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1. INTRODUCTION

The two-level system is a fundamental and widely used
model to describe the interaction of electromagnetic
waves with matter. The temporal evolution of the system
is usually treated within the framework of the rotating-
wave approximation (RWA), in which the driving electric
field enters the equations of motion only through its com-
plex envelope and center frequency.1 For a complete de-
scription of the electric field, the carrier-envelope (CE)
phase, specifying the position of the envelope with respect
to the rapidly oscillating carrier wave, also has to be
taken into account. The RWA breaks down for strongly
driven systems,2 giving rise to new effects that not only
depend on the pulse envelope and carrier frequency but
also on the CE phase.

The phase-sensitive dynamics of the driven two-level
system beyond the RWA has been the topic of several pa-
pers. The phase dependence of the inversion was carefully
examined for a sinusoidal excitation, serving as a model
for the interaction of atoms and molecules with
continuous-wave laser radiation.>® The discussion was
extended to rectangular pulses, which can be obtained by
abruptly switching on and off the sinusoidal excitation.
The phase sensitivity of the inversion was investigated
and experimentally demonstrated in the radio-frequency
regime by researchers’ exciting the anticrossing of the po-
tassium 21s—19f states.®

Following the arrival of laser pulses consisting of only a
few optical cycles, there has been considerable interest in
phase-sensitive effects in the pulsed optical regime,9 and
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various approaches have been used for detecting the CE
phase and frequency.®'® In this context, the CE phase-
dependent emission of two-level systems'’ and
semiconductors'® interacting with few-cycle pulses has
been theoretically investigated, and the effect has experi-
mentally been observed in GaAs.' So far, less attention
has been given to the CE phase dependence of the inver-
sion, with a few exceptions studying the interaction with
Gaussian pulses.?%?!

Whereas for sinusoidal excitation the generated inver-
sion shows a CE phase dependence even for weak fields,
the phase-sensitive dynamics relies completely on nonlin-
ear effects for pulsed optical excitation. In this paper, both
linear and higher-order phase-dependent inversion effects
in two-level systems are theoretically investigated, using
analytical approximations and numerical simulations
with properly chosen test pulses. In addition, the influ-
ence of dephasing on the phase sensitivity is studied.
General properties of the steady-state inversion are dis-
cussed, and approximate expressions are derived in the
linear and the nonlinear regimes. The paper is organized
as follows. In Section 2, the equations of motion for an ex-
cited two-level system are given in a fixed and a rotating
reference frames. In Section 3, general properties of the
steady-state inversion are discussed. In Section 4, the
phase-dependent inversion in the weak-field limit is ana-
lytically examined, and, in Section 5, the discussion is ex-
tended beyond the linear regime for rectangular and sinc-
shaped pulses, using numerical simulations and nearly
degenerate perturbation theory. In Section 6, the influ-
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ence of the phase relaxation is studied on the basis of the
strong dephasing approximation and numerical results.
We conclude in Section 7.

2. EQUATIONS OF MOTION

A two-level system is characterized by its dipole matrix el-
ement d and resonance frequency wy,=27f,=(E,—E,)/#,
where E, and E, are the eigenenergies associated with
the low- and high-energy states |a) and |b), respectively.
Dissipative effects, which arise owing to the interaction of
the ideal two-level system with its environment, can be
taken into account in a statistical approach. The density
matrix is represented by the components of the Bloch vec-
tor s. The components s; and sy are related to the real and
imaginary parts of the off-diagonal density-matrix ele-
ments by p,p=(s1+189)/2, and ppp—pue=S3=w is the popu-
lation inversion. In this paper, the relaxation processes
are described by phenomenological parameters, the en-
ergy relaxation rate y;=1/T7, and the dephasing rate y,
=1/T,. Frequently, relaxation is dominated by processes
that lead to a destruction of the phase coherence in the
quantum system without affecting the inversion, result-
ing in a dephasing time 7’5, which is much shorter than
the energy relaxation time T';. For example, this is typi-
cally the case in a gas due to collision broadening.22 Thus,
in the following, we set y;=0, assuming that the energy
relaxation processes are slow compared with the interac-
tion time with the field, whereas we do allow for dephas-
ing processes occurring on a time scale comparable with
the duration of the exciting pulse.

Assuming linear polarization of the exciting field and a
vanishing static dipole moment, the dynamics of the sys-
tem is described by the Bloch equations1

S1= = WpeSg —~ Y2S1,
S9 = wpeS1 + 20083 — ¥oS9,

é3=—2982. (1)

The overdot denotes a time derivative. The electric field
E(t) is parametrized in terms of the instantaneous Rabi
frequency Q(¢)=dE(t)/h, which can be written as

Q) = Qple(t)exp(~ it +idop) + € (explint ~ider) /2,
(2)

where the asterisk denotes the complex conjugate. Here,
€(t) is the normalized, in general, complex envelope func-
tion; w,=2mf, is the carrier frequency; and ¢y is the CE
phase. In this paper, we refer to Qr=dE /% as the (peak)
Rabi frequency, with the maximum value of the electric
field envelope E|,.

