
& Duan (2013) cannot actually work and provided an improved
way to reinstate it. Hirata & McQuinn (2014) argued that the
assumptions underlying Lieu et al. (2013) itself are also flawed,
and that in practice the dispersion of stationary light leaves
behind no observable imprint in the context of the two 2013
papers, not even in terms of the microscopic statistical
fluctuations of the light as compared to light from the same

steady sources that did not pass through a dispersive medium.
The dispute between Lieu et al. (2013) and Hirata & McQuinn
(2014) was eventually settled by an analysis of real observa-
tional data in the radio by Hales et al. (2016), which led to the
conclusion that either the intergalactic medium has far fewer
baryons than predicted by cosmological models, or Hirata &
McQuinn (2014) were right in asserting that the ideas of Lieu
et al. (2013) could not work. The latter is much more likely to
be the truth, as we shall demonstrate.
In this paper we provide a detailed treatment of the effect of

an intervening plasma column on stationary chaotic light,
i.e.,incoherent radiation from a steady source with no preferred
time stamp, to explain in both classical and quantum
mechanical terms why Lieu et al. (2013) must fail, unless the
source is at least partially coherent on certain scales (some
quasars could exhibit this characteristic). However, we defend
Lieu et al. (2013) somewhat by pointing out an ambiguity in
the full quantum approach to the problem that does not allow
one to tell a priori whether Lieu et al. (2013) or Hirata &
McQuinn (2014) provides the correct model of the real
situation, and explain why only an observational effort such
as that by Hales et al. (2016) can offer a resolution (although
there are also other experiments serving the same purpose of
discernment). We then proceed to discuss yet another new
endeavor to distinguish between stationary chaotic light that
has and has not passed through a dispersive medium, using the
framework that generalizes the Hirata & McQuinn (2014)
interpretation, and argue that current technology in radio
astronomy can put the idea into action.
The paper is organized as follows. We begin by reviewing

the formalism for describing an electromagnetic wave. This is
followed by a statement of the problem of photon noise, as we
look for the simplest formulation that contains all the essentials.
After that, we tackle the phenomenon of dispersion semi-
classically, before going on to a full quantum treatment and
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discussing the ambiguity that awaits, and how it may be
resolved. Lastly, we address the ramifications, and how to
rectify them with a new observational strategy.

1. Formalism

First, it is useful to recapitulate the standard quantum and
classical frameworks so that the notation and ansatz are both
clear. We shall henceforth work in units of  = =c 1.

1.1. The Intensity

Classically, an electromagnetic field in free space (where the
free charge density is r = 0) may be represented by a vector
potential ( )A rt, satisfying the wave equation and the
transversality condition  =· A 0. The electric and magnetic
fields are given by

= -
¶
¶

=  ( )E
A

B A
t

, . 1

In much of what follows we will consider a one-dimensional
problem where the field is described by a potential with a single
component, say = -( ) ( )A t z t z,x . Then, the non-vanishing
field components are = = - ¢ -( )E B t zx y , where the prime
denotes the derivative with respect to the argument of the
function. The Poynting vector lies in the z direction and its
magnitude (the intensity) is

=  = = ¢ -∣ ∣ [ ( )] ( )E BI E B t z . 2x y
2

In the quantum treatment, we have a vector potential
operator ˆ ( )A rt, that again satisfies the wave equation and
transversality condition. In the one-dimensional case, it may be
written in terms of creation and annihilation operators in the
form
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where S is the cross-sectional area of the beam. (S has to appear
for correct normalization; in effect we are assuming that the
wave is confined within a tube of cross-section S, and
restricting our consideration to the modes with no transverse
momentum). Here, the creation and annihilation operators
satisfy the commutation relations

*w w d w w¢ = - ¢[ ˆ ( ) ˆ ( )] ( ) ( )a a, . 4

It is easy to verify that Ê and Â are conjugate variables, namely

d- - ¢ = - ¢[ ˆ ( ) ˆ ( )] ( ) ( )E t z A t z
i

S
z z, . 5x x

The energy flux is again given by (2), except that we must
pay attention to the operator ordering problem. Under most
scenarios, we are interested in measurements over intervals that
are long compared to the period of the wave, i.e.,we may use a
cycle-averaged intensity. In that case, we only need to consider
products of a positive and a negative-frequency function (not
two positives or two negatives, which would be very rapidly
oscillating). In a quantum formulation, we have to ensure that
negative-frequency parts appear to the left of positive-

frequency ones, so
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1.2. Photon-number Flux

Often, we are interested not in measurements of the energy
flux, but in photon-number counts, so it is also useful to define
a photon-number flux ˆ ( )M t , the rate at which photons are
crossing the area S at time t. In the case where we are dealing
with a one-dimensional beam with a narrow band of
frequencies, there is a useful way to do this, following,
e.g.,Section 6.2 of Loudon (2000). Strictly speaking, the
integrations over ωand w¢ in (6) run only from 0 to ¥.
However, there is no reason why we should not use k (=kz)
rather than ωas the independent variable, and we could then
include negative as well as positive values, representing waves
travelling in the opposite direction. For narrowband beams we
shall assume that those modes with negative k are unoccupied.
Equivalently, we can simply extend the integration over ωto
run over the whole real axis. Then we may define annihilation
and creation operators ˆ ( )a t and *ˆ ( )a t for photons at time t by
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They clearly satisfy the commutation relation

* d¢ = - ¢[ ˆ ( ) ˆ ( )] ( ) ( )a t a t t t, . 8

The rate at which photons cross the area S, located at z, at
time t, is then given by the operator -ˆ ( )M t z , where

*=ˆ ( ) ˆ ( ) ˆ ( ) ( )M t a t a t , 9

so during a time interval + D[ ]t t t,0 0 the number of photons
crossing the area is

ò
+D

ˆ ( ) ( )dt M t . 10
t

t t

0

0

Note that if we integrate over all time, we obtain

*ò ò w w w=
-¥

¥ ¥
ˆ ( ) ˆ ( ) ˆ ( ) ( )dt M t d a a , 11

0

i.e., the total photon number in the beam, as it should be.
It is also possible to express ˆ ( )M t in terms of the potentials.

