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Abstract—The electromagnetic properties of spatially periodic
cavities determines both the linear and nonlinear interaction be-
tween the waves and the electron beam in high-power backward-
wave oscillators. A corrugated cavity is usually left open at one
end for extraction of the useful microwave energy; however,
reflections at the open end are large so that a cavity is still formed.
In contrast to a previously studiedN period closed cavity where
the number of axial modes with frequencies falling in the lowest
pass band of the structure is equal toN + 1, an open cavity
was found to support only N axial modes. In this paper the
resonance frequencies, quality factors and the field patterns of the
axial modes in an open cavity were all investigated experimentally
and the results are in very good agreement with those obtained
using a new, time-dependent, quasi-three-dimensional code. It
was also demonstrated that a short interface section between
the periodic cavity and the radiating antenna can drastically
reduce the quality factors to the diffraction limit over a very
wide frequency band. This is expected to substantially increase
the starting current and allow operation at high-beam current
without degradation of spectral purity.

Index Terms—Backward-wave oscillators, high-power micro-
wave, open cavities, periodic cavities, wide-band matching.

I. INTRODUCTION

PERIODIC structures are widely used in microwave radia-
tion sources and charged particle accelerators. Supporting

the propagation of slow electromagnetic waves (phase velocity
lower than the speed of light), these structures are designed
to match the phase velocity of the waves to the velocity
of the copropagating electrons, in order to facilitate an ef-
fective beam-wave interaction. For generation of microwave
radiation, the phase velocity of the wave must be slightly
lower than the beam velocity, whereas for particle accelera-
tion, the wave propagates slightly faster than the beam, but
its phase velocity is still lower than the speed of light in
vacuum. Relativistic backward-wave oscillators (BWO’s) are
based on such interaction between an electron beam and slow
electromagnetic waves [1]–[3]. A linear relativistic electron
beam is in synchronism with a slow electromagnetic wave for
which the group velocity is in the opposite direction, hence an
internal feedback mechanism is formed and self-oscillations
are possible. The slow wave structure often consists of a finite-
length cylindrically symmetric corrugated wall waveguide
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operating in the TM mode. A detailed knowledge of the
cold-mode characteristics (i.e., with no electron beam) of
the periodic cavity is essential for the design of an efficient
BWO. This includes the resonant frequencies associated with
the different axial modes, their quality factors, the dispersion
properties (namely phase and group velocities) as well as
detailed specification of the field patterns.

Closed periodic cavities are formed when a finite section
with periods of the corrugated waveguide is shorted at both
ends. When the reflecting planes are placed at the wide section
of the periodic waveguide, there are distinct resonances
(axial modes) in the first half of the Brillouin zone [4], [5],
equally spaced between and (here is the
longitudinal wave-number andis the period of the structure).
For example, a closed periodic cavity with six periods ( )
is characterized by seven axial modes in the region

and each one is distinguished by a different axial wave-
number, namely ( is the index
of the axial mode). The pattern of the electromagnetic field is
essentially given by the form of the fields that propagate in
the infinitely long periodic structure, multiplied by an envelope
function which will satisfy the boundary condition at the two
ends. Thus for example, the transverse electric field in a closed
periodic cavity of length , has an envelope function of
the form , where we have [5] and [6].

