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Carrier-envelope phase-sensitive inversion
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We theoretically study the carrier-envelope phase-dependent inversion generated in a two-level system by ex-
citation with a few-cycle pulse. On the basis of the invariance of the inversion under time reversal of the ex-
citing field, parameters are introduced to characterize the phase sensitivity of the induced inversion. Linear
and nonlinear phase effects are numerically studied for rectangular and sinc-shaped pulses. Furthermore, ana-
lytical results are obtained in the limits of weak fields, as well as strong dephasing, and by nearly degenerate
perturbation theory for sinusoidal excitation. The results show that the phase-sensitive inversion in the ideal
two-level system is a promising route for constructing carrier-envelope phase detectors. © 2005 Optical Soci-
ety of America
OCIS codes: 020.0020, 020.1670, 190.7110, 320.7120.
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. INTRODUCTION
he two-level system is a fundamental and widely used
odel to describe the interaction of electromagnetic
aves with matter. The temporal evolution of the system

s usually treated within the framework of the rotating-
ave approximation (RWA), in which the driving electric
eld enters the equations of motion only through its com-
lex envelope and center frequency.1 For a complete de-
cription of the electric field, the carrier-envelope (CE)
hase, specifying the position of the envelope with respect
o the rapidly oscillating carrier wave, also has to be
aken into account. The RWA breaks down for strongly
riven systems,2 giving rise to new effects that not only
epend on the pulse envelope and carrier frequency but
lso on the CE phase.
The phase-sensitive dynamics of the driven two-level

ystem beyond the RWA has been the topic of several pa-
ers. The phase dependence of the inversion was carefully
xamined for a sinusoidal excitation, serving as a model
or the interaction of atoms and molecules with
ontinuous-wave laser radiation.3–8 The discussion was
xtended to rectangular pulses, which can be obtained by
bruptly switching on and off the sinusoidal excitation.
he phase sensitivity of the inversion was investigated
nd experimentally demonstrated in the radio-frequency
egime by researchers’ exciting the anticrossing of the po-
assium 21s–19f states.8

Following the arrival of laser pulses consisting of only a
ew optical cycles, there has been considerable interest in
hase-sensitive effects in the pulsed optical regime,9 and
0740-3224/05/102065-11/$15.00 © 2
arious approaches have been used for detecting the CE
hase and frequency.10–16 In this context, the CE phase-
ependent emission of two-level systems17 and
emiconductors18 interacting with few-cycle pulses has
een theoretically investigated, and the effect has experi-
entally been observed in GaAs.19 So far, less attention

as been given to the CE phase dependence of the inver-
ion, with a few exceptions studying the interaction with
aussian pulses.20,21

Whereas for sinusoidal excitation the generated inver-
ion shows a CE phase dependence even for weak fields,
he phase-sensitive dynamics relies completely on nonlin-
ar effects for pulsed optical excitation. In this paper, both
inear and higher-order phase-dependent inversion effects
n two-level systems are theoretically investigated, using
nalytical approximations and numerical simulations
ith properly chosen test pulses. In addition, the influ-
nce of dephasing on the phase sensitivity is studied.
eneral properties of the steady-state inversion are dis-

ussed, and approximate expressions are derived in the
inear and the nonlinear regimes. The paper is organized
s follows. In Section 2, the equations of motion for an ex-
ited two-level system are given in a fixed and a rotating
eference frames. In Section 3, general properties of the
teady-state inversion are discussed. In Section 4, the
hase-dependent inversion in the weak-field limit is ana-
ytically examined, and, in Section 5, the discussion is ex-
ended beyond the linear regime for rectangular and sinc-
haped pulses, using numerical simulations and nearly
egenerate perturbation theory. In Section 6, the influ-
005 Optical Society of America
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nce of the phase relaxation is studied on the basis of the
trong dephasing approximation and numerical results.
e conclude in Section 7.

. EQUATIONS OF MOTION
two-level system is characterized by its dipole matrix el-

ment d and resonance frequency �ba=2�fba= �Eb−Ea� /�,
here Ea and Eb are the eigenenergies associated with

he low- and high-energy states �a� and �b�, respectively.
issipative effects, which arise owing to the interaction of

he ideal two-level system with its environment, can be
aken into account in a statistical approach. The density
atrix is represented by the components of the Bloch vec-

or s. The components s1 and s2 are related to the real and
maginary parts of the off-diagonal density-matrix ele-

ents by �ab= �s1+is2� /2, and �bb−�aa=s3=w is the popu-
ation inversion. In this paper, the relaxation processes
re described by phenomenological parameters, the en-
rgy relaxation rate �1=1/T1, and the dephasing rate �2
1/T2. Frequently, relaxation is dominated by processes

hat lead to a destruction of the phase coherence in the
uantum system without affecting the inversion, result-
ng in a dephasing time T2, which is much shorter than
he energy relaxation time T1. For example, this is typi-
ally the case in a gas due to collision broadening.22 Thus,
n the following, we set �1=0, assuming that the energy
elaxation processes are slow compared with the interac-
ion time with the field, whereas we do allow for dephas-
ng processes occurring on a time scale comparable with
he duration of the exciting pulse.