For some applications, it is convenient to transform the
Bloch equations, Egs. (1), into a rotating reference frame.
The transformation between the Bloch vector s and the
vector in the rotating frame u=(u,v,w)T, where T denotes
the transposed vector, is given by u(¢)=A(¢)s(¢):
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cos(wpgt) sin(wp,t) 0
A(t) = | — sin(wpyt) cos(wpgt) 0. (3)
0 0 1

For y;=0, we obtain the equations of motion in the rotat-
ing frame:

u =2Q sin(wp,t)w - yout, (4a)
0 =20 cos(wpt)w — yov, (4b)
w = — 20 sin(wpyt)u — 20 cos(wpyt)v. (4c)

3. STEADY-STATE INVERSION

We consider a two-level system excited by an electric field
pulse, parametrized in terms of Q(¢), and neglect energy
relaxation, i.e., y;=0. During interaction with the field,
the inversion in the system evolves and reaches a steady-
state value w,, staying constant after interaction with the
pulse. In this paper, we investigate the CE phase sensi-
tivity of the steady-state inversion, which is readily acces-
sible to experiments. We assume that the dipole moment
of the system is initially vanishing, corresponding to the
initial condition s;=s9=0 and s3=w,. This is always ful-
filled if the system starts from equilibrium, where w cor-
responds to the equilibrium inversion.

A. Inversion Invariance under Time Reversal
of the Field
Strong excitation of the two-level system results in the
breakdown of the RWA and of related features such as the
area theorem.? By way of contrast, the property discussed
in the following is valid even in the strong-field limit.
We take the Bloch equations, Eqgs. (4), assuming y;=0
and an initially vanishing dipole moment. Under these
conditions, the steady-state inversion wy, after interaction
with an arbitrary pulse (¢), is the same as for excitation
with the time-reversed pulse () (-t). The proof is given in
Appendix A. This feature is remarkable, in that the tem-
poral evolution of the system from its initial state is com-
pletely different in both cases and should not be confused
with the time-reversed dynamics of the system. In Fig. 1,
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Fig. 1. Dynamics of the two-level system for excitation with a
field Q(¢) (black curve) and the corresponding time-reversed field
QO(-t) (gray curve). (a) Time-dependent electric field, param-
etrized in terms of the normalized Rabi frequency. (b) Evolution
of the inversion for a Rabi frequency Qp=1.3 w,, a transition fre-
quency wp,=1.7 w,, and a dephasing rate y,=f,/10.
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Fig. 2. Bloch vector trajectories for excitation of a two-level sys-
tem with a driving field (black curve) and the time-reversed field
(gray curve). The fields and system parameters are the same as
for Fig. 1.
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Fig. 3. Phase-dependent steady-state inversion w, after interac-
tion with a two-cycle sinc pulse, for Rabi frequencies Qz=1.5 o,
(solid curve) and Qp=2.3 w, (dashed curve). The transition fre-
quency is wp,=1.5 0, and the dephasing time is Ty=10/f,.

the invariance of w, with respect to time reversal of the
field is illustrated by means of an example. The time-
dependent field of an exciting pulse is shown in Fig. 1(a),
as well as the corresponding time-reversed field. The
pulse shape is, in principle, arbitrary; the only condition
is that the pulse has a finite energy, and thus the field ap-
proaches zero for ¢ — + . For a propagating electric field,
we furthermore require a vanishing dc component. This
condition, however, is not crucial for the inversion invari-
ance discussed here. In Fig. 1(b), the time-dependent in-
version is displayed, starting at the initial value wy=-1.
The evolution of the inversion is completely different for
excitation with the field and the time-reversed field, but,
still, the same steady-state value is reached in both cases.
This can also be seen in the Bloch sphere representation.
In Fig. 2, the trajectories of the Bloch components u,v,
and w in the rotating frame are shown, with the south
pole of the sphere corresponding to the initial state. The
Bloch vectors evolve in completely different ways, but the
same steady-state inversion is reached. In the presence of
dephasing, the case that is shown here, the trajectories
approach the same point for ¢ — o because the dipole mo-
ment decays; i.e., u and v tend to zero for ¢ — 0. By way of
contrast, for =0, v and v approach different steady-
state values for excitation with the field and the time-
reversed field, respectively. Thus, for ¢ — o, the two trajec-
tories still reach the same value for w but not for u and v.
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B. Steady-State Inversion for Symmetric Pulses

In Sections 5 and 6, we discuss the two-level dynamics for
excitation by sinc-shaped and rectangular pulses, which
are chirp free and have symmetric intensity envelopes.
For such pulses [or, more generally, for pulses with &(¢)
=€'(~¢)], the time reversal of the field corresponds to a
mere sign change of the CE phase, as can be seen from
Eq. (2). As a consequence of the time-reversal invariance
discussed above, we have w,(dcg)=ws(—dcr) for these
pulses. Owing to the centrosymmetry of the two-level sys-
tem, the inversion is furthermore invariant with respect
to a sign change of the electric field, corresponding to a 7
shift in the CE phase, i.e., wy(¢cg) =ws(dcg+ 7). Thus, the
CE phase-dependent occupation probability can be repre-
sented by a 7 periodic Fourier series. If w,(dcr)=w,(
—¢cw) holds, only the even (i.e., cosine) terms remain. For
nonresonant excitation and nonexcessive field strengths,
the series can be truncated after the first-order term, and
we obtain

wy(pcp) =W, + A cos(2¢cE). (5)

The parameters used here are the CE phase-averaged in-
version,

W =[w,(0) + wy(m/2))/2, (6)
and the modulation amplitude
A= [ws(o) - ws(W/Z)]/z? (7)

with -1<w,,A<1.

