

Testing and Analyzing E-glass Composite Material

Dustin Love

dwl0003@uah.edu

Reliability and Failure Analysis Lab

http://rfal.uah.edu

Objectives

- E-glass (electronic glass)
 - Manufacturing
 - Key Properties
- Determining Properties
 - Testing Parameters
 - The Future

E-glass (electronic glass)

- What is E-glass?
- Optimal Strength
- Woven Materials

Manufacturing

- Melt-spinning
- Controlling Dimensions and Properties
- Treatments

Key Properties

Advantages

- Low Cost
- High production rate
- High strength and stiffness
- Low Density
- Non-flammable and resistant to heat
- Insensitive to moisture
- Chemical resistant
- Able to maintain strength over wide range of conditions

Disadvantages

- Low modulus
- Higher density compared to carbon composites and organic fibers

1953 Corvette body parts

Determining Properties

- Where do we start?
- Standards
- ASTM

Testing Parameters

- ASTM standard D3039
- Coupon
- Tabs

The Instron

- What it does
- How it works
- Application

Instron Data

What the Future Holds

- Major use
- Recycling

Conclusion

- E-glass advantages
 - Easy to use
 - Testing
- What can be made
 - The near future
 - Recycling

Questions