Assuming linear polarization of the exciting field and a
anishing static dipole moment, the dynamics of the sys-
em is described by the Bloch equations1

ṡ1 = − �bas2 − �2s1,

ṡ2 = �bas1 + 2�s3 − �2s2,

ṡ3 = − 2�s2. �1�

he overdot denotes a time derivative. The electric field
�t� is parametrized in terms of the instantaneous Rabi

requency ��t�=dE�t� /�, which can be written as

��t� = �R���t�exp�− i�ct + i�CE� + �*�t�exp�i�ct − i�CE��/2,

�2�

here the asterisk denotes the complex conjugate. Here,
�t� is the normalized, in general, complex envelope func-
ion; �c=2�fc is the carrier frequency; and �CE is the CE
hase. In this paper, we refer to �R=dE0 /� as the (peak)
abi frequency, with the maximum value of the electric
eld envelope E0.
For some applications, it is convenient to transform the

loch equations, Eqs. (1), into a rotating reference frame.
he transformation between the Bloch vector s and the
ector in the rotating frame u= �u ,v ,w�T, where T denotes
he transposed vector, is given by u�t�=A�t�s�t�:
A�t� = � cos��bat� sin��bat� 0

− sin��bat� cos��bat� 0

0 0 1
� . �3�

or �1=0, we obtain the equations of motion in the rotat-
ng frame:

u̇ = 2� sin��bat�w − �2u, �4a�

v̇ = 2� cos��bat�w − �2v, �4b�

ẇ = − 2� sin��bat�u − 2� cos��bat�v. �4c�

. STEADY-STATE INVERSION
e consider a two-level system excited by an electric field

ulse, parametrized in terms of ��t�, and neglect energy
elaxation, i.e., �1=0. During interaction with the field,
he inversion in the system evolves and reaches a steady-
tate value ws, staying constant after interaction with the
ulse. In this paper, we investigate the CE phase sensi-
ivity of the steady-state inversion, which is readily acces-
ible to experiments. We assume that the dipole moment
f the system is initially vanishing, corresponding to the
nitial condition s1=s2=0 and s3=w0. This is always ful-
lled if the system starts from equilibrium, where w0 cor-
esponds to the equilibrium inversion.

. Inversion Invariance under Time Reversal
f the Field
trong excitation of the two-level system results in the
reakdown of the RWA and of related features such as the
rea theorem.2 By way of contrast, the property discussed
n the following is valid even in the strong-field limit.

We take the Bloch equations, Eqs. (4), assuming �1=0
nd an initially vanishing dipole moment. Under these
onditions, the steady-state inversion ws, after interaction
ith an arbitrary pulse ��t�, is the same as for excitation
ith the time-reversed pulse ��−t�. The proof is given in
ppendix A. This feature is remarkable, in that the tem-
oral evolution of the system from its initial state is com-
letely different in both cases and should not be confused
ith the time-reversed dynamics of the system. In Fig. 1,

ig. 1. Dynamics of the two-level system for excitation with a
eld ��t� (black curve) and the corresponding time-reversed field
�−t� (gray curve). (a) Time-dependent electric field, param-

trized in terms of the normalized Rabi frequency. (b) Evolution
f the inversion for a Rabi frequency �R=1.3 �c, a transition fre-
uency � =1.7 � , and a dephasing rate � = f /10.
ba c 2 c
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he invariance of ws with respect to time reversal of the
eld is illustrated by means of an example. The time-
ependent field of an exciting pulse is shown in Fig. 1(a),
s well as the corresponding time-reversed field. The
ulse shape is, in principle, arbitrary; the only condition
s that the pulse has a finite energy, and thus the field ap-
roaches zero for t→ ±	. For a propagating electric field,
e furthermore require a vanishing dc component. This

ondition, however, is not crucial for the inversion invari-
nce discussed here. In Fig. 1(b), the time-dependent in-
ersion is displayed, starting at the initial value w0=−1.
he evolution of the inversion is completely different for
xcitation with the field and the time-reversed field, but,
till, the same steady-state value is reached in both cases.
his can also be seen in the Bloch sphere representation.
n Fig. 2, the trajectories of the Bloch components u ,v,
nd w in the rotating frame are shown, with the south
ole of the sphere corresponding to the initial state. The
loch vectors evolve in completely different ways, but the
ame steady-state inversion is reached. In the presence of
ephasing, the case that is shown here, the trajectories
pproach the same point for t→	 because the dipole mo-
ent decays; i.e., u and v tend to zero for t→	. By way of

ontrast, for �2=0, u and v approach different steady-
tate values for excitation with the field and the time-
eversed field, respectively. Thus, for t→	, the two trajec-
ories still reach the same value for w but not for u and v.

ig. 2. Bloch vector trajectories for excitation of a two-level sys-
em with a driving field (black curve) and the time-reversed field
gray curve). The fields and system parameters are the same as
or Fig. 1.