From (3) one finds

*òp
w w
ww

w w=
¢

¢
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If the radiation has a dominant frequency ω0, due to a spectral
line or a narrowband filter, then to a good approximation
ww w¢ » 0, and using (7), one obtains

w= - +ˆ ( ) ˆ ( ) ˆ ( ) ( )( ) ( )
M t S A t A t2 . 130

1.3. Coherent States

In relating the classical and quantum calculations, coherent
states play an important role. The essential point is this. For
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every classical solution of Maxwell’s equations described by a
vector potential ( )rt, there exists a corresponding coherent
state ñ∣ , unique up to a phase factor, which satisfies the
eigenvalue equation

  ñ = ñ- -ˆ ( )∣ ( )∣ ( )( ) ( )A r rt t, , , 14

and correspondingly

  á = á+ +∣ ˆ ( ) ( ) ∣ ( )( ) ( )A r rt t, , , 15

Thus the expectation value of the field operator in this state is
precisely this solution:

  á ñ =∣ ˆ ( )∣ ( ) ( )A r rt t, , . 16

Owing to the preceding equations, this last result extends to any
normally ordered product of field operators.

If is the classical solution generated by a particular current
distribution ( )j rt, , then in the quantum theory the application
of this classical current distribution to the vacuum state will
generate the corresponding coherent state, ñ∣ .

In the case of a one-dimensional beam, we can write

 ò
w
pw

a w= w+
¥

- -( ) ( ) ( )( ) ( )t z
d

S
e,

4
, 17i t z

0

with a corresponding expression for - ( )( ) t z, in terms of
*a w( ). Then, the coherent states satisfy

* *   w a w w a wñ = ñ á = áˆ ( )∣ ( )∣ ∣ ˆ ( ) ( ) ∣ ( )a a, . 18

2. The Problem

The question to be addressed is whether by observing light
from continuous sources propagating to us through a dispersive
medium we can detect the effects of dispersion—as we
certainly can with pulsed sources. For the moment, let us deal
with the problem semi-classically.

There are three parts to the setup: the source, the detector,
and the propagation of the wave through the intergalactic
medium.

2.1. The Source

We may think of the distant source as a very bright disk (or a
hemisphere or any other small shape) comprising many
independent sources, such as electrons or atoms, centered for
convenience on the origin. Importantly, the radius of the disk,
though macroscopic, is very small compared to its distance
from the observer, which will allow us later on to use a one-
dimensional plane wave representation. Thinking classically
for the moment, by an “independent source” we mean a source
that emits coherent radiation over some (generally short) period
of time. For example, if we are talking about an excited atom in
a gas, it will count as a single independent source between one
collision and the next; after that, because the phase changes
discontinuously and randomly at each collision, it will count as
a different source.

Classically, each source can be modeled as a current
distribution, say ( )j rt,s for the source number s. Here, each
js will be non-zero only in some small region of space and
interval of time, and will typically be oscillating with some
characteristic frequency, modulated by a slowly varying
amplitude function that defines one pulse of emission from
the source. So as long as dispersion is negligible, the

electromagnetic wave generated by this source is described
by a vector potential

ò p
= ¢

- ¢
- - ¢ ¢( )

∣ ∣
( ∣ ∣ ) ( )A r r

r r
j r r rt d t,

1

4
, , 19s s

3 T

where js
T is the transverse (divergenceless) part of the current

js. The question to be resolved in due course is the
correspondence between pulses and photons, as far as the
distant observer is concerned. The precise form that these
functions js take is of no importance. In estimating the results,
we have to average over the time around which it is centered,
over the phase of the emitted waves and over the various
parameters that describe the shape of js.
But before doing that, we can simplify the picture. We are

interested only in the value of the wave in the vicinity of the
detector, placed at, say, = ( )r z0, 0, , where z is always much
larger than the values of the coordinates of ¢r in (19). So it is
possible to replace - ¢∣ ∣r r by - ¢( )z z in the time argument of
js, and thus z is the much more slowly varying denominator.
This also means that transverse components of r are irrelevant,
so the value of A is effectively constant across the detector. In
other words, we are really only talking about plane wave
propagation along the z axis, described by the two functions

( )A t z,x and ( )A t z,y . To simplify even further, we can suppose
that a polarizer is introduced in front of the detector to
eliminate one of the two plane polarizations, leaving only one
amplitude function, say,  = Ax. Consequently, (19) reduces
to an expression of the form

  òp

p
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=
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where again we assumed a dominant frequency ω0.
We could now treat z as a constant for the source (or

observer) position, and reasonably choose to model Fs by a
function of generic form, namely

p
- -

= -
( ) ( ) ( )F t z t

z
f t t

4
. 21s s

s

Here, we adopt the commonly used model of a Gaussian pulse

= s-( ) ( )( )f t ae . 22t 22 2

Hence, with

 å=+ +( ) ( ) ( )( ) ( )t z t z, , , 23
s

s

we have the ensemble average

  p lsá ¢ ñ = s w- + - - ¢ - ¢( ) ( ) ( )( ) ( ) ( ) ( ) ( )t t a e e , 24t t i t t2 42 2
0

where λ is the number of pulses per unit time; (24) is a
consequence of the random uncorrelated phases js among the
sources, which means only terms with = ¢s s in the double
summation leading to (24) survive the averaging. The
summation over s in (23) is also the reason why ts no longer
appears in ts.

