

Composite Manufacturing Techniques

UAHuntsville November 2011 Charles Boyles ctb0001@uah.edu

- What factors should I be concerned with?
- What are the basic materials needed?
- What are the basic techniques?
- How has this information already been applied?

Important Variables

- Volume Fraction

 Over/Under Saturation
- Consolidation
 - Poor bonds between layers
- Cure Cycle
 - Small Variations
- Manufacturing accuracy
 Weave alignment

Fibers

- Carbon Fiber
 - Continuous strands of graphite called tow or filament
 - Woven into sheets
 - Pros
 - High strength
 - Thermal properties
 - Cons
 - Expensive
 - Radio Interference
 - Uses
 - High temperature applications
 - High strength applications
 - Aerospace
 - Automotive
 - Fishing rods and reels
 - Golf shafts and heads
 - Marine Community

Fibers

• Kevlar

- Invented and made by DuPont
- Aramid Fiber
 - Degrades at 400C
- Pros
 - Strength
 - High deflection
- Cons
 - Expensive
 - UV degradation
- Uses
 - Aerospace and Defense
 - Body Armor
 - Ropes and Cables
 - Strengthening fiber optic cables
 - Fire resistant mattresses

Fibers

- Fiberglass
 - Pros
 - Cheap
 - Availability
 - High deflection
 - Cons
 - Strength
 - Uses
 - Thermal and electrical insulation
 - Heat and corrosion resistant
 - Automobiles
 - Aerospace
 - Medical casts
 - Irish step dance shoes

Resins

- Polyester
 - Pros
 - Cheap
 - Available
 - Cons
 - Structurally weak
 - Trouble bonding

Resins

- Epoxy
 - Pros
 - Long work time
 - Structurally strong
 - Resistant to micro fractures
 - Cons
 - Expensive
 - Availability

Resins

- Phenolics
 - Thermosetting
 - High Temperature
 - Examples:
 - Rocket motors
 - Rocket bodies
 - Textiles

Additives

- There are many things you can add to a resin to affect its cured state
 - Fillers
 - Micro Beads
 - Small air filled glass spheres to increase volume while keeping weight low
 - Powders such as graphite and Teflon for a slicker surface
 - Thickeners such as silica and talc
 - Pigments and glitterflakes
 - These cause your resin to take on a color
 - Glitterflakes are generally made from polyester

- Wet Lay-up
 - Pros
 - Simple
 - Cheap
 - Easy
 - Cons
 - Oversaturation
 - Resin Flow

• Pre-Impregnated

- Pros
 - Strongest strength to weight ratio
 - Ideal fiber to resin ratio
 - Aesthetics
- Cons
 - Price
 - Can be difficult to work with
 - Necessary curing temperature
 - Hard to work with once warm
 - For best results, should be compression molded, vacuum bagged, or put in an autoclave.

• Vacuum Bag

- Pros
 - Improves both wet and pre-impregnated techniques
 - Pulls out excess resin out of wet lay-ups
 - Creates pressure and strong inter-laminar bonds.
- Cons
 - Price
 - If done improperly air bubbles can become stuck in your part

• Resin Infusion

- Pros
 - Creates a better resin/fiber ratio
- Cons
 - More complex than previous methods
 - More expensive than previous methods (short term)

- Compression Molding
 - Pros
 - Strong inter-laminar bonds
 - Stronger strength to weight ratio than wet layup and vacuum bag, comparable to autoclave
 - Good for molding awkward shapes
 - Cons
 - Sufficient equipment needed (\$)
 - Press or weights
 - Mold

For Questions or comments please visit us at http://rfal.uah.edu and reply via the contact us page