ig. 3. Phase-dependent steady-state inversion ws after interac-
ion with a two-cycle sinc pulse, for Rabi frequencies �R=1.5 �c
solid curve) and �R=2.3 �c (dashed curve). The transition fre-
uency is �ba=1.5 �c, and the dephasing time is T2=10/ fc.
. Steady-State Inversion for Symmetric Pulses
n Sections 5 and 6, we discuss the two-level dynamics for
xcitation by sinc-shaped and rectangular pulses, which
re chirp free and have symmetric intensity envelopes.
or such pulses [or, more generally, for pulses with ��t�
�*�−t�], the time reversal of the field corresponds to a
ere sign change of the CE phase, as can be seen from
q. (2). As a consequence of the time-reversal invariance
iscussed above, we have ws��CE�=ws�−�CE� for these
ulses. Owing to the centrosymmetry of the two-level sys-
em, the inversion is furthermore invariant with respect
o a sign change of the electric field, corresponding to a �
hift in the CE phase, i.e., ws��CE�=ws��CE+��. Thus, the
E phase-dependent occupation probability can be repre-
ented by a � periodic Fourier series. If ws��CE�=ws�
�CE� holds, only the even (i.e., cosine) terms remain. For
onresonant excitation and nonexcessive field strengths,
he series can be truncated after the first-order term, and
e obtain

ws��CE� = w̄s + 
 cos�2�CE�. �5�

he parameters used here are the CE phase-averaged in-
ersion,

w̄s = �ws�0� + ws��/2��/2, �6�

nd the modulation amplitude


 = �ws�0� − ws��/2��/2, �7�

ith −1�w̄s ,
�1.
Figure 3 shows the phase dependence of ws after inter-

ction of the two-level system with a sinc pulse. For �R
1.5�c, the phase dependence of ws can be well approxi-
ated by Eq. (5). For �R=2.3�c, higher-order terms in the
ourier expansion result in a bump around the symmetry
oint. For excitation near the two-level resonances �ba
�2n+1��c , n=0, 1, 2, … , the approximation Eq. (5) al-
eady breaks down for smaller Rabi frequencies; i.e., more
erms in the Fourier series are necessary for a full de-
cription.

. WEAK-FIELD LIMIT
s mentioned in Section 1, linear phase-sensitive effects
ave been observed for custom-tailored microwave and
adio-frequency pulses, whereas, for laser-generated opti-
al pulses, a CE phase dependence can be obtained only in
he nonlinear regime. The phase-dependent dynamics of
n excited two-level system can be treated analytically by
time-dependent perturbation-series expansion, with the
rst-order approximation describing the evolution in the

inear regime. We use the Bloch equations in the rotating
eference frame; see Eqs. (4). As the initial condition at
→−	, we choose u0= �0,0,w0�T. By formally integrating
qs. (4a) and (4b) and inserting the results into Eq. (4c),
e arrive at an integral equation for w�t�:

w�t� = w0 − 4	
−	

t

dt�	
0

	

d� cos��ba��


exp�− �2����t����t� − ��w�t� − ��. �8�

n the weak-field limit, the time-dependent inversion
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hanges only slightly with respect to its initial value. The
rst-order approximation (which is second order in �R) is
btained by one’s inserting the zeroth- order solution
�0��t�=w0 into the right-hand side of Eq. (8):

w�1��t� = w0
1 − 4	
0

	

d� cos��ba��exp�− �2��


	
−	

t

dt���t����t� − ��� . �9�

he result for the steady-state inversion ws=w�t→	� is
avorably expressed in terms of the Fourier transform

���� =	
−	

	

dt��t�exp�i�t�, �10�

ielding

ws
�1� = w0
1 −	

0

	

d�������2H���� . �11�

hus, in the linear regime, the relationship between ws
nd the power spectrum of the pulse ������2 can be de-
cribed in terms of a spectral filter function H���, which is
iven by

H��� =
4

�

�2��2 + �2
2 + �ba

2 �
��2 + �2

2 + �ba
2 �2 − 4�ba

2 �2
. �12�

or �2��ba, we can make the approximation

H��� =
4

�

�2/2

�� − �ba�2 + �2
2 , �13�

nd, in the limit of no dephasing, �2→0, we obtain

H��� = 2��� − �ba�. �14�

The Fourier transform of ��t�, Eq. (10), can, with Eq.
2), be written as

���� = �R���� − �c�exp�i�CE� + �*�− � − �c�exp�− i�CE��/2.

�15�

he power spectrum ������2 is only phase independent if
���=0 for ��−�c, which, for chirp-free pulses, corre-
ponds to the condition ����=0 for �����c.

12

Formally, Eq. (8) is a Volterra integral equation of the
econd kind, as can be shown by exchanging the order of
ntegration. The weak-field approximation, Eq. (9), is thus
quivalent to a first-order Neumann-series expansion,23

ielding �ws−w0���R
2 and also 
��R

2 for pulses with
hase-dependent power spectra. Thus, the amount of gen-
rated inversion and its phase dependence scale linearly
ith the peak intensity of the pulse. This is different for
ulses with phase-independent power spectra, where, in
he weak-field limit, the phase dependence of ws is pro-
ided by the second-order term. In this case, we obtain
��R

4 (or 
��R
3 for two-level systems with a static dipole

oment21); i.e., the generated inversion becomes phase
nsensitive for weak fields.

In the microwave regime, pulses with the desired enve-
opes and CE phases can be custom tailored. For example,
ulses with durations far below one carrier cycle are
vailable, giving rise to linear CE phase-dependent
rocesses.24 For the experimental demonstration of the
hase-sensitive inversion, pulses in the radio-frequency
egime with approximately rectangular envelopes, which
ave a phase-dependent power spectrum, were applied.8

or such pulses, linear filter effects can be used to deter-
ine the CE phase, and a phase-dependent inversion ws

s obtained even in the weak-field limit. Strictly speaking,
his is also true for Gaussian or hyperbolic secant pulse
hapes, often used as a model for laser pulses.20,21,25 In
ontrast, for optical pulses emitted by current laser sys-
ems, the power spectrum is phase independent. As a con-
equence, a CE phase-dependent inversion ws can be ob-
erved only in the nonlinear regime.

