

Trends in Aerospace Supply Chains

Presented at TRAM 2009

William R. Killingsworth, Ph.D.

University of Alabama in Huntsville Massachusetts Institute of Technology

10 September 2009

UAHUNTSVILLE THE UNIVERSITY OF ALABAMA IN HUNTSVILLE Office for Enterprise Innovation and Sustainability

Managing The Extended Supply Chain

- Strategic Trends Shaping Industry and Government
 - Growing Specialization and Focus on Core Competencies;
 - Outsourcing in the Search for Lower Costs;
 - Continuing Movement Towards Globalization and the Capture of Market Share in Global and Emerging Markets

• Resulting Enterprise Structure and Challenges

- Manufacturers and Prime Contractors Have Become Integrators, Assemblers & Business Managers;
- Hundreds of Companies and Organizations Now Work Together to Deliver Value to the Customer;
- Critical Need for Integrated Management, Visibility, Coordination and Collaboration

The Boeing 787: An Example of a Global Supply Chain

The NASA Ares I Enterprise

Pratt and Whitney Rocketdyne

4

Challenges & Risks in Enterprise Supply Chain Management

- Rapidly Changing Customer Requirements and Demands
- Fast Moving Technologies and Competitors
- Growth of Complex Multi-Tier, Multi-Channel Supply Chains
- Technologies Often Developed by Lower Tier Suppliers
- Management and Verification of Quality and Processes
- Lack of Communication & Visibility in Supply Chains
- Shrinking Supplier Base & Industrial Capacity
- Long Lead Times for Many Materials and Components
- Long Lifetimes and Obsolescence of Parts
- Increasingly Tight Schedules and Deadlines Time is Money
- Material and Parts Assurance -- Counterfeits

Four Important Trends in Aerospace Supply Chain Management

- Detailed Mapping of Extended Supply Chains
- Use of Push-Pull Boundaries & Optimization for Cost Effective Responsiveness
- Modeling and Simulation of Dynamic
 Performance
- Track and Trace for Supply Chain Visibility, Material and Parts Assurance, and Configuration Management

Supply Chain Maps

Identifying Waste, Bottlenecks & Risks

Overview of Global Enterprise Supply Chain

Return to Overhaul

Example Maps of Multi-Tier, Multi-Channel Supply Chains for Aerospace Parts

Detailed Supply Chain Map for Blade Assembly (1 of 2)

(PA) – Prime Administrative Lead Times including dock to stock time (calendar days)

Notes:

Detailed Supply Chain Map for Blade Assembly (2 of 2)

Notes:

- (A) Administrative Lead Times provided by supplier (calendar days)
- (M) Manufacturing Lead Times provided by supplier (calendar days)
- (PA) Prime Administrative Lead Times including dock to stock time (calendar days)

UAHUNTSVILLE THE UNIVERSITY OF ALABAMA IN HUNTSVILLE

Office for Enterprise Innovation and Sustainability

Shaft Assembly Supply Chain (2 of 2)

Summary Comments: Mapping the Supply Chain

- Identifies Bottlenecks and Constraints
- Reveals Wastes at the Interfaces
- Serves as Foundation for Supplier Conferences and Collaborative Planning
- Enables Creation of Lean Supply Chains
- Highlights Risks and Opportunities for Risk Management

Use of Push-Pull Boundaries and Optimizaton for Cost Effective Responsiveness

A Key Supply Chain Strategy: Establishing a Push-Pull Boundary

The Supply Chain Time Line

Push-Pull Boundary

Office for Enterprise Innovation and Sustainability

Source: Towill (2005) "Decoupling for Supply Chain Competitiveness"

UAHUNTSVILLE THE UNIVERSITY OF ALABAMA IN HUNTSVILLE Office for Enterprise Innovation and Sustainability

Move to New Performance Curve Through Optimization

Dollars Invested versus Readiness/Supply Availability

Push-Pull in Distribution

Demand Variability for Typical Product

Inventory Optimization Can Even Determine Specific Hub and Spoke Strategies by SKU