However, a practical corrugated cavity used in a relativistic
BWO is intentionally left open at one end, to allow for
extraction of the useful microwave energy into a radiating
antenna or a load. In many cases, the beam input end is
terminated by a waveguide section in which the dominant
mode is below cutoff, and not by a conducting plate as
in the closed cavity. We shall refer to this cavity as an
“open periodic cavity.” In the absence of the strict boundary
conditions defined by a metallic plate, substantial changes in
the electromagnetic properties of the cavities are expected.
The frequencies, quality factors, and field pattern of the axial
modes in open cavities are all expected to change. Moreover,
each axial mode is expected to be affected in a different
way. These changes may influence the properties of the
interaction between the waves and the electron beam, both
in the linear regime (e.g., frequency of operation, coupling
impedance, start-oscillation current), and the nonlinear regime
(e.g., efficiency, spectral purity of the radiation field) [7].
In this context, theoretical and experimental studies of the
properties of open periodic cavities are essential.
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Previous studies of an open periodic cavity [8]–[10], were
based on the assumption that the field in the cavity can be
described by an envelope function multiplying the field of
an infinitely long periodic structure. The boundary conditions
at the open ends were formulated by means of an effective
reflection coefficient that related the forward and backward
propagating waves. In [8] and [9] the reflection coefficients
were assumed to be frequency-independent. This is an ac-
ceptable assumption as long as the operation-frequency is not
close to the -frequency. The start-oscillation currents were
calculated for several values of reflection coefficients. The
near-cut-off operation case was addressed in [10]. The reflec-
tion coefficient was evaluated using a numerical model for
a semiinfinite periodic structure [11], and the start-oscillation
current were determined. Nevertheless, when a matching sec-
tion (the open end of the cavity) is tapered these analysis
techniques are insufficient, and a more detailed understanding
of the electromagnetic modes is required.

A second motivation for the present work is the interest
that has developed around wide band, tunable high power
microwave (HPM) sources employing either evacuated [12],
[13] or plasma loaded slow wave structures [14]–[18]. In these
cases, there is often a need to reduce the quality factor
of an “open” corrugated cavity over as wide-frequency band,
by reducing the end reflection coefficient in order to
achieve optimal coupling to an antenna. In the present work,
we demonstrate that a short wide-band high-power corrugated
matching section, can be used as an interface between the
cavity and the antenna.

Perturbation techniques are available for measuring the
spatial distribution of fields in resonant cavities [19]–[21].
These techniques have been primarily applied to closed high

(often over 4000) cavities. In contrast, spatially periodic
open cavities intended for operation with intense relativistic
beams have not been studied in detail. The electromagnetic
properties of these open corrugated cavities is the main focus
of the present work. A single port reflection technique
to measure the discrete resonance frequencies associated with
the various axial modes of the open cavity was used, and a
perturbation technique to characterize the field profile of each
of the individual axial modes.

This paper is structured as follows. The experimental appa-
ratus for performing those measurements is described in the
next section. The measured properties were compared with
numerical calculations (using MAGIC [22] and the newly
developed MAGY [23] codes). Both the experimental and sim-
ulations results will be presented in Section III. In Section IV
we present the results of our studies aimed at substantially
reducing the of corrugated open cavities by employing a
short wide bandwidth matching section between the cavity and
the microwave radiating antenna. Finally, we present a short
summary in Section V.

II. EXPERIMENTAL SETUP AND THEORETICAL BACKGROUND

There are three levels at which the experimental results
can be compared with the numerical simulation. The first
and simplest level is to compare the measured and calculated

Fig. 1. A schematic diagram of the open periodic cavity and the experimental
setup used for the frequency and field profile measurements (see text for
details).Rwall = R0 + h cos(2�z=d) whereR0 = 1:494 cm, h = 0:401
cm, andd = 1:67 cm.

resonant frequencies of each of the axial modes in an open
cavity which are associated with the TMtransverse mode.
The second is to compare the measured and calculated quality
factors of the same modes. The third, and most challenging,
is to compare the measured and calculated field distribution
(or the related spatial distribution of frequency shifts) of these
axial modes. In Section III we shall present the comparison
on all the three levels.

The open cavity consisted of six period corrugated wall
copper waveguide with a wall radius described by

where cm, cm,
and cm. The structure was made of three copper
sections compressed together to ensure good electrical contact.
The microwave radiation was extracted into a matched load
through an over-moded smooth waveguide. This arrangement,
shown in Fig. 1, mimics the coupling of the cavity to a
radiating antenna. Under these conditions, the quality factor
of the cavity is dominated by the radiation extraction and not
by the ohmic wall losses.