. SYSTEMS WITHOUT DISSIPATION
n the following, we investigate the phase dependence of
he steady-state inversion for interaction with rectangu-
ar and sinc pulses, serving as typical model pulses for ex-
itation in the radio-frequency and optical regimes, re-
pectively. In this section, we neglect dissipation; i.e., we
et �1=�2=0. The rectangular pulse corresponds to a
inusoidal field of finite duration and is thus closely re-
ated to continuous-wave excitation, which plays an im-
ortant role in atomic and molecular physics and quan-
um chemistry.3–8 This particularly basic pulse shape
eatures a piecewise-constant envelope. The periodicity of
he field can be exploited for approximately solving the
quations of motion, and basic features of the solutions
an be derived. In the radio-frequency regime, rectangu-
ar pulse shapes can be approximately generated by one’s
witching on and off a sinusoidal field, and they were
sed for the experimental demonstration of the phase-
ensitive inversion.8 As already pointed out, rectangular
ulses have a phase-dependent power spectrum, yielding
hase-sensitive effects even in the linear regime. Such
ulses are currently not available in the optical regime
rom laser sources. Sinc pulses, on the other hand, feature

rectangular, phase-independent power spectrum and
ave proven to be a fairly good description of few-cycle la-
er pulses.25

. Excitation with Rectangular Pulses
or rectangular pulses, the envelope in Eq. (2) is given by
�t�=1 for −T /2� t�T /2 and ��t�=0 otherwise, where T is
he pulse duration. For one to avoid a nonpropagating dc
omponent for arbitrary CE phases �CE, the pulses must
ontain an integer number of optical cycles; i.e., T is an
nteger multiple of the carrier period T0=1/ fc. For �CE

�n+1/2�� , n�Z, the field strength exhibits discontinui-
ies, giving rise to a CE phase-dependent power spectrum.
n Fig. 4, the power spectrum ������2 of a rectangular two-
ycle pulse is displayed. The CE phase dependence of the
ower spectrum also becomes clear from the spectral
roperties of the pulse. Because the pulse spectrum does
ot vanish identically for �����c, the two components in
q. (15), centered around �c and −�c, have a region of
pectral overlap, resulting in a CE phase-dependent in-
erference.
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In the following, we investigate the phase sensitivity of
he inversion by numerically solving the Bloch equations,
qs. (1). Figure 5 shows the average inversion w̄s and the
odulation amplitude 
 as a function of �R and �ba. In
igs. 5(a) and 5(b), w̄s is displayed for excitation with
ectangular single-cycle and two-cycle pulses, respec-
ively. For weak fields, the inversion is largest for near-
esonant excitation. This resonance is more pronounced
or the two-cycle pulses, owing to their narrower spec-
rum as compared with single-cycle pulses. For Rabi fre-
uencies approaching or even exceeding �c, regions with
trong inversion can also be found for off-resonant excita-
ion due to higher-order transitions. 
 is shown in Figs.
(c) and 5(d), again for excitation with rectangular single-
ycle and two-cycle pulses. During interaction with the
ulse, the inversion performs oscillations due to carrier-
ave Rabi flopping,2 and the steady-state value after in-

eraction with the pulse ws strongly depends on the pulse
nd system parameters. As a consequence, for w̄s, as well
s 
, regions with positive and negative values alternate.
or rectangular pulses, the generated inversion exhibits a

ig. 4. Rectangular two-cycle pulse: power spectrum for CE
hases 0 (solid curve) and � /2 (dashed curve).

ig. 5. Average inversion w̄s and modulation amplitude 
 as a
nits of �c. Displayed are w̄s after interaction with rectangular
ectangular (c) single-cycle and (d) two-cycle pulses.
hase dependence even in the linear regime, as discussed
n Section 4. We introduce the relative modulation ampli-
ude or modulation depth

� = 
/�w̄s − w0�, �16�

hich is helpful to discuss the phase sensitivity in the
eak-field limit. A value of �= ±1 indicates maximum pos-

ible CE phase modulation of the generated inversion,
nd �=0 indicates no modulation. Although the amount of
enerated inversion vanishes for low field strengths, the
elative phase sensitivity of ws does not disappear in the
ase of phase-dependent power spectra, yielding a finite
alue for � in the weak-field limit.

For interaction with a rectangular pulse shape, � does
ot depend on the pulse duration T. This is a consequence
f the periodic excitation, as shown in Appendix B, and is
rue only in two-level systems without dissipation. An ap-
roximate solution beyond the weak-field limit can be ob-
ained by using almost degenerate perturbation
heory,26–28 where the perturbation parameter is the nor-
alized Rabi frequency �R /�c. The zeroth-order pertur-

ation theory, corresponding to the RWA,28 does not con-
ain any CE phase dependence and thus fails in
redicting phase-sensitive effects.21 Following the proce-
ure in Ref. 28, we obtain the first-order perturbative re-
ult