Figure 3 shows the phase dependence of w; after inter-
action of the two-level system with a sinc pulse. For Qp
=1.5w,, the phase dependence of w, can be well approxi-
mated by Eq. (5). For Qz=2.3w,, higher-order terms in the
Fourier expansion result in a bump around the symmetry
point. For excitation near the two-level resonances wp,
=(2n+1)w,, n=0, 1, 2, ..., the approximation Eq. (5) al-
ready breaks down for smaller Rabi frequencies; i.e., more
terms in the Fourier series are necessary for a full de-
scription.

4. WEAK-FIELD LIMIT

As mentioned in Section 1, linear phase-sensitive effects
have been observed for custom-tailored microwave and
radio-frequency pulses, whereas, for laser-generated opti-
cal pulses, a CE phase dependence can be obtained only in
the nonlinear regime. The phase-dependent dynamics of
an excited two-level system can be treated analytically by
a time-dependent perturbation-series expansion, with the
first-order approximation describing the evolution in the
linear regime. We use the Bloch equations in the rotating
reference frame; see Egs. (4). As the initial condition at
t— -, we choose uy=(0,0,w,)". By formally integrating
Egs. (4a) and (4b) and inserting the results into Eq. (4c¢),
we arrive at an integral equation for w(¢):

t 0
w(t) =w0—4f dt’f d7cos(wp,7)
—% 0

Xexp(— QU )QE - Dw(t' - 7). (8)

In the weak-field limit, the time-dependent inversion
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changes only slightly with respect to its initial value. The
first-order approximation (which is second order in Qp) is
obtained by one’s inserting the zeroth- order solution
wO(t)=w, into the right-hand side of Eq. (8):

wV(@) = wo[ 1- 4f d 7 cos(wp, 7)exp(— yo7)
0

xf dt' Q)@ - r)]. 9

The result for the steady-state inversion wgy=w(t— =) is
favorably expressed in terms of the Fourier transform

O(w) = f dtQ(t)exp(iot), (10)
yielding
wé”:w{l—f dw|Q(w)|2H(w)]. (11)

0

Thus, in the linear regime, the relationship between wj
and the power spectrum of the pulse |Q(w)|? can be de-
scribed in terms of a spectral filter function H(w), which is
given by

H( ) 4 72((‘)2 + '}/; + wza) ( )
w)=— . 12
T (w2 + 'y; + wza)z - 4w§aw2
For vy < wp,, we can make the approximation
4 '}/2/2
H(w)=—————, (13)
W(w - wba) + ’yg
and, in the limit of no dephasing, y,— 0, we obtain
H(w) =28w— wy,). (14)

The Fourier transform of Q(¢), Eq. (10), can, with Eq.
(2), be written as

Q(w) = Q[ el - v )exp(idep) + € (- 0 - w,)exp(-idcr) V2.
(15)

The power spectrum [Q)(w)|? is only phase independent if
€(w)=0 for w<-w,, which, for chirp-free pulses, corre-
sponds to the condition &(w)=0 for |o|=w,.*?

Formally, Eq. (8) is a Volterra integral equation of the
second kind, as can be shown by exchanging the order of
integration. The weak-field approximation, Eq. (9), is thus
equivalent to a first-order Neumann-series expansion,
yielding (ws—wq) ocQ}Ze and also AOCQ% for pulses with
phase-dependent power spectra. Thus, the amount of gen-
erated inversion and its phase dependence scale linearly
with the peak intensity of the pulse. This is different for
pulses with phase-independent power spectra, where, in
the weak-field limit, the phase dependence of w, is pro-
vided by the second-order term. In this case, we obtain
A OCQ}% (or Ac Q% for two-level systems with a static dipole
moment?); i.e., the generated inversion becomes phase
insensitive for weak fields.

In the microwave regime, pulses with the desired enve-
lopes and CE phases can be custom tailored. For example,
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pulses with durations far below one carrier cycle are
available, giving rise to linear CE phase-dependent
processes.24 For the experimental demonstration of the
phase-sensitive inversion, pulses in the radio-frequency
regime with approximately rectangular envelopes, which
have a phase-dependent power spectrum, were applied.8
For such pulses, linear filter effects can be used to deter-
mine the CE phase, and a phase-dependent inversion w,
is obtained even in the weak-field limit. Strictly speaking,
this is also true for Gaussian or hyperbolic secant pulse
shapes, often used as a model for laser pulses.?*?%% In
contrast, for optical pulses emitted by current laser sys-
tems, the power spectrum is phase independent. As a con-
sequence, a CE phase-dependent inversion w, can be ob-
served only in the nonlinear regime.