The modes in the open cavity were excited using a small,
on the axis, Hertzian exciter (Fig. 1). A network analyzer was
used to measure the microwave reflection from the open cavity
over the desired frequency range (7.2–9.0 GHz) using an
single port measurement. The resonances appear as narrow
spikes at frequencies where the magnitude of the reflection
was reduced.

The quality factor measured experimentally includes
the loading effect of the exciter. The exciter loading there-
fore must be evaluated and properly isolated so that the
measurement will reflect the actual value of the open
cavity itself. We measured the voltage standing wave ratio
(VSWR) of the open cavity across the desired resonance
using a HP8510C vector network analyzer. From this data
we found the minimum VSWR (at resonance) and maximum
VSWR (between resonances). From these two values we used
a technique [24], [25] to find the VSWR level at which to read
the upper and lower frequencies,and , of each resonance.
From these frequencies, and the resonant frequencywe can
calculate the open cavity by removing the coupling effect
from the loaded .

To measure the spatial distribution of frequency shifts in
an open cavity we used a perturbation technique. A small
spherical aluminum bead (0.24 mm diameter) located at a
radial position of 0.53 cm (expected electron beam location)
was translated parallel to the cavity axis by steps of 0.25
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mm and the resulting frequency shifts of each axial mode
were measured as a function of its position. Fig. 1 shows a
schematic diagram of the apparatus. This method is widely
used to measure field profile in closed cavities [3] and is
used here, for the first time in an open lowenvironment [5].

In the past, perturbation techniques were used to analyze
field patterns on closed cavities, where the power flow out of
the cavity is zero. In this work we tried to apply the same
approach to an open cavity in which the energy loss due to
radiation coupling is much larger than the ohmic wall losses.
For the theoretical justification of perturbation technique in
open cavities, we repeat the perturbation analysis [19]–[21],
[24], [25], taking into consideration the power flow out of the
cavity. We start by assuming that the open cavity is excited
at the resonantcircular frequency . The unperturbed fields
satisfy (in c.g.s. units)

(1a)

(1b)

where is the plane wave impedance
and is the speed of light in vacuum. We assume that the
sources are located on the boundary of the cavity (e.g., a
small pin exciter, see Fig. 1). The presence of the spherical
bead (radius ) introduces a small perturbation to the resonant
frequency and the profile of the fields, namely
and . The perturbed fields satisfy

(2a)

(2b)

where and
are the equivalent polarization and magnetization vectors,
respectively. We now multiply (2a) by the complex conjugate

and (2b) by , add them, and integrate over the volume
of the cavity. Grouping terms of and , we get (3), shown
at the bottom of the page. The first term of the numerator is of
the order of . The second term in the numerator
is an integration over the open end of the cavity, as the
tangential components of and vanish at the metal walls
of the cavity. This term represents the power flux due to the
perturbation field. We estimate that this term is smaller than
the first term by a factor proportional to the of the cavity.
Thus for it can be neglected. Furthermore, the second
term of the denominator is small compared to the first as the
contribution to the perturbation field is mostly limited to a
volume of the order of which is much smaller than (the
volume of the cavity). Under these assumptions, we find that

the frequency shift is given by

(4)

This expression, which is identical to the one previously
used for closed cavities (see [4]), establishes the theoretical
justification for the interpretation of the perturbation method
as the axial profile of the field in open cavities. It is important
to note that a metallic bead will in general perturb both electric
and magnetic field components, and both are included in (4).
Therefore, the bead can be placed at an arbitrary position in
the cavity, as long as this position is known. The measured
data are compared with the calculated values, and the results
will be presented in the next section.