�p =
��ba

2 − �c
2���ba + �c� + �c�R

2

��ba
2 + �c

2���ba + �c� − �c�R
2 ; �17�

ee Appendix C. Figure 6 shows the perturbative approxi-
ation and the numerical solution for the modulation

epth. The perturbative result is in good agreement with
he exact solution, especially for moderate field strengths
nd moderate detuning, where the almost degenerate per-

n of the Rabi frequency �R and the transition frequency �ba in
gle-cycle and (b) two-cycle pulses and 
 after interaction with
functio
(a) sin
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urbative treatment converges best.28 For small Rabi fre-
uencies �R , ws approaches zero, but the relative phase
ensitivity of the inversion does not disappear; i.e., the
odulation depth stays finite. In the limit �R→0, where

he perturbation theory becomes exact and coincides with
he weak-field approximation [see Eqs. (11) and (14)], we
btain

�p = ��ba
2 − �c

2�/��ba
2 + �c

2� �18�

except for odd multiphoton resonances, where � becomes
egenerate for �R→0 and the approximation breaks
own). Thus, in the weak-field limit, ��0 for excitation
elow resonance, and ��0 for excitation above resonance.
or resonant excitation ��c=�ba�, where the population
ransfer reaches its maximum, we obtain �=0; i.e., the in-
ersion does not show a phase sensitivity.

As already mentioned, the RWA does not predict any
hase dependence in the inversion. This might be coun-
erintuitive, especially for pulses with CE phase-

ig. 6. Modulation depth � as a function of the Rabi frequency
R and the transition frequency �ba in units of �c: perturbative

dashed curves) and exact numerical result (solid curves).

ig. 7. Average inversion w̄s and modulation amplitude 
 as a
nits of �c. Displayed are w̄s after interaction with sinc-shaped
inc-shaped (c) single-cycle and (d) two-cycle pulses.
ependent power spectra, where the generated inversion
epends on the CE phase even in the weak-field limit. A
traightforward explanation is that the validity of the
WA is restricted to near-resonant excitation,22 whereas,
n the other hand, the modulation depth in Eq. (18) indi-
ates a phase sensitivity of the inversion just for excita-
ion off resonance.

. Excitation with Sinc-Shaped Pulses
inc pulses are characterized by the full width at half-
aximum (FWHM) value T of the intensity envelope and

he Rabi frequency �R. The normalized envelope function
�t�, introduced in Eq. (2), is given by ��t�=sinc �t /��
sin�t /�� / �t /��. The FWHM pulse duration is T=2.783�.
hese pulses have a rectangular spectrum, extending

rom fc−1/ �2��� to fc+1/ �2���. We require ��1/ �2�fc� in
rder to avoid unphysical dc components. Under this con-
ition, the power spectrum is CE phase independent; see
iscussion after Eq. (15). Thus the inversion does not ex-
ibit a CE phase sensitivity in the linear regime. We note
hat Gaussian or hyperbolic secant pulse descriptions fea-
ure unphysical dc components and a phase-sensitive
ower spectrum. This can lead to erroneous results, espe-
ially in the weak-field limit or for strong dephasing (see
ection 6), in which the remaining phase sensitivity is
ue to the phase-dependent power spectrum, as opposed
o nonlinear electric field effects.

The Bloch equations, Eqs. (1), are numerically solved.
n Fig. 7, the average inversion w̄s and the modulation
mplitude 
 are displayed as a function of �R and �ba. In
igs. 7(a) and 7(b), w̄s is shown for excitation with sinc-
haped single-cycle and two-cycle pulses, and the corre-
ponding 
 is displayed in Figs. 7(c) and 7(d). As in the
ase of excitation with rectangular pulses (see Fig. 5), re-
ions with positive and negative values alternate for both

n of the Rabi frequency �R and the transition frequency �ba in
gle-cycle and (b) two-cycle pulses and 
 after interaction with
functio
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¯ s and 
. The inversion w̄s is largest for near-resonant ex-
itation, and the resonance is more pronounced for two-
ycle pulses, which have a narrower spectrum. Higher-
rder transitions become relevant if �R approaches or
ven exceeds �c, leading to regions with strong inversion
lso for off-resonant excitation. As discussed in Section 4,
he steady-state inversion shows no phase dependence in
he linear regime; i.e., the modulation depth � [see Eq.
16)] approaches zero for sinc pulses. A significant phase
ensitivity can only be found for field strengths in the re-
ime of carrier-wave Rabi flopping, in which nonlinear ef-
ects play a significant role. For sinc-shaped pulses, which
ave smooth envelopes unlike rectangular pulses, the
hase sensitivity of ws depends considerably on the pulse
uration in that the phase dependence of the field is more
ronounced for shorter pulses. Thus, higher field
trengths are necessary to obtain a significant modulation
mplitude 
 for excitation by two-cycle pulses as com-
ared with single-cycle pulses.

. INFLUENCE OF DEPHASING
n the following, we investigate the influence of phase-
elaxation processes on the CE phase-dependent inver-
ion. In the limit of strong dephasing, an approximate ex-
ression can be derived. We start from the integral
quation Eq. (8). Because the Rabi oscillations of the in-
ersion are significantly dampened and the kernel decays
apidly owing to strong dephasing, we can approximate
�t�−���w�t��. By differentiation with respect to t, we ob-

ain the first-order differential equation

ẇ�t� = − 4w�t�	
0

	

d� cos��ba��exp�− �2����t����t� − ��,

�19�

ith the solution

w�t� = w0 exp
− 4	
0

	

d� cos��ba��exp�− �2��


	
−	

t

dt���t����t� − ��� . �20�

or weak fields, where the exponential can be approxi-
ated by a first-order Taylor series, this expression coin-

ides with the weak-field approximation; see Eq. (9). In
nalogy to Eq. (11), we can write the steady-state inver-
ion as

ws = w0 exp
−	
0

	

d�������2H���� , �21�

ith the spectral filter function H��� defined in Eq. (12)
nd the Fourier transform ���� given in Eq. (10). As dis-
ussed in Section 4, this expression contains a CE phase
ensitivity only for pulses with a phase-dependent power
pectrum. If �2 is large compared with �ba , �c, and the
pectral width of the electric field, the steady-state inver-
ion is given by
ws = w0 exp
−
4

��2
	

0

	

d�������2�
= w0 exp
−

4

�2
	

−	

	

dt���t��2� , �22�

hich does not depend on the CE phase or the pulse
hape but only on the total pulse energy. This result can
lso be obtained by adiabatic elimination of the polariza-
ion in Eq. (4).