5. SYSTEMS WITHOUT DISSIPATION

In the following, we investigate the phase dependence of
the steady-state inversion for interaction with rectangu-
lar and sinc pulses, serving as typical model pulses for ex-
citation in the radio-frequency and optical regimes, re-
spectively. In this section, we neglect dissipation; i.e., we
set y;=v9=0. The rectangular pulse corresponds to a
sinusoidal field of finite duration and is thus closely re-
lated to continuous-wave excitation, which plays an im-
portant role in atomic and molecular physics and quan-
tum chemistry.?’f8 This particularly basic pulse shape
features a piecewise-constant envelope. The periodicity of
the field can be exploited for approximately solving the
equations of motion, and basic features of the solutions
can be derived. In the radio-frequency regime, rectangu-
lar pulse shapes can be approximately generated by one’s
switching on and off a sinusoidal field, and they were
used for the experimental demonstration of the phase-
sensitive inversion.® As already pointed out, rectangular
pulses have a phase-dependent power spectrum, yielding
phase-sensitive effects even in the linear regime. Such
pulses are currently not available in the optical regime
from laser sources. Sinc pulses, on the other hand, feature
a rectangular, phase-independent power spectrum and
have proven to be a fairly good description of few-cycle la-
ser pulses.25

A. Excitation with Rectangular Pulses

For rectangular pulses, the envelope in Eq. (2) is given by
et)=1for -T/2<t<T/2 and €(t)=0 otherwise, where T is
the pulse duration. For one to avoid a nonpropagating dc
component for arbitrary CE phases ¢cg, the pulses must
contain an integer number of optical cycles; i.e., T' is an
integer multiple of the carrier period Ty=1/f,. For ¢cg
#(n+1/2)mw, n €7, the field strength exhibits discontinui-
ties, giving rise to a CE phase-dependent power spectrum.
In Fig. 4, the power spectrum |Q(w)|? of a rectangular two-
cycle pulse is displayed. The CE phase dependence of the
power spectrum also becomes clear from the spectral
properties of the pulse. Because the pulse spectrum does
not vanish identically for |w|= w,, the two components in
Eq. (15), centered around w, and -w,, have a region of
spectral overlap, resulting in a CE phase-dependent in-
terference.
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In the following, we investigate the phase sensitivity of
the inversion by numerically solving the Bloch equations,
Eqgs. (1). Figure 5 shows the average inversion @, and the
modulation amplitude A as a function of Qf and wp,. In
Figs. 5(a) and 5(b), w, is displayed for excitation with
rectangular single-cycle and two-cycle pulses, respec-
tively. For weak fields, the inversion is largest for near-
resonant excitation. This resonance is more pronounced
for the two-cycle pulses, owing to their narrower spec-
trum as compared with single-cycle pulses. For Rabi fre-
quencies approaching or even exceeding w,, regions with
strong inversion can also be found for off-resonant excita-
tion due to higher-order transitions. A is shown in Figs.
5(c) and 5(d), again for excitation with rectangular single-
cycle and two-cycle pulses. During interaction with the
pulse, the inversion performs oscillations due to carrier-
wave Rabi ﬂopping,2 and the steady-state value after in-
teraction with the pulse w, strongly depends on the pulse
and system parameters. As a consequence, for w,, as well
as A, regions with positive and negative values alternate.
For rectangular pulses, the generated inversion exhibits a

|$2|2 (arb. units)

02

Fig. 4. Rectangular two-cycle pulse: power spectrum for CE
phases 0 (solid curve) and 7/2 (dashed curve).
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phase dependence even in the linear regime, as discussed
in Section 4. We introduce the relative modulation ampli-
tude or modulation depth

5= M, - wy), (16)

which is helpful to discuss the phase sensitivity in the
weak-field limit. A value of 6= +1 indicates maximum pos-
sible CE phase modulation of the generated inversion,
and 6=0 indicates no modulation. Although the amount of
generated inversion vanishes for low field strengths, the
relative phase sensitivity of w, does not disappear in the
case of phase-dependent power spectra, yielding a finite
value for §in the weak-field limit.

For interaction with a rectangular pulse shape, § does
not depend on the pulse duration 7'. This is a consequence
of the periodic excitation, as shown in Appendix B, and is
true only in two-level systems without dissipation. An ap-
proximate solution beyond the weak-field limit can be ob-
tained by wusing almost degenerate perturbation
‘cheory,%f28 where the perturbation parameter is the nor-
malized Rabi frequency Qp/w,. The zeroth-order pertur-
bation theory, corresponding to the RVVA,28 does not con-
tain any CE phase dependence and thus fails in
predicting phase-sensitive effects.?! Following the proce-
dure in Ref. 28, we obtain the first-order perturbative re-
sult

2 2 2
(g = ) (Wpg + @) + 0. Qp

17

(2 2 2 27
(g + ) (Wpg + @) — 0. QR

see Appendix C. Figure 6 shows the perturbative approxi-
mation and the numerical solution for the modulation
depth. The perturbative result is in good agreement with
the exact solution, especially for moderate field strengths
and moderate detuning, where the almost degenerate per-

@
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QR/ o,

1.5

Fig. 5. Average inversion w, and modulation amplitude A as a function of the Rabi frequency Q and the transition frequency wy, in
units of w,.. Displayed are w, after interaction with rectangular (a) single-cycle and (b) two-cycle pulses and A after interaction with

rectangular (c) single-cycle and (d) two-cycle pulses.
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turbative treatment converges best.2® For small Rabi fre-
quencies Qp, w, approaches zero, but the relative phase
sensitivity of the inversion does not disappear; i.e., the
modulation depth stays finite. In the limit Qr— 0, where
the perturbation theory becomes exact and coincides with
the weak-field approximation [see Egs. (11) and (14)], we
obtain

O = (wh, — 0D(wh, + 02 (18)

(except for odd multiphoton resonances, where § becomes
degenerate for Op—0 and the approximation breaks
down). Thus, in the weak-field limit, §>0 for excitation
below resonance, and <0 for excitation above resonance.
For resonant excitation (w,=wp,), where the population
transfer reaches its maximum, we obtain §=0; i.e., the in-
version does not show a phase sensitivity.