2.2. The Detector

Consider a simple photoelectric detector, of area S, that
records the number of photons arriving during any particular
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time interval. For simplicity, assume an efficiency factor h = 1.
The detector is preceded by a frequency filter that transmits a
narrow band of frequencies of width dw centered on ω0, a
polarizer, and a telescope that transmits only light from a very
small solid angle. The field at the detector is thus described by a
vector potential ( )t z, , which is a sum of all the terms of the
form (20), if there is no dispersion of the light by the
intervening medium.

Now, in a semi-classical treatment, the number of photons
detected within the time interval Dt is

òD =
+D

( ) ( ) ( )N t t dt M t, , 25
t

t t

0
0

0

where M is given by the semi-classical equivalent of (9),
namely

* òa a a
w
p
a w= = w-( ) ( ) ( ) ( ) ( ) ( )M t t t t

d
e, with

2
, 26i t

and *a ( )t is given by the conjugate of this equation. We are
interested in the statistical properties of this rate. Of course,
talking about “photons” in a classical context is a little odd.
This quantity N here is not in any way restricted to being an
integer. Clearly, this description cannot be entirely correct; N
can at best be the expectation value of the number of photons
detected. We return below to a proper quantum treatment. From
(13) and (26), however, we obtain the semi-classical result,

*  a a w= = - +( ) ( ) ( ) ( ) ( ) ( )( ) ( )M t t t S t t2 . 270

The ensemble average is, from (24),

*a a p w lsá ñ = á ñ =( ) ( ) ( ) ( )M t t t S a2 , 280
2

where the last equality is valid only under the scenario of a
distant source emitting many identical Gaussian pulses with
random (carrier wave) phases and at random times, at the mean
rate of λ.

We also wish to compute the averages *a aá ¢ ñ( ) ( )t t and
*a w a wá ¢ ñ( ) ( ) . From (24) and (26), one finds

*a a

p w ls

- ¢ = á ¢ ñ

= s w- - ¢ - ¢

( ) ( ) ( )
( )( ) ( ) ( )

G t t t t

S a e e2 . 29t t i t t
0

2 42 2
0

Thus G(t) has a width s» . More generally, the function G(t) is
given by

*òw l= ¢ ¢ ¢ - = w-( ) ( ) ( ) ( ) ( )

( )

G t S dt g t g t t g t f t e2 , where

30

i t
0 0

and f (t) as defined in (21) does not have to involve a Gaussian;
rather, any real function f (t) for the envelope would suffice, and
G(t) will have the same width as this envelope. In particular,
however,

á ñ =( ) ( ) ( )M t G 0 . 31

If we further define w˜ ( )G as

òw = w˜ ( ) ( ) ( )G dt G t e , 32i t

and enlist (26) again, we obtain

*a w a w d w w wá ¢ ñ = - ¢( ) ( ) ( ) ˜ ( ) ( )G . 33

In general,

w w l w=˜ ( ) ∣ ˜( )∣ ( )G S g2 , 340
2

where w˜( )g is the Fourier transform of g(t). All these features
are consequences of our model of the distant source as a
statistically stationary emitter, namely one with no preferred
zero of time, or (equivalently) the constituent Fourier
components of ( )t are uncorrelated. In the case of = ¢t t ,
the first equation of (29) gives, with the help of (28),

òp
w w p w ls= = á ñ =˜ ( ) ( ) ( ) ( )G d G M t S a

1

2
0 2 , 350

2

a result that not only enforces the Parseval theorem, but also
indicates that w˜ ( )G is the spectrum of the beam. The width dw
of the spectrum and the width σof G(t) obey the relation

dw
s

» ( )1
36

by virtue of the fact that G(t) and w˜ ( )G are Fourier pairs.
Note that while w˜ ( )G is real, this is not true of G(t), which by

(32) satisfies the relation

* = -( ) ( ) ( )G t G t . 37

From (35), the average counting rate G(0) must as a result of
(37) be real. Hence, for an exposure time of T to the beam,

á ñ =( ) ( ) ( )N t T G T, 0 . 380

We shall see that dispersion only changes the phase of each
Fourier component, but not the value of ( )G t ; in particular, this
means the average counting rate G(0) is unaffected by the
intervening medium.

