Joint Program Examinations
Every student planning to earn the PhD in Applied Mathematics must pass the two Joint Program Examinations. One exam covers real analysis (MA 653 and MA 654). The other exam covers linear algebra and numerical linear algebra (MA 544 and MA 614). Each exam is three and one half hours long
The exams are administered twice a year. During each administration, a student may take one or both of the exams. A single exam may be attempted at most twice, with a maximum of three attempts allowed for passing both exams.
Any student considering taking this examination should meet as soon as possible with the Graduate Program Director, Dr. Kenneth Howell, in 201B Shelby Center for helpful advice and information.
Plan II (non-thesis option) masters degree students who have passed the Joint Program Exam will not be required to take the final oral examination for the masters degree.
Fall 2013 Schedule
- Real Analysis: Tuesday, September 10, 8:30 AM - 12:00 Noon
- Linear Algebra: Thursday, September 12, 8:30 AM - 12:00 Noon
Topics in Real Analysis
- Lebesgue measure on R1: outer measure, measurable sets and Lebesgue measure, non-measurable sets, measurable functions.
- The Lebesgue integral in R1: positive functions and general functions, comparison with the proper and improper Riemann integral.
- Differentiation and integration: monotone functions, functions of bounded variation, absolute continuity, the fundamental theorem of calculus.
- Definition of a positive measure, measure spaces, measurable functions, the integral with respect to a positive measure.
- Convergence theorems for positive measures: monotone and dominated convergence.
- Lp spaces for positive measures with p=1,2,...,∞, definition, completeness.
- Product measure, Lebesgue measure on Rk, Fubini's theorem.
Topics in Linear Algebra
- Vector spaces over a field: subspaces
- quotient spaces
- complementary subspaces
- bases as maximal linearly independent subsets
- finite dimensional vector spaces
- linear transformations
- null spaces
- ranges
- invariant subspaces
- vector space isomorphisms
- matrix of a linear transformations
- rank and nullity of linear transformations and matrices
- change of basis
- equivalence and similarity of matrices
- dual spaces and bases
- diagonalization of linear operators and matrices
- Cayley-Hamilton theorem and minimal polynomials
- Jordon canonical forms
- real and complex normed and inner product spaces
- Cauchy-Schwarz and triangle inequalities
- orthogonal complements, orthonormal sets
- Fourier coefficients and the Bessel inequality
- adjoint of a linear operator
- positive definite operators and matrices
- unitary diagonalization of normal operators and matrices
- orthogonal diagonalization of real, symmetric matrices
Schedule
Previous Exams
Links to some of the previous exams are given below in Portable Document Format (PDF). You will need a PDF reader, such as Adobe Acrobat Reader, to view these files.
| Date | Real Analysis | Linear Algebra |
| Spring 2013 | ||
| Fall 2012 | ||
| Spring 2012 | ||
| Fall 2011 | ||
| Spring 2011 | ||
| Fall 2010 | ||
| Spring 2010 | ||
| Fall 2009 | ||
| Spring 2009 | ||
| Fall 2008 | ||
| Spring 2008 | ||
| Fall 2007 | ||
| Spring 2007 | ||
| Fall 2006 | ||
| Spring 2006 | ||
| Fall 2005 | ||
| Spring 2005 | ||
| Fall 2004 | ||
| Spring 2004 | ||
|
Spring 2003 |
||
| Fall 2002 | ||
| Fall 2001 | ||
| Spring 2001 | ||
| Spring 2000 | ||
| Fall 1999 | ||
| Spring 1999 | ||
| Fall 1998 | ||
| Spring 1998 | ||
| Fall 1997 | ||
| Spring 1997 | ||
| Fall 1996 | ||
| Spring 1996 | ||
| Fall 1995 |
- Details
- Hits: 1498