As already mentioned, the RWA does not predict any
phase dependence in the inversion. This might be coun-
terintuitive, especially for pulses with CE phase-
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Fig. 6. Modulation depth & as a function of the Rabi frequency
QOp and the transition frequency wp, in units of w,: perturbative
(dashed curves) and exact numerical result (solid curves).
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dependent power spectra, where the generated inversion
depends on the CE phase even in the weak-field limit. A
straightforward explanation is that the validity of the
RWA is restricted to near-resonant excitation,22 whereas,
on the other hand, the modulation depth in Eq. (18) indi-
cates a phase sensitivity of the inversion just for excita-
tion off resonance.

B. Excitation with Sinc-Shaped Pulses

Sinc pulses are characterized by the full width at half-
maximum (FWHM) value T of the intensity envelope and
the Rabi frequency Q. The normalized envelope function
€(t), introduced in Eq. (2), is given by e(t)=sinc (¢/7)
=sin(¢/7)/(t/ 7). The FWHM pulse duration is T'=2.7837.
These pulses have a rectangular spectrum, extending
from f,—1/(2w7) to f.+1/(277). We require 7>1/(27f,) in
order to avoid unphysical dc components. Under this con-
dition, the power spectrum is CE phase independent; see
discussion after Eq. (15). Thus the inversion does not ex-
hibit a CE phase sensitivity in the linear regime. We note
that Gaussian or hyperbolic secant pulse descriptions fea-
ture unphysical dc components and a phase-sensitive
power spectrum. This can lead to erroneous results, espe-
cially in the weak-field limit or for strong dephasing (see
Section 6), in which the remaining phase sensitivity is
due to the phase-dependent power spectrum, as opposed
to nonlinear electric field effects.

The Bloch equations, Egs. (1), are numerically solved.
In Fig. 7, the average inversion w, and the modulation
amplitude A are displayed as a function of O and wy,. In
Figs. 7(a) and 7(b), i, is shown for excitation with sinc-
shaped single-cycle and two-cycle pulses, and the corre-
sponding A is displayed in Figs. 7(c) and 7(d). As in the
case of excitation with rectangular pulses (see Fig. 5), re-
gions with positive and negative values alternate for both

@
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Fig. 7. Average inversion w, and modulation amplitude A as a function of the Rabi frequency Q and the transition frequency wy, in
units of w,. Displayed are w, after interaction with sinc-shaped (a) single-cycle and (b) two-cycle pulses and A after interaction with

sinc-shaped (c) single-cycle and (d) two-cycle pulses.
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w, and A. The inversion i, is largest for near-resonant ex-
citation, and the resonance is more pronounced for two-
cycle pulses, which have a narrower spectrum. Higher-
order transitions become relevant if Qp approaches or
even exceeds w,, leading to regions with strong inversion
also for off-resonant excitation. As discussed in Section 4,
the steady-state inversion shows no phase dependence in
the linear regime; i.e., the modulation depth & [see Eq.
(16)] approaches zero for sinc pulses. A significant phase
sensitivity can only be found for field strengths in the re-
gime of carrier-wave Rabi flopping, in which nonlinear ef-
fects play a significant role. For sinc-shaped pulses, which
have smooth envelopes unlike rectangular pulses, the
phase sensitivity of w, depends considerably on the pulse
duration in that the phase dependence of the field is more
pronounced for shorter pulses. Thus, higher field
strengths are necessary to obtain a significant modulation
amplitude A for excitation by two-cycle pulses as com-
pared with single-cycle pulses.

6. INFLUENCE OF DEPHASING

In the following, we investigate the influence of phase-
relaxation processes on the CE phase-dependent inver-
sion. In the limit of strong dephasing, an approximate ex-
pression can be derived. We start from the integral
equation Eq. (8). Because the Rabi oscillations of the in-
version are significantly dampened and the kernel decays
rapidly owing to strong dephasing, we can approximate
w(t'-7)=w(t'). By differentiation with respect to ¢, we ob-
tain the first-order differential equation

w(t)=- 4w(t)f d7cos(wpeT)eXp(— yo1) Q)AL - 7),
0

(19)
with the solution
w(t) =w, exp[— 4] d7cos(wp,7)exp(— yo7)
0
13
XJ de’' Q@) - T):|. (20)

For weak fields, where the exponential can be approxi-
mated by a first-order Taylor series, this expression coin-
cides with the weak-field approximation; see Eq. (9). In
analogy to Eq. (11), we can write the steady-state inver-
sion as

Wy =W exp[-f dwlﬂ(w)|2H(w)], (21)

0

with the spectral filter function H(w) defined in Eq. (12)
and the Fourier transform Q(w) given in Eq. (10). As dis-
cussed in Section 4, this expression contains a CE phase
sensitivity only for pulses with a phase-dependent power
spectrum. If v, is large compared with wy,, w., and the
spectral width of the electric field, the steady-state inver-
sion is given by
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Fig. 8. Excitation with a rectangular two-cycle pulse: exact nu-
merical result (solid curves) and strong dephasing approximation
(dashed curves) for the (a) average inversion w, and (b) modula-
tion amplitude A as a function of the normalized dephasing rate
vo/ .. The Rabi frequency is (3=0.25 w,, and the transition fre-
quency is wy,=1.5 w,.