As an additional theoretical support, a numerical simulation
code (MAGY [23]) was used. This is a time-dependent quasi-
three-dimensional code that simulates the interaction between
electron beams and electromagnetic waves in circular waveg-
uides with arbitrarily varying radius. In this work we used
only the electromagnetic part (no electrons), to compute the
fields in the periodic cavity using the same excitation method
(a pin exciter on axis). The code calculates the voltage
and current amplitudes for the transverse electric (TE)
and transverse magnetic (TM) modes using the generalized
telegrapher’s equations [23]. The fields are computed using
these amplitudes for the eigenfunctions of the cavity-modes.
We then calculated the frequency shift using (4). In the
following section we present the experimental results and the
comparison to the numerical simulations.

III. EXPERIMENTAL RESULTS AND NUMERICAL SIMULATIONS

The resonance frequencies and wavenumbers of the var-
ious axial modes associated with the lowest TMmode
as measured for the six-period open cavity are shown in
Fig. 2 (solid rectangles). For comparison, we also show the
equivalent data for the six-periodclosedcavity (open circles

see [4] for details). From these figures, it is clearly evident
that the closed periodic cavity with periods supports

different longitudinal modes, whereas the open
periodic cavity supports only such modes. The seven
longitudinal modes of the closed cavity are equally spaced
in the half of the first Brillouin zone, the spacing being .
The six longitudinal modes of the open periodic cavity closely
conform with the “half-integer” spacing [26], namely theth
longitudinal mode has a normalized wave-number

. The zero and the modes of the

(3)
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TABLE I
RESONANCE FREQUENCIES AND QUALITY FACTOR AS MEASURED AT THE EXPERIMENT, AND CALCULATED BY MAGY AND MAGIC CODES

Fig. 2. The resonance frequencies and the corresponding axial wavenumbers
for a six-period open periodic cavity (solid rectangles,) and a six-period
closed periodic cavity (open circles,�. See also [4]).

closed cavity, for which the group velocity is zero, are slightly
shifted in the open periodic cavity and we obtain a zero-like

and -like modes
with a nonvanishing group velocity. As can be expected, the
extraction of energy from the open cavity reduces the value
of the quality-factors of the different modes. This is especially
noticed for the central ( ) modes, while the -like
and zero-like modes maintain a relatively highvalue.

The experimental measurements were compared with nu-
merical simulations. We used the MAGIC code [22] and the
newly developed MAGY code [23]. In Fig. 3, we show the
quality-factors of the six longitudinal modes as obtained in
the experiment and as calculated by MAGY and MAGIC.
The values are also listed in Table I. The agreement of the
resonance frequencies between the experimental results and
the numerical simulations is better than 0.3%. To obtain these
values we run MAGY using basis of ten and 20 TM
modes for the description of the fields. We then extrapolated
the computed values of the resonance frequencies for each
axial mode using the dependency on the number
of modes (see [21] for a detailed discussion of this point).
The calculated values for the quality factors agree with the
experimental results to better than 10%.

We now proceed to the detailed comparison between the
measured and calculated field profile. Using the perturbation
technique we measured the frequency shift for each axial
mode separately as a function of the axial position of the

Fig. 3. The measured and calculated quality factors for the six axial modes
of the open-periodic cavity. For comparison, the quality factor of the axial
modes of a closed periodic cavity are� 2000.

bead, and computed this shift using MAGY and (4). The
results are depicted in Fig. 4(a)–(f) for all six axial modes
of the lowest TM mode of the -band structure (circles for
experimental results and solid line for numerical simulation).
The agreement between the measurement and the simulation
is excellent, establishing thus the conclusion that this method
can be accurately applied for the open-periodic cavity as well.
Further, the number of peaks in the frequency shift matches the
index of axial mode just like in a closed cavity with reflecting
plates at the wide radii. The frequency shift, as given by (4),
is a combination of the energy stored in the perturbed electric
field and the magnetic field. The frequency shift is always
negative, indicating that the contribution of the electric field is
dominant over the contribution of the magnetic field [see (4)].