2.3. Semi-classical Treatment of Brightness Fluctuations

To evaluate the variance of the photon count number, we
need to examine the second-order correlation function

* *a a a aá ¢ ñ = á ¢ ¢ ñ( ) ( ) ( ) ( ) ( ) ( ) ( )M t M t t t t t . 39

From (27) and (23), one sees that as a result of the random
phases js there are two types of surviving terms: those from
pairwise correlations in which there are only two distinct pulses

¢ ¹ ¢( )s s s s, among the four participating ones, and those
involving = ¢s s (i.e., all four pulses are the same). In general
these two terms are written down in the same order as follows,

òw l

á ¢ ñ - á ñ = - ¢

+  +  ¢ + 

( ) ( ) ∣ ( )∣

∣ ( )∣ ∣ ( )∣ ( )

M t M t M G t t

S dt g t t g t t4 , 40

2 2

2
0
2 2 2

where g(t) was defined in (30).
For Gaussian pulses in particular, the - ¢∣ ( )∣G t t 2 term leads

to al s2 2 contribution to the two-point function, while the latter
is ls, which is much smaller in the ls  1 limit of many
overlapping pulses. Thus,

w ls

pls p

á ¢ ñ - á ñ =

´ +

s- - ¢( ) ( ) ( ) [ ]
( ) ( )

( ) ( )M t M t M t S a e

4 2 2 . 41

t t2 2
0
2 4 22 2

For large ls one discards the last term, and

lsá ¢ ñ - á ñ » - ¢ ( ) ( ) ( ) ∣ ( )∣ ( )M t M t M t G t t , 1, 422 2
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which yields the radiometer equation of radio astronomy as a
corollary, as we demonstrate immediately below.

The variance of photon counts over some exposure time T
may now be derived from the formula

òd = - - á ñ( ) ( )[ ( ) ( ) ] ( )N dt T t M t M M2 0 , 43
T

2

0

2

which follows from squaring (25) and taking the ensemble
average. Under the ls  1 scenario, one may examine the
behavior of the variance as T becomes very large or very small.
In the former case, the integral is dominated by the region
where t T , i.e.,

òd »
¥

( ) ∣ ( )∣ ( )N T dt G t2 . 442

0

2

We may then write

d
d

dw» á ñ D ( ) ( ) ( )N
t

T
N t 1 , 452 2

where dt is given by

òd =
-¥

¥

( )
∣ ( )∣ ( )t

G
G t dt

1

0
, 46

2
2

and from (29), is of order s dw» 1 , with dw being the width
of w˜ ( )G , which is essentially the width of the spectrum of the
beam. Thus, an alternative form of (45) is

d
dw

dw= ⎜ ⎟⎛
⎝

⎞
⎠¯ ( )N

N T
T

1
, for 1, 47

2

which is the radiometer equation.
In the opposite limit of dw T 1, another approximation

scheme should be applied to (43), namely G(t) is nearly
constant within the range of integration, equal to G(0). We find

d dw» á ñ ( ) ( )N N T, for 1. 482 2

Together with (47), the behavior of d( )N 2 indicates that the
maximum relative variance is reached at dw »T 1. When T
becomes even smaller, the variance no longer increases like
(47) because the fluctuations, sometimes known as photon
bunching noise, are correlated on timescales beneath the
coherence length of s dw» 1 .

A major inadequacy of the present treatment of fluctuations
is the omission of Poisson noise, also referred to as the shot
noise, which has the characteristic of d =( )N N2 for all
exposure times T, however large or small. This indicates shot
noise is a point process that originates from the corpuscular
(particle) nature of light, i.e.,it is a consequence of the
quantum nature of radiation, and cannot emerge from the
semiclassical formalism here.

2.4. Quantum Treatment of Brightness Fluctuations

The first question here is how to represent the beam
emanating from the source, but there is a very simple and well-
established answer to that. The effect of classical current
sources on the quantum vacuum state is to create coherent
states. So it is natural to assume that the wave emanating from
the source in our problem is represented by this coherent state
ñ∣ . Then all the calculations above go through more or less the
same as before.

The only change that must be made is that when we write
down the expression for the photon count rate, we have to
subtract the formally infinite vacuum value. In other words, we
have to write the counting rate operator in normally ordered
form, (9). Explicitly, since

* *    a aá ñ = á ñ =∣ ˆ ( ) ∣ ∣ ˆ ( ) ˆ ( )∣ ( ) ( ) ( )M t a t a t t t: : , 49

this means that the value of average photon-number count
á ñ( )N t T,0 , given by (38), is finite.

However, the situation is quite different for the second-order
correlation function. From (8) and (9), we find

* *
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= ¢ - - ¢
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M t M t M t t t

: :

: : . 50

Now the ensemble average of the expectation value of the
normally ordered product has precisely the same value (42) as
the semi-classical treatment in the limit of infinite ls, namely
(after applying (31) with M(t) replaced by ( )M t: :):

á ¢ ñ = + - ¢( ) ( ) [ ( )] ∣ ( )∣ ( )M t M t G G t t: : 0 . 512 2

We thus obtain

dá ¢ ñ - á ñ = - ¢ + - ¢( ) ( ) ( ) ∣ ( )∣ ( ) ( )
( )

M t M t M t G t t G t t: : 0 .
52

2 2

If we then apply (43) and integrate over t, we find, for the
variance of the photon-number count,

òd = - +( ) ( )∣ ( )∣ ( )N dt T t G t N T2 , for any , 53
T

2

0

2

where the last term equals ( )G T0 . This is identical to the semi-
classical result (43), except for the addition of the final term,
which is now the Poisson shot noise. Note that this extra term is
simply á ñN , as is to be expected of shot noise.
The picture is now very similar to the way in which Hirata &