4 ("
w,=w, exp|:— EJ dw|Q(w)|2]
2J0

4 (=
=Wy exp|:— y_f dt|Q(t)|2:| ) (22)
o)

which does not depend on the CE phase or the pulse
shape but only on the total pulse energy. This result can
also be obtained by adiabatic elimination of the polariza-
tion in Eq. (4).

In Figs. 8-11, the results of the numerical simulation
(solid curves) and the strong dephasing approximation
(dashed curves) for the CE phase-dependent steady-state
inversion are shown as a function of y5/w,. In Fig. 8, the
phase-averaged inversion w, and the modulation ampli-
tude A are displayed for interaction with a rectangular
pulse, assuming a moderate Rabi frequency Qz=0.25 ..
The results of the approximation and the numerical simu-
lation agree well, especially for increased dephasing, v,
=0.1w,. Figure 9 shows the phase-averaged inversion w,
for excitation by sinc-shaped pulses with the same param-
eters as before. Here, even better agreement between nu-
merical and analytical results is found. The CE phase de-
pendence of the inversion is negligible in this case, |A
<1077, because nonlinear phase-sensitive effects do not
play a significant role at those field strengths. Figures 10
and 11 show again the results for excitation by rectangu-
lar and sinc-shaped pulses, respectively, but now for a
higher Rabi frequency Qr=w,. In this case, the validity
range of the strong dephasing approximation is reduced
as compared with Qz=0.25 w,, and good agreement with
the exact result is obtained only for 5= w,.

The inversion dynamics under the influence of phase
relaxation can be classified into different regimes. In the
Rabi flopping regime, associated with moderate dephas-
ing, the inversion dynamics is governed by carrier-wave
Rabi oscillations. As discussed in Section 5, the steady-
state inversion exhibits a significant phase sensitivity for
sufficiently short and strong pulses or for pulses with
phase-dependent power spectra. For higher dephasing
rates, the near-transparency regime is reached, charac-
terized by an almost CE phase-independent steady-state
inversion w,~0. This regime can be associated with
dephasing values of roughly v5/w,~0.5...5 in Fig. 10
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Fig. 9. Excitation with a sinc-shaped two-cycle pulse: exact nu-
merical result (solid curve) and strong dephasing approximation
(dashed curve) for the average inversion w, as a function of the
normalized dephasing rate y,/w,. The Rabi frequency is Qp
=0.25 w,, and the transition frequency is w,,=1.5 ..
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Fig. 10. Excitation with a rectangular two-cycle pulse: exact nu-
merical result (solid curves) and strong dephasing approximation
(dashed curves) for the (a) average inversion w, and (b) modula-
tion amplitude A as a function of the normalized dephasing rate
v/ .. The Rabi frequency is Qp=w,, and the transition frequency
is wy,=1.5 w.. The inset shows A at an increased scale.
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Fig. 11. Excitation with a sinc-shaped two-cycle pulse: exact nu-
merical result (solid curves) and strong dephasing approximation
(dashed curve) for the (a) average inversion w, and (b) modula-
tion amplitude A as a function of the normalized dephasing rate
vo/ .. The Rabi frequency is Qp=w,, and the transition frequency
is wp,=1.5 w,. For A, only the numerical result is shown because
the approximation is not CE phase sensitive for sinc pulses.

and yo/w,~0.2 ... 5 in Fig. 11. It does not exist if the ex-
citation is too weak; see Figs. 8 and 9. In the limit of
strong dephasing, w, approaches its initial value wq be-
cause the evolution of the inversion is suppressed. The
freezing of the quantum states can be interpreted as the
quantum Zeno effect,?? in which the decoherence of the
states is induced by frequent measurement or, more gen-
erally, by rapid system-environment interactions. In the
transition regime between transparency and freezing of
the states, the phase sensitivity slightly recovers for the
rectangular pulse, reaching an extremal value of A=
-1.8x 1073 in the inset of Fig. 10. In the quantum Zeno
regime, corresponding to y/w,=5%x103 in Figs. 10 and
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11, the modulation amplitude A and also the modulation
depth 6=A/(w,—w,) asymptotically approach zero.

7. CONCLUSION

In conclusion, we have studied the carrier-envelope phase
sensitivity of the steady-state inversion w,, remaining in
a two-level system after interaction with a pulse. We ex-
amined the invariance of w, under time reversal of the
field. On the basis of this property, we introduced as pa-
rameters the phase-averaged inversion &, and the modu-
lation amplitude A. We discussed the two-level dynamics
analytically in the weak-field limit, in which a phase sen-
sitivity of the inversion could be found only for pulses
with phase-dependent power spectrum. Beyond the linear
regime, the phase sensitivity of w, was studied numeri-
cally for excitation with rectangular and sinc-shaped
pulses. For the rectangular pulse, it was furthermore
proven that the modulation depth §=A/(w,—wg) does not
depend on the pulse length, and an approximate analyti-
cal expression for § was derived by application of almost
degenerate perturbation theory. The influence of phase
relaxation on the inversion was investigated on the basis
of the strong dephasing approximation and numerical
simulations.