This is for a product family of SKU's within the 40,000 SKU's. Each circle represents a SKU Other drivers include supplier lead time, lead time variability, review period

Inventory Optimization for Performance Based Logistics

Inventory Maintained at Central Hub Distribution Center

Base Assumptions for Operations

- Unit is installed on 98 aircraft;
- 41 Flight Hours per Month;
- MTBF equals 700 Hours;
- Customer Specified Base Fill Rate is 85%;
- Repair Time Equals 6 Weeks;
- New Spare Price Equals Overhaul price, \$250,000;
- New Spare Production Cost Equals New Spare Price, \$250,000;
- Overhaul Cost is \$20,000;
- Shipping Time = 1 Day;
- Carcasses are Readily Available for Repair when Needed;
- Holding Cost = 10%;
- Demand Uncertainty (σ) is Equal to Monthly Demand.

Optimum Inventory for Alternative Cases

Higher Demand Value					Lower Demand Value		
	Low	Medium	High		Low	Medium	High
Table A				Table B			
MTBF (hours)	800	700	569	MTBF (hours)	800	700	569
Fill Rate (%)	80	85	95	Fill Rate (%)	80	85	95
Optempo (hours)	25	41	50	Optempo (hours)	25	41	50
Cost (M)	200	225	265	Cost (M)	200	225	265
CONUS Demand σ	2.98	5.69	8.56	CONUS Demand σ	1	3.75	8.56
Demand σ/μ	1	1	1	Demand σ/μ	0.33	0.66	1
RRLT (weeks)	6	10	12	RRLT (weeks)	6	10	12
Working Capital (M)	\$1.94	\$6.50	\$14.86	Working Capital (M)	\$1.14	\$5.37	\$14.86
Safety Stock	4.83	14.7	31.41	Safety Stock	0.83	9.7	31.41
Base Inventory	3.04	5.81	8.56	Base Inventory	3.04	5.81	8.56
WIP Repair	1.83	8.38	16.09	WIP Repair	1.83	8.38	16.09

Sensitivity Analysis for Demand Forecast Error (σ)

Change in Working Capital with Demand Uncertainty

Demand Forecast Error	Working Capital (M)	Safety Stock	Base Inv	WIP Repair
1.45	\$2.72	2.06	5.81	3.02
2.9	\$3.47	5.06	5.81	3.02
4.35	\$4.22	8.06	5.81	3.02
5.81	\$4.97	11.06	5.81	3.02

Key Assumptions

FH/month	Fill Rate	MTBF	Repair LT	Repair Cost	New Spare Cost	Holding Cost
41	85	700	6 weeks	\$20K	\$250K	10%

Push-Pull in Manufacturing

Key Assumptions

- There are nine critical items in the blade supply chain (Nose Cap, Two Tube Assemblies, Tip Lower, End Cap, Strip, Tie Down, Weight, Bracket)
- All other items are categorized as "Remaining Items"
- The cost of the blade is \$175,790
 - The OEM pays 50% of that cost for the parts needed to assemble a blade, broken down as follows:
 - The Nose Cap and End Cap each comprise 15% of the OEM's's cost for the entire blade
 - The two Tube Assemblies and the Tip Lower each comprise 10% of the OEM's cost for the entire blade
 - The Strip, Tie Down, Weight, and Bracket each comprise 5% of the OEM's cost for the entire blade
 - The remaining 20% is the cost of the "remaining items"
 - First tier suppliers pay 50% of the OEM's cost for the parts needed to assemble their products

UAHUNTSVILLE THE UNIVERSITY OF ALABAMA IN HUNTSVILLE Office for Enterprise Innovation and Sustainability

Committed Service Time: 750 days

UAHUNTSVILLE THE UNIVERSITY OF ALABAMA IN HUNTSVILLE Office for Enterprise Innovation and Sustainability

Committed Service Time: 240 days

Committed Service Time: 30 days

Working Capital Vs. Customer Service Time

Inventory Analyst Conclusions

- Increasing safety stock levels in the manufacturing supply chain can both reduce lead times and reduce the amount of working capital invested to achieve desired service times;
- Increasing safety stock levels even for the one component with the greatest lead time produces noteworthy results;
- Increasing safety stock levels furthermore reduces the risk of shortages and longer lead times in the event of an unexpected increase in demand, a problem that has existed for aviation spares.