McQuinn (2014) derived the shot noise term, and highlights the
origin of this term as the particle nature of radiation, namely
photons. In this approach, the pulse arrival rate λis so
enormous that the last term of (40) is negligible; it certainly has
nothing to do with photon shot noise. Nevertheless, the reason
why we said before (50) that the derivation of the first- and
second-order quantities differ, has to do with normal ordering.
On one hand, when evaluating the mean count rate á ñ( )M t , we
equated it to the ensemble average of  á ñ∣ ˆ ( ) ∣M t: : to
remove an infinity; see (49). On the other hand, for
á ¢ ñ( ) ( )M t M t we equated it to the ensemble average of
 á ¢ ñ∣ ˆ ( ) ˆ ( )∣M t M t , i.e.,without normal ordering. Thus there is
a basic inconsistency in this formalism for computing
measurable quantities, even if it leads to agreement with
observations.
The alternative approach to the shot noise problem, provided

in Lieu et al. (2013), does not suffer from the same difficulty.
Here, we wish to revisit it to highlight the point, and also to
show that Lieu et al. (2013) does nevertheless have its own
unique problems in explaining certain other aspects of the
behavior of radiation—problems not shared by the aforemen-
tioned approach (which is also the generally accepted one). To
be clear, we are not referring to the difference between Hirata
& McQuinn (2014) and Lieu et al. (2013) in their prediction of
line-of-sight dispersion effects (since we have not addressed the
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phenomenon of dispersion yet); rather, there are other effects
that can be already used to experimentally compare and
contrast these two models.

In Lieu et al. (2013), the shot noise component is attributed
to the ls term of (41), in the sense that λis treated as the
photon arrival rate at the observer, i.e.,each photon is a pulse.
This assumption greatly limits λto much more modest values
such that the last term of (41) cannot always be ignored.1 To
elaborate, (28) and (41) together imply

p w lsá ñ - á ñ = + s-( ) ( ) ∣ ( )∣
( )

( )M t M M G t S A e0 2 2 .
54

t2 2 2
0
2 4 22 2

Substituting (54) into (43), one again obtains (53), but only in
the limit of sT , or equivalently dw T 1. The reader can
verify that unlike (53), which holds for all T, the expression for
d( )N 2 here no longer has N as its last term, but rather some
other quantity less than N, when dw <T 1. To understand the
discrepancy, one must compare the last terms of (52) and (54).
In the former, the term is a Dirac delta function that portrays the
impossibility of “resolving a photon,” i.e.,shot noise obeys
Poisson statistics from indefinitely large to infinitesimally small
scales. In the latter, the point process of shot noise is
manifested only on long timescales, but not on scales small
enough to probe the exponential structure of the last term
of (54).

Turning to experimental evidence, the cross-correlation at
zero lag between the intensity time series of two beams that
emerge from a 50:50 beam splitter when the incident beam
consists of incoherent radiation (Hanbury Brown & Twiss
1957), revealed only the first term2 of (52) but not the last term;
see, e.g.,the discussion on the ( )g 2 correlator in Loudon (2000).
This clearly demonstrates that photons are fundamentally
structureless and indivisible at the beam splitter, i.e.,a photon
can randomly be assigned to one of the two emerging beams,
but cannot be in both beams. Thus, the evidence is consistent
with (52). In (54), however, the last term also owes its origin to
the wave nature of light in the sense that pulses (or wave
packets) can readily be divided by the beam splitter. This
means, according to (54), that the cross-correlation should
contain a contribution from the last term, and both terms should
exhibit correlation power at finite lag, provided the lag is not
s . In reality, we only see the first term at zero and small lags.

Moreover, the fact that even the cross-correlation at zero lag
exhibited no sign of the shot noise contribution, irrespective of
the timing accuracy of the apparatus, lends further support to
the absence of a scale that marks the departure of photon shot
noise from genuine Poisson statistics.

Thus, the weight of observational evidence appears to strongly
favor (53), namely the view that the distant light source consists

of an almost infinite number of atoms and electrons emitting
spherical pulses of radiation that all distant observers can see
(hence the pulse ratel  ¥, reducing the relative importance of
the last term of (40) to zero), so photon shot noise cannot be due
to pulse fluctuations. Rather, it is a consequence of the normal
ordering recipe of quantum operators, even if this recipe is not
self-consistent in the sense that one calculates the mean photon
rate and its variance differently. Regrettably, there are no further
options: one has to settle the matter somewhat unsatisfactorily in
this fashion. Only when we do that, will it be possible to
understand how Lieu et al. (2013) wrongly predicted the effect of
dispersion on incoherent light.

