Composite Manufacturing Techniques

UAHuntsville
November 2011
Charles Boyles
ctb0001@uah.edu
Objective

- What factors should I be concerned with?
- What are the basic materials needed?
- What are the basic techniques?
- How has this information already been applied?
Important Variables

- Volume Fraction
 - Over/Under Saturation
- Consolidation
 - Poor bonds between layers
- Cure Cycle
 - Small Variations
- Manufacturing accuracy
 - Weave alignment
Fibers

• Carbon Fiber
 – Continuous strands of graphite called tow or filament
 – Woven into sheets
 – Pros
 • High strength
 • Thermal properties
 – Cons
 • Expensive
 • Radio Interference
 – Uses
 • High temperature applications
 • High strength applications
 • Aerospace
 • Automotive
 • Fishing rods and reels
 • Golf shafts and heads
 • Marine Community
• Kevlar
 – Invented and made by DuPont
 – Aramid Fiber
 • Degrades at 400°C
 – Pros
 • Strength
 • High deflection
 – Cons
 • Expensive
 • UV degradation
 – Uses
 • Aerospace and Defense
 • Body Armor
 • Ropes and Cables
 • Strengthening fiber optic cables
 • Fire resistant mattresses

DuPont.com
Fibers

• Fiberglass
 – Pros
 • Cheap
 • Availability
 • High deflection
 – Cons
 • Strength
 – Uses
 • Thermal and electrical insulation
 • Heat and corrosion resistant
 • Automobiles
 • Aerospace
 • Medical casts
 • Irish step dance shoes
Resins

• Polyester
 – Pros
 • Cheap
 • Available
 – Cons
 • Structurally weak
 • Trouble bonding
Resins

• Epoxy
 – Pros
 • Long work time
 • Structurally strong
 • Resistant to micro fractures
 – Cons
 • Expensive
 • Availability
Resins

- Phenolics
 - Thermosetting
 - High Temperature
 - Examples:
 - Rocket motors
 - Rocket bodies
 - Textiles
Additives

• There are many things you can add to a resin to affect its cured state
 – Fillers
 • Micro Beads
 – Small air filled glass spheres to increase volume while keeping weight low
 • Powders such as graphite and Teflon for a slicker surface
 • Thickeners such as silica and talc
 • Pigments and glitterflakes
 – These cause your resin to take on a color
 – Glitterflakes are generally made from polyester
Manufacturing Techniques

• Wet Lay-up
 – Pros
 • Simple
 • Cheap
 • Easy
 – Cons
 • Oversaturation
 • Resin Flow
Manufacturing Techniques

• Pre-Impregnated
 – Pros
 • Strongest strength to weight ratio
 – Ideal fiber to resin ratio
 • Aesthetics
 – Cons
 • Price
 • Can be difficult to work with
 – Necessary curing temperature
 – Hard to work with once warm
 • For best results, should be compression molded, vacuum bagged, or put in an autoclave.
Manufacturing Techniques

• Vacuum Bag
 – Pros
 • Improves both wet and pre-impregnated techniques
 • Pulls out excess resin out of wet lay-ups
 • Creates pressure and strong inter-laminar bonds.
 – Cons
 • Price
 • If done improperly air bubbles can become stuck in your part
Manufacturing Techniques

• Resin Infusion
 – Pros
 • Creates a better resin/fiber ratio
 – Cons
 • More complex than previous methods
 • More expensive than previous methods (short term)
Manufacturing Techniques

• Compression Molding
 – Pros
 • Strong inter-laminar bonds
 • Stronger strength to weight ratio than wet layup and vacuum bag, comparable to autoclave
 • Good for molding awkward shapes
 – Cons
 • Sufficient equipment needed ($)
 – Press or weights
 – Mold
Examples
Questions?

For Questions or comments please visit us at http://rfal.uah.edu and reply via the contact us page.