In Figs. 8–11, the results of the numerical simulation
solid curves) and the strong dephasing approximation
dashed curves) for the CE phase-dependent steady-state
nversion are shown as a function of �2 /�c. In Fig. 8, the
hase-averaged inversion w̄s and the modulation ampli-
ude 
 are displayed for interaction with a rectangular
ulse, assuming a moderate Rabi frequency �R=0.25 �c.
he results of the approximation and the numerical simu-

ation agree well, especially for increased dephasing, �2
0.1�c. Figure 9 shows the phase-averaged inversion w̄s

or excitation by sinc-shaped pulses with the same param-
ters as before. Here, even better agreement between nu-
erical and analytical results is found. The CE phase de-

endence of the inversion is negligible in this case, �
�
10−7, because nonlinear phase-sensitive effects do not

lay a significant role at those field strengths. Figures 10
nd 11 show again the results for excitation by rectangu-
ar and sinc-shaped pulses, respectively, but now for a
igher Rabi frequency �R=�c. In this case, the validity
ange of the strong dephasing approximation is reduced
s compared with �R=0.25 �c, and good agreement with
he exact result is obtained only for �2��c.

The inversion dynamics under the influence of phase
elaxation can be classified into different regimes. In the
abi flopping regime, associated with moderate dephas-

ng, the inversion dynamics is governed by carrier-wave
abi oscillations. As discussed in Section 5, the steady-
tate inversion exhibits a significant phase sensitivity for
ufficiently short and strong pulses or for pulses with
hase-dependent power spectra. For higher dephasing
ates, the near-transparency regime is reached, charac-
erized by an almost CE phase-independent steady-state
nversion ws�0. This regime can be associated with
ephasing values of roughly � /� �0.5 … 5 in Fig. 10

ig. 8. Excitation with a rectangular two-cycle pulse: exact nu-
erical result (solid curves) and strong dephasing approximation

dashed curves) for the (a) average inversion w̄s and (b) modula-
ion amplitude 
 as a function of the normalized dephasing rate
2/�c. The Rabi frequency is �R=0.25 �c, and the transition fre-
uency is �ba=1.5 �c.
2 c
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nd �2 /�c�0.2 … 5 in Fig. 11. It does not exist if the ex-
itation is too weak; see Figs. 8 and 9. In the limit of
trong dephasing, ws approaches its initial value w0 be-
ause the evolution of the inversion is suppressed. The
reezing of the quantum states can be interpreted as the
uantum Zeno effect,29 in which the decoherence of the
tates is induced by frequent measurement or, more gen-
rally, by rapid system-environment interactions. In the
ransition regime between transparency and freezing of
he states, the phase sensitivity slightly recovers for the
ectangular pulse, reaching an extremal value of 
=
1.8
10−3 in the inset of Fig. 10. In the quantum Zeno
egime, corresponding to � /� �5
103 in Figs. 10 and

ig. 9. Excitation with a sinc-shaped two-cycle pulse: exact nu-
erical result (solid curve) and strong dephasing approximation

dashed curve) for the average inversion w̄s as a function of the
ormalized dephasing rate �2 /�c. The Rabi frequency is �R
0.25 �c, and the transition frequency is �ba=1.5 �c.

ig. 10. Excitation with a rectangular two-cycle pulse: exact nu-
erical result (solid curves) and strong dephasing approximation

dashed curves) for the (a) average inversion w̄s and (b) modula-
ion amplitude 
 as a function of the normalized dephasing rate
2/�c. The Rabi frequency is �R=�c, and the transition frequency
s �ba=1.5 �c. The inset shows 
 at an increased scale.

ig. 11. Excitation with a sinc-shaped two-cycle pulse: exact nu-
erical result (solid curves) and strong dephasing approximation

dashed curve) for the (a) average inversion w̄s and (b) modula-
ion amplitude 
 as a function of the normalized dephasing rate
2/�c. The Rabi frequency is �R=�c, and the transition frequency
s �ba=1.5 �c. For 
, only the numerical result is shown because
he approximation is not CE phase sensitive for sinc pulses.
2 c
1, the modulation amplitude 
 and also the modulation
epth �=
 / �w̄s−w0� asymptotically approach zero.