2.5. Dispersion

The effect of dispersion is already discussed in detail in Lieu
et al. (2013), but see also Bohm (1951), and Born & Wolf
(1970). In essence, if a beam with characteristics of (20) and
(22) propagated through a uniform dispersive medium, it will
arrive with the source function modified to

  ò
w
p

w= =

´

j w

w w w w w w

+ -

- + + - +  - +

( ) ( ) ˜( )

( )

( )

( ) ( )

t z t z e
d

g e

e

, ,
2

, 55

s s
i i t

i t i z v i z v ik z 2

s s

p g0 0 0 0
2

where w˜( )g is the Fourier transform of g(t), and g(t) is as
defined in (30), and the phase and group velocities are

w w

w

w

w
= = - » +

-⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )v

k
1 1

2
, 56p

p p0

0

2

0
2

1 2 2

0
2
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w w

w

w

w
= = - » -

=

⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )v

d

dk
1 1

2
; 57g

k k

p p
2

0
2

1 2 2

0
2

0

respectively, and w = w( )k d k d0
2 2

0.
The crucial point to emphasize is that dispersion does not

change the functions w˜ ( )G and G(t) as defined in (34) and (30),
respectively. To see this, we first observe that the integrand of
(55) without the w-e i t factor is in fact the Fourier amplitude
of the original pulse - w- -( ) ( )f t t es

i t ts0 , namely w w˜( )g ei ts, after
this amplitude is modified by the passage of the beam through
the dispersive plasma column. Thus, the effect of dispersion is
to replace w˜( )g by w¢˜ ( )g , i.e.,

w w w ¢ = w w w w w+ - +  - +˜( ) ˜ ( ) ˜( )
( )

( ) ( )g g g e .
58

i z v i z v ik z 2p g0 0 0 0
2

Yet, from (34), the beam spectrum w˜ ( )G does not depend on the
phase of g (now ¢g ). This means that G(t) is unchanged by
dispersion. It then follows from (31) and (52) that the mean
photon rate and its autocorrelation function, i.e.,both first- and
second-order quantities, are also unaffected. More generally,
Wang et al. (1989) proved that, if shot noise is ignored, all n-
point functions of the photon rate (or the intensity) are unaffected
by dispersion. Fundamentally, this has to do with the random
uncorrelated phase js of the pulses. While dispersion adds a
systematic phase xs to js, there is no net effect because it does not
alter the fact that once á ñj j- ¢e ei is s vanishes, á ñx j x j+ - +¢ ¢( ) ( )e ei is s s s

must also vanish (assuming ¹ ¢s s in both cases).
The conclusion is that Hirata & McQuinn (2014) were right

in asserting the absence of any measurable imprints, of the sort

1 This is quite unlike Hirata & McQuinn (2014), who consider each spherical
wave packet emitted by an atom or ion to be a pulse the observer has a finite
probability of detecting. Since there are many emitting atoms or ions in
the quasar, each pulse has only a tiny fraction of a photon’s energy, i.e.,the
modulus square of the sum of the many overlapping (interfering) pulse
amplitudes gives the probability of an arriving photon. Thus, the arrival rate
λfor the spherical atomic pulses is far larger than the photon pulses, but
experiments clearly preferred spherical pulses as the correct model.
2 One should not be surprised at all that the first term was detected in the
cross-correlation, because its origin is the genuine wave nature of light. Thus,
intensity fluctuations caused by this term are found to have identical patterns in
the two beams that emerged from the beam splitter from the same primary
(incident) beam.
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described in Lieu et al. (2013), due to the passage of incoherent
light through a dispersive medium. It should also be pointed
out that if the shot noise model were that of Lieu et al. (2013),
then the last term of (54) or (40) would indeed have represented
observable evidence of dispersion because of pulse-broad-
ening. But as already explained in the last section, even “non-
dispersive” experiments on incoherent light do not support the
Lieu et al. (2013) model of photon shot noise. It should
therefore come as no surprise that the analysis of radio quasar
data by Hales et al. (2016) failed to reveal the dispersive effects
predicted by the two 2013 papers of Lieu.

3. Is There Really no Imprint of Dispersion
on Stationary Light?

In the previous sections we extended the formal treatment of
Wang et al. (1989) to include the particle (photon) nature of
light, thereby confirming the assessment of Hirata & McQuinn
(2014) that the autocorrelation techniques proposed by Lieu
et al. (2013) cannot be used to infer the dispersion of light from
relatively steady incoherent sources. Now we turn to the
question of whether this means dispersion of stationary light
leaves behind any tangible and measurable imprint at all.

Given the development of the previous sections, there is
actually a much simpler way of looking at the whole problem.
Provided that the pulse and photon arrival rates satisfy ls 1
and sá ñ M 1 (the latter means the photon occupation number
of the beam is1), conditions that are easily fulfilled in radio
astronomy, one can ignore any pulses and photons in the beam
by modeling it as genuinely stationary light comprising many
modes with random phases. Within some narrowband centered
at frequency ω0 and of bandwidth dw w 0, therefore, one
could depict a beam propagating through vacuum as

  å w= = w j+ - - +( ) ( ) ˜( ) ( )( ) ( )t z t z
T

h e, ,
1

, 59s s
s

s
i t z i s

where we assume

w = w w s- -( ) ( )( )h h e 60s 0
2s 0

2 2

is the spectral amplitude at ωs as enforced by a passband filter or
spectral line of the source, and an integral over frequencies of the
form (55) is replaced here by a sum over modes, noting that the
bandwidth dw obeys (36) and (from the periodic boundary
condition as applied over the time span T) the number of modes
is s»T , where T is the total exposure time. In this way, the
mean photon arrival rate at a fixed position z of the observer and
for various t is again given by (27) and (31), and the two-point
function is given by (42), with the quantities + ( )( ) t and
 á ¢ ñ- +( ) ( )( ) ( )t t given by (23) and (24), respectively.
If the beam has passed through a dispersive medium,

however, (59) will be modified to become

  å w= =

´ w w w w w w

+

- + + - +  - +

( ) ( ) ˜( )

( )

( )