For interaction with few-cycle laser pulses, the two-
level model predicts a considerable phase dependence of
w, if the Rabi frequency approaches or even exceeds the
carrier frequency; see Fig. 7. The necessary field
strengths can be reached even for unamplified femtosec-
ond pulses directly out of the laser oscillator when the
light is tightly focused onto the sample.'® These model
calculations show that the phase-dependent inversion is a
promising route for the CE phase detection of few-cycle
laser pulses. One has to be aware of the fact that the ap-
plicability of the two-level model to an atomic, molecular,
or solid-state system in strong fields has its limitations.
Nevertheless, recent theoretical and experimental re-
search shows that basic features of the two-level model
are preserved for the strong-field excitation with few-cycle
laser pulses.l&19

The generated inversion can be detected optically, ei-
ther by an additional probe beam or by the short-
wavelength spectral component of the pulse itself, which
is delayed against the excitation part of the pulse and
can, for example, be chosen at resonance with the two-
level system. It is also possible to read out the excited
electrons electronically with a field-ionization pulse.® Ex-
perimentally, such a detector could be realized by a gas or
a metal vapor. For example, in the two-level approxima-
tion, we obtain with Qp=1.5w, a modulation amplitude of
A=-0.34 for interaction of two-cycle Ti:sapphire laser
pulses with a transition around 589 nm, corresponding to
the famous D lines in sodium. Another option might be
the use of artificial quantum systems such as quantum
dots.

APPENDIX A: INVERSION INVARIANCE
UNDER TIME REVERSAL OF THE FIELD

We now want to show that, for y;=0 and vanishing initial
dipole moment, s;=s9=0 for t——», the remaining inver-
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sion after passage of the pulse is invariant under time re-
versal of the field Q(¢). This should not be confused with
the time-reversed dynamics of the system. The Bloch
equations in the rotating frame, Eqs. (4), can in matrix
form be written as

u=20Mu - yy(uy,u,,0)7, (A1)
with
0 0 sin(wpqt)
M) = 0 0 cos(wpat) (A2)

— sin(wpgt) — cos(wpgt) 0

and u=(uq,uq,u3)T. We assume that the pulse extends
from -t; to ty. As initial condition at t=-¢;,, we choose
uy=(0,0,w,)T. First we assume y,=0. The formal solu-
tion of Eq. (A1) is then given by

to
u(to)zj’expl f 2Q(t)M(t)dt}u0
_to
N
=lim [] exp[2Q(t_,)M_,to/Nlu,
N—» p=—_N
N

=lim [] [I+2Q(_,)M_,ty/Nlu,, (A3)
N pe N

with the time-ordering operator T, the unity matrix
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I, t,=tyn/N, and M, =M(t,). By formally multiplying out
the last line of Eq. (A3), we see that the solution is only
invariant under time reversal of an arbitrary field Q(¢) if

M., M., .M.,uo=M,..M,M,u,, (A4)

for any subset of indices n with —-N<n;<ny<...<ny<N.
For an even number ¢, we obtain
M,,..M, M, uy=wo(-1)"
o2
X H Cos[wba(tnz,n_l - t"zm)]

m=1
x(0,0,1)T. (A5)
If ¢ is odd, we obtain
M,,..M, M, ag=wo(- 1)(-12
(e-1)/2
< 11 cos[wpe(tn, | —tn, )]
m=1

X[Sin(wbat(g),COS((Dbat(),O]T. (AG)

Thus for odd ¢ Eq. (A4) is fulfilled only for the third vector
component, and thus only s3(¢) is invariant under time
reversal of the field.

The case with y,# 0 can be handled analogously by us-
ing the transformation u;=u exp(—yot),ug=1y exp(-yst).
Equation (A4) must now be fulfilled for the matrix

0 0 sin(wp,t)exp(yst)
M@ = 0 0 cos(wp,t)exp(yst) |. (A7)
- sin(wpt)exp(= ¥pt) — cos(wp.t)exp(- ¥st) 0

For an even number ¢, we obtain

1/ €2
y on Wo = wO(_ 1)

/2
< [T fexplya(tn,  ~t., )]

m=1
Xcos[wpq(tn, | = tn, )}
x(0,0,1)7. (A8)
If ¢ is odd, we obtain
M, ..M, M, uy=wy(- 1)1
€-1)/2
X H1 {explya(tn,  ~tn, )]
e

XCOS[a)ba(thMJ - thm)]}

X exp(yat )[sin(wpqt ), cos(wpyt(),0]1 .
(A9)

Again, Eq. (A4) is fulfilled only for the third vector com-

ponent, and thus only s5(¢() is invariant under time rever-
sal of the field.