Based on the results of the comparison shown in Fig. 4,
we can use the numerical simulations for calculating the
electromagnetic field. The current and voltage amplitudes for
the dominant TM mode for the zero-like axial mode are
shown in Fig. 5. The envelope of the current amplitude closely
resembles the form ( is the length of the
line) in order to satisfy the boundary conditions on both ends.
This behavior is characteristic of a transmission line with one
shorted end and one open end and is the origin of the “half-
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Fig. 4. The frequency shift as a function of axial position for each of the six
axial mode of the six-periods open-cavity. (a)n = 0, (b) n = 1, (c) n = 2,
(d) n = 3, (e) n = 4, (f) n = 5). Open circles(�) represent the measured
data, while the solid lines (—) are the results of the MAGY calculation.

Fig. 5. The current (solid line) and voltage (broken line) amplitudes for the
dominant TM01 mode for the zero-like axial mode.

integer” spacing between adjacent axial modes in the open
periodic cavity.

IV. WIDE-BAND MATCHING OF A CORRUGATED

CAVITY TO A RADIATING ANTENNA

Our results for the open periodic cavity clearly show that
the coupling to a radiating antenna reduces the value of the
quality factor from about in the closed cavity [4] to
the range of . Furthermore, strongly depends
on the operating frequency (alternatively, of the axial mode)
within the passband of the slow wave structure.

For high-power microwave generators, like a BWO, there
is often a need to simultaneously increase the start oscillation
current over very wide frequency band while maintaining an
optimal coupling to a radiation extraction antenna. Both goals
can be achieved by lowering the quality factors of the cavity
over the required bandwidth. In this section we demonstrate
that a short matching interface between the cavity and the

Fig. 6. A schematic diagram of the open periodic cavity with the tapered
matching section and the experimental setup used for the frequency and field
profile measurements (see text for details).

radiating antenna (load) can substantially reduce the quality
factor over most of the useful cavity passband. In the design
of the matching section we had two main guidelines.

1) The matching section is kept as short as possible so that
the interaction of the waves with an electron beam there
will be small. However, there is a tradeoff between this
requirement and the need for a gradual transition from
the corrugated section to the tapered one, to reduce the
electromagnetic reflections.

2) The large radius of the matching section is kept constant
and equal to the large radius of the corrugated section
(i.e., ). Accordingly, both the average
radius and corrugation depth must be a function of the
axial position.

In view of these guidelines, we chose the length of the
matching-section to be three periods of the corrugated cavity,
as shown schematically in Fig. 6, and three different types of
corrugation-tapering were tested (see Table II).

Three types of measurements were performed for each
matching section, using an experimental setup similar to that
described in Section II. Hence we obtained the resonance fre-
quencies, the values, and the field profile (frequency shift).
The resonance curves associated with the three matching-
sections are shown in Fig. 7(b)–(d) for the linear, power, and
exponential cases, respectively. For comparison we show the
resonance curve for the open periodic cavity with no matching
section [Fig. 7(a), similar to Fig. 2(a) above]. The effect of
the matching-section on the different axial modes is clearly
evident. The resonance-width of the central modes is much
wider while the frequency is almost unchanged. The zero-
like and -like modes are affected to a lesser degree. While
the resonant frequencies are almost identical in all four cases,
the ’s are substantially reduced by the matching sections.
The quality factor for each axial mode, calculated from the
experimental data, is plotted in Fig. 8. The measured quality
factors achieved by the linear and exponential tapers are very
low, close to the diffraction limit except for the
zero-like and -like modes. This results clearly demonstrate
a cavity-load matching over wide-frequency band (7.5–8.6
GHz).