( ) ( )

t z t z
T

h

e

, ,
1

, 61

s s
s

s

i t i z v i z v ik z 2p s g s0 0 0 0
2

with vp, vg, and k0 as defined in and around (56) and (57). The
rest of the situation, as already described in the previous
subsection, namely G(t) and w˜ ( )G , is unchanged by dispersion,
and there can be no imprint in such a context. Physically, this
means that the modes of chaotic (e.g., thermal) light are phase
uncorrelated, i.e.,the total brightness is proportional to the sum

of the occupation number of each mode, or equivalently the
sum of the modulus squares of the mode amplitudes. A “cross
term,” or product of two different mode amplitudes, does not
contribute because f fá - ñ =¢( )iexp 0s s when the two mode
phases are random and uncorrelated, and dispersion simply
adds a systematic phase to fs that does not alter the above
picture of mode independence. Yet this does not mean, if each
mode phase fs comprises a random component js and a
systematic quadratic phase w w -( )k z 2s0 0

2 that is imprinted
by the dispersive medium, that the latter phase is necessarily
masked by the former from detection. In fact, we shall show
how an analysis of phase information from an ensemble of
individual modes that is more sophisticated than simple
amplitude cross products can reveal the quadratic phase. This
is a reasonable conclusion, since phase and occupation number
are separate observables after all (quantum mechanically they
are non-commuting dynamic variables).
As a simple illustration, lets us remove all inessentials by

writing the phase of one mode of chaotic light with and without
passage through a dispersive medium, as

f j w w= +  -( ) ( )k z, 62s s s
1

2 0 0
2

and f j¢ = ¢
s s, respectively, with js and j¢s being random

uncorrelated phases. If the former comes from a test beam
and the latter comes from some reference beam in the
laboratory, any interference effect between the two beams will
involve a term proportional to

f f j j w wá - ñ = á - ¢ +  - ñ =¢[ ( )] [ ( ) ]i k zRe exp cos 2 0,s s s s s0 0
2

and the same conclusion would apply even in the absence of the
quadratic phase; in this respect the test beam responds in the
same way whether there was dispersive propagation or not. But,
on the other hand, if one directly measures the electric oscillation
of many individual modes to determine their phases f{ }s and f¢{ }s
at some fixed time epoch, as can readily be done with available
technology (see below), then the ensemble average of these
phases themselves will differ: f já ¢ñ = á ¢ñ = 0s s , whereas fá ñs =
j w wá ñ + á  - ñ( )k z 2s s0 0

2 = w w -( )k z 2s0 0
2 does not vanish.

In fact, fá ñs is frequency independent, and from this dependence,
as ascertained by examining many modes, one can in principle
deduce the value of k0 , and hence the column density of
dispersion, as we shall argue in detail.
Let us therefore write the Fourier amplitude of a model in

full viz

 w w= j w w w w w+ + + - +  - +˜ ( ) ˜( )

( )

( ) ( ) ( )
T

h e
1

,

63

s s
i i z v i z v ik z 2s p s g s0 0 0 0

2

where the k0 term of the exponent is, in terms of the typical
density of the intergalactic medium and distance to quasars,

w w
w

dw w

 - =

´

- -

-

-
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and with the chosen bandwidth dw = 0.6 MHz the next order
term is dw w» = -100

4 times the k0 term, which puts it at1
values.

Now the question naturally arises: can the individual modes
be measured to probe the quadratic spectral phase of
dispersion, namely the k0 term? SETI observers have
demonstrated 1Hz spectral resolution at GHz frequencies,
provided the total exposure T is long enough to reach the
resolution while ensuring the detection of at least one mode
(Harp et al. 2016). For an exposure time of merely »T 6 s, the
number of modes is

s
dw
p

» = » ´
( )

( )N T
T

2
, 6 10 , 65mode

6

i.e.,the spacing between modes is indeed w p= »d T2 1 Hz.
Thus, longer exposure means even better spectral resolution.
Moreover, if one digitizes an incoherent detector time series
(waveform) spanning the total duration T at a factor >103 times
beneath the coherence time s dw» 1 , one would directly sample
the electric field with the help of an amplifier to measure the phase
of the mode (relative to the some reference which is the same for
all modes), as is done in radio astronomy at low frequencies
anyway. Since the assumption is that the source emission has a
high occupation number, this would not add noise unless the
amplifier noise temperature was higher than the source
temperature.

If such phase measurements are simultaneously made in a
single exposure of T at various frequencies located symme-
trically on either side of ω0 across the full Gaussian bandwidth
of (60), the data would consist of a set of phases
f = { }s n, 1, 2, ,s where n Nmode can be as large as
´6 105 in just 6s from the previous paragraph, and

f j
w w w

w w= + +
-

+  - + ( ) ( )

( )

z

v

z

v
k z .

66

s s
p

s

g
s

0 0 1

2 0 0
2

Computing the sample mean of the phases, the first and third
terms vanish (the former due to mode phase decorrelation, the
latter due to the symmetric distribution of ωs about ω0), and the
second term is a constant equal to w z0 if we assume (without
introducing any appreciable error) that the phase velocity is

» =v c 1p . Thus

f w w s=  - + =  +¯ ( ) ( )k z k zconst. const. 67s s
1

2 0 0
2 1

2 0
2

Although the last term is a very big constant, it should not act as a
deterrent because there is always a reference phase value to be
subtracted, and in any case the convention of phase measure-
ments periodically wraps fs around the range  p f p- s .

