

Baseline Vibration Testing for a Test Fixture

Greg Doud

doudg@uah.edu

Reliability and Failure Analysis Lab

http://rfal.uah.edu

Purpose

- The purpose of this testing is to validate the test set-up for a proof of concept fixture.
 - This will provide information for the later test of a gyro sensor.
- Vibration testing is a vital part of understanding how kinematic systems behave over time.

- Gyroscopic sensors are found in most modern electronic devices
 - Some examples:
 - Smart Phones, RC Helicopters, Digital Cameras, Car Navigation Devices, Robot Balance control
 - These Gyro sensors operate by sensing angular velocity via the Coriolis force.

http://www.xaircraft.org/2010/10/influence-of-body-structure-vibration.html

Theory

- There are many types of gyro sensors
- Main type uses piezoelectric crystal elements
- Piezoelectric devices operate via a phenomenon of crystals
- Output a potential difference with the application of a force
- The Stator is the piezoelectric

- Double T structure gyro sensor
- Drive arms vibrate in a particular direction.
- Rotation causes drive arms to vibrate in a different direction
- A potential difference is created and output as an electrical signal

http://www5.epsondevice.com/en/sensing_device/gyroportal/about.html

Test Plan

- To provide a baseline for design a fixture was created to mount a gyro sensor
- The fixture was created to solidly mount to a modal shaker
- It is important the stinger be mounted rigidly to the fixture
- Sensors mounted to the fixture use beeswax for mounting
- All vibration sensors are piezoelectric

Test Set-up

- Fixture is rigidly mounted to the exciter
- •Accelerometer is placed on the top of the test fixture.
- •Load and acceleration are directly below the fixture.
- •Channels must be defined for each recording device.
- •A Virtual Interface program is created to output a sine sweep from 20-3000Hz at 4 octave/min. Total test time is 116 seconds.
- •1 octave from 20Hz = 40Hz
- •2 octave = 80Hz
- •3 octave = 160Hz
- •4 octave = 320Hz
- •5 octave = 640Hz
- •6 octave = 1280Hz
- •7 octave = 2560Hz
- •8 octave = 5120Hz

Rigidly mounted

Sensor Mounted on pad with beeswax

Test Set-up

- How to determine total test time given an octave/min rate?
- Count the total number of octaves to get to the final frequency
 - **40...80...160...320...640...1280...2560...3000**
 - 1....2...3....4.....5....6....7...7.72
 - Calculating total test time to cover the frequency range =
 - 7.72 octaves/(4octaves/min) = 1.93mins *60s/min= 116s
 - What type of sweep is required?
 - Exponential? Linear? Sine Dwell?
- Exponential sweep integral in discovering response frequencies
 - Mathematical expression: $\omega(t) = \omega_{start}(\omega_{end}/\omega_{start}) d^{t/T}$
 - Where T_d = test duration, ω = frequency

Common Sine Sweeps

Data Acquisition

- Data collected via National Instruments[™] 9234 modules
- After data was collected it was analyzed and modified through Matlab[®]
- Signal is output in g's and N per unit time
- Data is most often interpreted by amplitude of force vs. frequency applied through post processing of data
- Frequency response functions are found by applying FFT

Data Acquisition Cont.

- Another set of data was collected using software from ETS Solutions 3,300lbf modal shaker
- Test of the fixture was performed on this shaker table to verify the mounting scheme
 - Test data reported back the response at each frequency for the same sine sweep

Results In Labview

Experimental Results

• The first harmonic was seen in the fixture at 2200Hz

Conclusion

- Discussed some basics of vibration testing
- Why it is important to understand
- Example of a software and virtual interfaces
- Example of how to perform a test to determine frequency response of a fixture

Questions