. CONCLUSION
n conclusion, we have studied the carrier-envelope phase
ensitivity of the steady-state inversion ws, remaining in
two-level system after interaction with a pulse. We ex-

mined the invariance of ws under time reversal of the
eld. On the basis of this property, we introduced as pa-
ameters the phase-averaged inversion w̄s and the modu-
ation amplitude 
. We discussed the two-level dynamics
nalytically in the weak-field limit, in which a phase sen-
itivity of the inversion could be found only for pulses
ith phase-dependent power spectrum. Beyond the linear

egime, the phase sensitivity of ws was studied numeri-
ally for excitation with rectangular and sinc-shaped
ulses. For the rectangular pulse, it was furthermore
roven that the modulation depth �=
 / �w̄s−w0� does not
epend on the pulse length, and an approximate analyti-
al expression for � was derived by application of almost
egenerate perturbation theory. The influence of phase
elaxation on the inversion was investigated on the basis
f the strong dephasing approximation and numerical
imulations.

For interaction with few-cycle laser pulses, the two-
evel model predicts a considerable phase dependence of

s if the Rabi frequency approaches or even exceeds the
arrier frequency; see Fig. 7. The necessary field
trengths can be reached even for unamplified femtosec-
nd pulses directly out of the laser oscillator when the
ight is tightly focused onto the sample.18 These model
alculations show that the phase-dependent inversion is a
romising route for the CE phase detection of few-cycle
aser pulses. One has to be aware of the fact that the ap-
licability of the two-level model to an atomic, molecular,
r solid-state system in strong fields has its limitations.
evertheless, recent theoretical and experimental re-

earch shows that basic features of the two-level model
re preserved for the strong-field excitation with few-cycle
aser pulses.18,19

The generated inversion can be detected optically, ei-
her by an additional probe beam or by the short-
avelength spectral component of the pulse itself, which

s delayed against the excitation part of the pulse and
an, for example, be chosen at resonance with the two-
evel system. It is also possible to read out the excited
lectrons electronically with a field-ionization pulse.8 Ex-
erimentally, such a detector could be realized by a gas or
metal vapor. For example, in the two-level approxima-

ion, we obtain with �R=1.5�c a modulation amplitude of
=−0.34 for interaction of two-cycle Ti:sapphire laser
ulses with a transition around 589 nm, corresponding to
he famous D lines in sodium. Another option might be
he use of artificial quantum systems such as quantum
ots.

PPENDIX A: INVERSION INVARIANCE
NDER TIME REVERSAL OF THE FIELD
e now want to show that, for �1=0 and vanishing initial

ipole moment, s =s =0 for t→−	, the remaining inver-
1 2
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ion after passage of the pulse is invariant under time re-
ersal of the field ��t�. This should not be confused with
he time-reversed dynamics of the system. The Bloch
quations in the rotating frame, Eqs. (4), can in matrix
orm be written as

u̇ = 2�Mu − �2�u1,u2,0�T, �A1�

ith

M�t� = � 0 0 sin��bat�

0 0 cos��bat�

− sin��bat� − cos��bat� 0
� �A2�

nd u= �u1 ,u2 ,u3�T. We assume that the pulse extends
rom −t0 to t0. As initial condition at t=−t0, we choose
0= �0,0,w0�T. First we assume �2=0. The formal solu-

ion of Eq. (A1) is then given by

u�t0� = T̂ exp
	
−t0

t0

2��t�M�t�dt�u0

= lim
N→	



n=−N

N

exp�2��t−n�M−nt0/N�u0

= lim
N→	



n=−N

N

�I + 2��t−n�M−nt0/N�u0, �A3�

ˆ
ith the time-ordering operator T, the unity matrix E

p
s

A
T
I
w
d
T
t
w
t
m
=
s
a
i

w
t
m

, tn= t0n /N, and Mn=M�tn�. By formally multiplying out
he last line of Eq. (A3), we see that the solution is only
nvariant under time reversal of an arbitrary field ��t� if

M−n1
M−n2

…M−n�
u0 = Mn�

…Mn2
Mn1

u0, �A4�

or any subset of indices n with −N�n1�n2�…�n��N.
or an even number �, we obtain

Mn�
…Mn2

Mn1
u0 = w0�− 1��/2




m=1

�/2

cos��ba�tn2m−1
− tn2m

��


�0,0,1�T. �A5�

f � is odd, we obtain

Mn�
…Mn2

Mn1
u0 = w0�− 1���−1�/2


 

m=1

��−1�/2

cos��ba�tn2m−1
− tn2m

��


�sin��bat��,cos��bat��,0�T. �A6�

hus for odd � Eq. (A4) is fulfilled only for the third vector
omponent, and thus only s3�t0� is invariant under time
eversal of the field.

The case with �2�0 can be handled analogously by us-
ng the transformation u1= ũ1 exp�−�2t� ,u2= ũ2 exp�−�2t�.

quation (A4) must now be fulfilled for the matrix
M̃�t� = � 0 0 sin��bat�exp��2t�

0 0 cos��bat�exp��2t�

− sin��bat�exp�− �2t� − cos��bat�exp�− �2t� 0
� . �A7�
or an even number �, we obtain

M̃n�
…M̃n2

M̃n1
u0 = w0�− 1��/2




m=1

�/2

�exp��2�tn2m−1
− tn2m

��


cos��ba�tn2m−1
− tn2m

���


�0,0,1�T. �A8�

f � is odd, we obtain

M̃n�
…M̃n2

M̃n1
u0 = w0�− 1���−1�/2


 

m=1

��−1�/2

�exp��2�tn2m−1
− tn2m

��


cos��ba�tn2m−1
− tn2m

���


exp��2t���sin��bat��,cos��bat��,0�T.

�A9�

gain, Eq. (A4) is fulfilled only for the third vector com-
onent, and thus only s3�t0� is invariant under time rever-
al of the field.