Thus, the strategy here is to fine tune the addition or
subtraction of a large constant to the measured f̄s such that the
resulting value becomes proportional to σ2, the constant of
proportionality then yields the sought after information on k0 ,
and hence the dispersive column density n xe of the intergalactic
medium via (64). This means one has to repeat the
measurement with various spectral filtering, namely different
s dw» but the same central frequency ω0, until one
successfully detects the k0 term. The difficulty of following
through this proposed idea lies in the stability of the
frequencies at which fs is sampled, especially the central

frequency ω0, because even the slightest fluctuation in ω0 could
trigger a very large phase error in the constant, i.e.,w z0 , term
of (67). This is a challenge on the absolute stability of one’s
clock, which, as we shall see below, can only marginally be
met with current technology.
The problem is completely mitigated here, however, by the

simultaneous sampling within the same exposure time T of the
phase fs of as many of the Nmode available modes as possible,
where Nmode is given by (65). This can be achieved by sampling
the received waveform sufficiently fast for sufficiently long
time T and then performing fast Fourier transform (FFT) to the
sampled data. As already noted immediately after (65), the total
sampling duration determines the frequency spacing of these
modes. The FFT produces not only the amplitude of each mode
but also their relative phases in reference to the carrier
wave w w= 0 at some time epoch. The latter is exactly what we
need here.
Provided the modes are distributed symmetrically across the

spectral filter in frequency space, one can take the phase
average of a smaller subset of the full sample, starting with the
core of the filter around ω0, then moving outward to cover pairs
of equally sized frequency interval placed symmetrically away
(i.e., equidistant) from the core region of the Gaussian. In this
way, the average f̄s will all be evaluated using exactly the
same ω0 because of the simultaneity of the individual
measurements of fs, but increasing σas one subset moves
further away from w w= 0 than the previous one. Since, as
explained after (65), one has up to ´6 105 data points for fs
over a mere 6s interval, and a more realistic exposure time for
radio telescopes is much longer than 6s, there should be no
lack of samples for the purpose of averaging over each subset.
Beware, however, that the value of σfor each subset is to be
calculated by assigning equal weights to the relevant
frequencies and not in accordance with w˜( )h s , because within
the region of appreciable w˜( )h s where phase measurements can
be made, the phase of a mode is independent of its amplitude,
and participates in (67) equally as any other in the same subset.
Another possible snag in this approach pertains to its

requirement of symmetrical distribution of the modes on either
side of ω0 to ensure w w- = 0s 0 , i.e.,to bring about exact
cancellation of the third term of (66) when one forms f̄s. Any
deviation of w w-( )s 0 from zero by as small as one part in 1018

would be sufficient to cause this third term to become O(1),
thereby jeopardizing the effort. Again, as before, since we are
working on one contemporaneously acquired data set within
the same exposure time T, this is not really a problem. In fact,
only one clock will be used to digitize the incident waveform
and FFT it, and no relative error among the mode frequencies is
actually expected. The only error is in the absolute frequency of
each mode, since this is subject to the intrinsic error of the
clock itself, which is irrelevant to the problem.3

Ultimately, the goal is to add the same constant to (or
subtract it from) the average phase of each subset of modes to
ensure the result is proportional to the spectral variance σ2 of
the subset with the appropriate corresponding constant of
proportionality. The uncertainty in the dispersive column

3 Although such an error will not affect our effort, we note in passing that the
most accurate clock to date is in any case stable to 2 parts in T1016 where T is
the integration time in seconds (Schioppo et al. 2017). The exposure time of
»T 6 s we quoted earlier was merely for illustrative purposes, i.e.,a more

realistic exposure of »T 6,000s would increase the stability to 1part in 1018

which would suit the requirement stipulated above, even in terms of absolute
error.
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density n ze as inferred from (64) is then determined by the
degree to which the aforementioned additive (or subtractive)
constant varies from subset to subset. Thus, there can be no
sensible claim of a detection of the ionized intergalactic
medium unless the variation in this constant is less than the k0
term in (64).

4. Summary and Conclusion

The recent method proposed by Lieu et al. (2013) to detect
intergalactic baryons by looking for their dispersive effect on
the light of incoherent distant sources relies on a generalization
of the treatment of Cordes (1976), to also include photons as
the sort of pulses (or wave packets) susceptible to broadening
by dispersion. In this paper, we demonstrate more formally the
argument of Hirata & McQuinn (2014), on how Lieu et al.
(2013) was fundamentally flawed, namely photons emitted by
incoherent sources are the consequence of the normal ordering
of operators in the second quantization process, i.e.,they are
not at all the same as the classical pulses of Cordes (1976). If
these classical pulses, each of which is a coherent bundle of
many photons, are completely absent from the incoherent
source, then the observation strategy of Lieu et al. (2013),
which focuses on the distortion of intensity fluctuations as a
sign of dispersion by the ionized intergalactic baryons, will fail.

This paper did not end on such an unfortunate note,
however. We proceeded to suggest another completely

different approach, by recognizing that current technology
allows one to measure the phase of individual modes of
incoherent radiation to test for the presence of the quadratic
spectral phase left behind by dispersion as an imprint. We
provided observers with a clear strategy that can lead to a
robust detection of the quadratic phase, and hence affords them
a means of clinching the line-of-sight column density of
ionized intergalactic plasma in virtually any direction that ends
at a radio source.
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