Use of Dynamic Models to Evaluate Supply Chain Strategies

Base Case Simulation: Blade Inventories

Inventories

Alternative Simulation: Inventories With Optimum Manufacturing Stocking Policy Inventories

Alternative Simulation B: Inventories With Stocking Policy & OEM PLT Reduction

Inventories

Summary & Conclusions

- Forecasts Are Always Wrong;
- The Longer the Forecast Horizon, the Worse the Forecast;
- Holding Inventory of Final Goods is a Very Expensive Way of Dealing with Uncertainty;
- Push-Pull Boundaries Enhance Abilities to be Adaptive and Responsive and Efficiently Mitigate Risks of Forecast Errors

UAHUNTSVILLE THE UNIVERSITY OF ALABAMA IN HUNTSVILLE Office for Enterprise Innovation and Sustainability

Track and Trace for Supply Chain Visibility, Material & Parts Assurance, and Configuration Management

Overview of Approach

- Two Pronged Attack Builds On IUID;
- 2D Barcode Data Matrix and/or RFID;
- Track and Trace System with Search Capability;
- ePedigree for Backup Assurance of Historical Path.

The basic concept is for every object in the program to be uniquely identified and maintained

Widget #110056

Physical Information

Bill of Materials Manufacturing work centers Raw material used Sub-components used Location Condition Testing results Certifications

Component Information

Production routing Component heritage Raw materials heritage Certification BOMs Manufacturing SPC / SQC data Manufacturing video Design documents Version controls

Programmatic Information

Timeline / schedule Budget Dependencies Sourcing Certifications Contractual deliverables

Enterprise Operating Model Master Scenarios

System Structure With Nodes at Suppliers

UAHUNTSVILLE THE UNIVERSITY OF ALABAMA IN HUNTSVILLE Office for Enterprise Innovation and Sustainability

signatureInfo

Signature (Retailer Signs: ReceivedPed-2)

receivingInfo

signatureInfo

Signature (Wholesaler Signs: ShippedPed-2)

Supplement Track & Trace With Secure Digital

ePedigree

Secure Nested XML Pedigree Standard Established by GS1/EPC Global

ePedigree Is Built Up As Part Moves Through Supply Chain

UAHuntsville

Office for Enterprise Innovation and Sustainability

Product Information

Pedigree Serial Number

Sample Pedigree

Summary Comments on Serialization and Track & Trace

- Unique ID serialization opens the door for material and parts assurance, supply chain visibility, and configuration management;
- Global ePedigree standard offers potential for additional security; and
- Data carrier (RFID, 2D matrix barcode, laser marking, etc.) depends on part and business case analysis.

Overall Conclusions

- Supply Chain Management Strategies Are Evolving to Meet the Challenges in Global Aerospace Manufacturing;
- There Is No Single Strategy that Will Solve the Supply Chain Demands;
- A Robust Solution Will Likely Involve Detailed Supply Chain Maps, Close Suppler Relations, Push-Pull Boundaries, Track and Trace Technologies, Optimization and Modeling and Simulation.

Contact Information

Dr. William R. Killingsworth Director, Office for Enterprise Innovation and Sustainability University of Alabama in Huntsville <u>William.Killingsworth@uah.edu</u> 256.824.4434

Executive Director, MIT Forum for Supply Chain Innovation Massachusetts Institute of Technology billk@mit.edu