PPENDIX B: MODULATION DEPTH FOR
HE RECTANGULAR PULSE

n the following, we want to show that, for interaction
ith a rectangular pulse shape, the modulation depth �,
efined in Eq. (16), does not depend on the pulse duration
. Assuming no dissipation, we can describe the state of

he two-level system by the ket ���t��=ca�t��a�+cb�t��b�,
ith the state vector c�t�= †ca�t� ,cb�t�‡T. The initial condi-

ion �ab= �s1+is2� /2=ca
*cb=0 (see Section 3) is here imple-

ented by one’s choosing the initial state vector c0
�1,0�T, corresponding to w0=−1. The evolution of the
ystem can be described by the Schrödinger equation. For
n exciting field with period T0, we can bring the solution
nto the form

cn = Unc0,

here U is the unitary transformation matrix and cn is
he state vector after n periods.8 We diagonalize U by
eans of a unitary matrix T ,c� =Tc ,U =TUT−1 and ob-
n n �
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ain for the jth component of cn�

cnj� = exp�− inWjT0/��c0j� .

ere, Wj are the Floquet energies, which do not depend
n the CE phase �CE of the exciting field. By back trans-
ormation, we obtain the occupation probability of the up-
er level:

cb�nT0��2

= � �exp�− inWbT0/�� − exp�− inWaT0/���TaaTba

TaaTbb − TabTba
�2

,

�B1�

nd the inversion is given by w�nT0�=2�cb�nT0��2−1. The
atrix elements Tij depend on �CE but not on the time
T0. Thus, the time dependence cancels out in the expres-
ion for the modulation depth; see Eq. (16). We note that
or the initial condition s1=s2=0 the modulation depth is
nvariant with respect to w0 in that the choice of w0 just
eads to a scaling of the Bloch vector solution s�t� in Eqs.
1). Thus, the proof is also valid for w0�−1.

PPENDIX C: ALMOST-DEGENERATE
ERTURBATION THEORY
ollowing the formalism in Ref. 28, we can derive a per-
urbative result for the phase-dependent inversion. In
his appendix, the references to equations refer to Ref. 28
nless otherwise stated, and we adopt the nomenclature
sed there, with �0=�ba ,�=�c, and �=−�R /2. As initial
ondition, we assume w0=−1 as in Appendix B (also see
emark at the end of Appendix B), corresponding to
���t0�=1, ����t0�=����t0�=����t0�=0 in Ref. 28. From Eq.
1.33), we get after a few straightforward manipulations
he upper-state population ����t�= �w�t�+1� /2 in a two-
evel system:

���t�

= ��
m

��,m��+�exp�i�mt��2��
m

��,m��+�exp�i�mt0��2

+ ��
m

��,m��−�exp�i�mt��2��
m

��,m��−�exp�i�mt0��2

+ 2R�exp�2iq�t − t0��
�
m

��,m��+�exp�i�mt0��


�

m

��−��,m�exp�− i�mt0��


�

m

��+��,m�exp�− i�mt��


�

m

��,m��−�exp�i�mt��� . �C1�

ere, �� ,m� , �� ,m� are the pseudostates, and ��+� , ��−� are
he Floquet modes of the two-level system. The frequency
is given in Eq. (1.71). With Eqs. (1.66), (1.73), (1.74), and

1.76), we obtain in first-order approximation
��+� = N�cos������,0� − ���,1�� + sin������,− 1� + ���,− 2���,

��−� = N�− sin������,0� − ���,1�� + cos������,− 1� + ���,− 2���,

�C2�

ith the normalized field �=� / ��+�0�. The normalization
onstant N is given in Eq. (1.80b), and sin��� , cos��� are
efined in Eq. (1.72). Furthermore, by inserting Eq. (1.77)
n Eq. (1.73), we obtain within the first-order approxima-
ion

�jj = − ��0/2 − �2���0 + ��,

�kk = ��0/2 − �� + �2���0 + ��,

�jk = �kj = ����0 + �� − �3���0 + ��. �C3�

he case �CE=0 corresponds to a cosine pulse extending
rom t0=−T /2 to t=T /2, where T is equal to or an integer
ultiple of the carrier period T0=2� /�. We obtain for the

emaining population after passage of the pulse

����T/2� = 2N4�sin��� − � cos����2


�cos��� + � sin����2�1 − cos�2qT��. �C4�

he case �CE=−� /2 corresponds to a cosine pulse extend-
ng from t0=−T /2−T0 /4 to t=T /2−T0 /4. We obtain

����T/2 − T0/4� = 2N4�sin��� + � cos����2


�cos��� − � sin����2�1 − cos�2qT��.

�C5�

ith Eq. (16) in our paper, we get the modulation depth

� =
2� sin���cos����sin���2 − cos���2��1 − �2�

sin���2cos���2�1 − 6�2 + �4� + �2 . �C6�

e now insert Eq. (1.72), making use of the relations
in2���−cos2���=−
 /q ,sin���cos���=�jk / �2q��. The fre-
uencies q and 
 are given in Eq. (1.71). We multiply the
umerator and denominator of our expression for � by
2/�2 and subsequently keep only the terms up to second
rder in �. Making the transition to the nomenclature
sed in our paper, with �0→�ba , �→�c, and �→
�R / �2��ba+�c��, we finally obtain the perturbative re-
ult given in Eq. (17) in our paper.
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