APPENDIX B: MODULATION DEPTH FOR
THE RECTANGULAR PULSE

In the following, we want to show that, for interaction
with a rectangular pulse shape, the modulation depth &,
defined in Eq. (16), does not depend on the pulse duration
T. Assuming no dissipation, we can describe the state of
the two-level system by the ket |i(t))=c,(t)|a)+cy(t)|d),
with the state vector ¢(¢)=[c,(¢),c,(t)]T. The initial condi-
tion pab=(sl+i52)/2=c:;cb=0 (see Section 3) is here imple-
mented by one’s choosing the initial state vector c
=(1,0)T, corresponding to wy=-1. The evolution of the
system can be described by the Schrodinger equation. For
an exciting field with period Ty, we can bring the solution
into the form

C,= l]nC(),

where U is the unitary transformation matrix and ¢, is
the state vector after n periods.® We diagonalize U by
means of a unitary matrix T,e¢, =T¢c,,U’ =TUT-! and ob-
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tain for the jth component of ¢,
c,; = exp(=inW;T/h)cq;.

Here, W; are the Floquet energies, which do not depend
on the CE phase ¢cg of the exciting field. By back trans-
formation, we obtain the occupation probability of the up-
per level:
lep(nTo)[?
[exp(—inW,To/h) — exp(— inW,To/A) 1T, Tra | 2
- TaaTbb - TabTba

>

(B1)

and the inversion is given by w(nTy)=2|c,;(nTy)|>~1. The
matrix elements 7T; depend on ¢cg but not on the time
nTy. Thus, the time dependence cancels out in the expres-
sion for the modulation depth; see Eq. (16). We note that
for the initial condition s;=s9=0 the modulation depth is
invariant with respect to wg in that the choice of w just
leads to a scaling of the Bloch vector solution s(¢) in Egs.
(1). Thus, the proof is also valid for wq# -1.

APPENDIX C: ALMOST-DEGENERATE
PERTURBATION THEORY

Following the formalism in Ref. 28, we can derive a per-
turbative result for the phase-dependent inversion. In
this appendix, the references to equations refer to Ref. 28
unless otherwise stated, and we adopt the nomenclature
used there, with wg=wp,,w=w0,, and N\=—Qpr/2. As initial
condition, we assume wgp=-1 as in Appendix B (also see
remark at the end of Appendix B), corresponding to
paa(t0)= 1’ pﬁﬁ(tO)=paﬁ(t0)=pﬁa(t0)=0 in Ref. 28. From Eq
(1.33), we get after a few straightforward manipulations
the upper-state population pgg(t)=[w(t)+1]/2 in a two-
level system:

ppp(t)

2 2

> (a,m|x,)expliomt,)

m

> (B,m|x,)exp(iomt)

2
+

> (B,m|x_)exp(iwmt) ‘ ?

> (a,m|x_Yexp(iomty)

+ 29‘1{6Xp[2iq(t - to)][z <a,mlx+>eXp(iwmto)]

m

X _E {x_|a,m)exp(- iwmto)]

X _2 (x+|B,m)exp(- iwmt)]

X

> <B,m\x_>exp(iwmt)] } : (C1)

Here, |a,m),|8,m) are the pseudostates, and |x,),|x_) are
the Floquet modes of the two-level system. The frequency
q is given in Eq. (1.71). With Egs. (1.66), (1.73), (1.74), and
(1.76), we obtain in first-order approximation
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[x+) = N[cos(6)(|a,0) - 7|B,1)) + sin(6)(|3,~ 1) + na,— 2))],

[x-) = N[~ sin(6)(|,0) = 7|8, 1)) + cos(6)(|3,~ 1) + nla,~ 2))],
(C2)

with the normalized field 7=\/(w+ ;). The normalization
constant N is given in Eq. (1.80b), and sin(6),cos(6) are
defined in Eq. (1.72). Furthermore, by inserting Eq. (1.77)
in Eq. (1.73), we obtain within the first-order approxima-
tion

= —hwy/2 - Ph(wy + o),

€j =

€1 = hwo/2 — hw + 7Ph(w + ),

€1 = €, = Mli(wy + ®) — 7°hi(wg + ). (C3)

The case ¢cp=0 corresponds to a cosine pulse extending
from ty=-T/2 to t=T/2, where T is equal to or an integer
multiple of the carrier period Ty=2m/w. We obtain for the
remaining population after passage of the pulse

ppp(T/2) = 2N*[sin(6) — 5 cos(6)]?
X[cos(6) + 7sin(6)[1 - cos(2¢T)]. (C4)

The case ¢cr=—m/2 corresponds to a cosine pulse extend-
ing from ty=-T/2-Ty/4 to t=T/2-Ty/4. We obtain

ppp(T/2 — To/4) = 2N*[sin(6) + 7 cos(6)]*
X[cos(6) — 7 sin(6)*[1 - cos(2¢T)].
(C5)
With Eq. (16) in our paper, we get the modulation depth
27 sin(6)cos(6)[sin(6)? - cos(0)2](1 - 77)
- sin(6)%cos(0)%(1 - 672 + 7*) + 7

(C6)

We now insert Eq. (1.72), making use of the relations
sin?(6) - cos?(0)=—A/q,sin(h)cos(0)=€;/(2gf). The fre-
quencies ¢ and A are given in Eq. (1.71). We multiply the
numerator and denominator of our expression for &§ by
q2%/ 7 and subsequently keep only the terms up to second
order in 7. Making the transition to the nomenclature
used in our paper, with wy— wp,, v— o, and 7—
-Qp/[2(wpe+ )], we finally obtain the perturbative re-
sult given in Eq. (17) in our paper.
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