V. DISCUSSION AND SUMMARY

The electromagnetic properties of open periodic cavities,
which serve as slow-wave resonators for high-power relativis-
tic BWO tubes, have been experimentally and theoretically
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TABLE II
THREE TYPES OFMATCHING SECTIONS USED TO REDUCE QUALITY FACTORS OF AN OPEN CORRUGATED CAVITY . HERE R

(0)
min IS THE MINIMUM RADIUS OF THE

UNIFORM PERIODIC SECTION, R(n)
min IS THE MINIMUM RADIUS OF THE nTH PERIOD OF THE MATCHING SECTION (n = 1; 2; 3); R0 = 1:494 cm, AND 0 � z � 3d

Fig. 7. The measured resonance frequency curve for an periodic cavity
with: (a) no matching section; (b) linear matching section; (c) power-of-two
matching section; and (d) exponential matching section.

studied, and compared to those of closed cavities. Specifically,
the following issues were addressed in a six period
open periodic cavity: 1) the number of axial modes associated
with the TM mode; 2) the resonance frequencies; 3) the
quality factors; and 4) the field profile associated with each
of these modes.

In contrast to closed cavities, where the number of axial
modes is equal to , an open periodic cavity supports
only axial modes. The spacing of these modes was shown
to conform with the “half-integer” spacing, and this was
attributed to the different boundary conditions at the open
end. It was also shown that the open cavity can not support
the exact zero and modes of the closed cavity, but only
zero or -like modes with a nonvanishing group velocity. This
“half-integer” spacing causes a substantial frequency shift for
each of the longitudinal modes in an open, as compared to
a closed cavity. Furthermore, in open corrugated cavities the
quality factors are dominated by radiation extraction through
the opening and not by the ohmic wall losses.

Fig. 8. The measured quality factors for each axial modes for the three
different matching sections in an open periodic cavity.

The resonance frequencies associated with each of the six
axial modes of an open cavity were measured and computed by
two different codes, namely MAGIC and MAGY. We found
an agreement of better than0.3% between the measured
resonance frequencies and the values calculated by MAGY
and MAGIC codes. Further, the quality factors associated with
each of the six axial modes were measured and compared
to the numerical simulations with an agreement better than

10%.
As a more detailed study of the field profile of the various

axial modes in an open cavity, we used the perturbation
technique. It was shown that this method, which is commonly
used for closed cavities, can be successfully applied for open
cavities. To perturb the cavity, a small aluminum bead was
placed at known locations within the structure. The resonance
frequency in the open cavity was then recorded as a function
of the bead position. The resulting frequency shift at
a given position corresponds to the local field profile (more
specifically the profile of the energy density). Measurements
of frequency shift were performed for each of the six axial
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modes and found to be in agreement (typically better than
0.01%) with the MAGY calculation. Furthermore, one can find
the longitudinal wavenumber associated with each axial mode
by counting the number of local maxima in the curve of the
frequency shift along the length of the resonator, much in the
same way as in a closed cavity.

Finally, we experimentally demonstrated that a significant
reduction of the quality factors of the axial modes over a wide
range of frequencies, can be obtained by using a matching
section. A short tapered periodic interface structure (total
length of three periods), for which the tapering were either
linear, powers of two, or exponential, was used. The quality
factors of the axial modes was drastically reduced down
to the diffraction limit. This reduction in is expected to
substantially increase the starting current since

. This is very beneficial for high-power microwave devices
since it allows operation at substantially higher beam
currents and still satisfying the condition . It was
shown that operating above this critical value leads to a gradual
degradation of the spectral purity [27] of the electromagnetic
radiation, culminating in the onset of stochastic oscillations.
Furthermore, this will allow continuous frequency tunability,
by changing the beam voltage without frequency hopping
from one axial mode to another. This important feature of
the tapered matching section still need to be studied to find
the best tapering for a given structure.

In conclusion, this work demonstrates the applicability of
combined theoretical and experimental techniques needed for a
thorough understanding of the cold-mode structure of an open-
periodic cavity. This newly available information is expected
to enhance the capability of designing high-power microwave
sources.
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