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The UAH Propulsion Research Center (PRC) is in its 27th year at the University of Alabama in Huntsville 

(UAH).  The mission of the Propulsion Research Center is to provide an environment that connects the 

academic research community with the needs and concerns of the propulsion community while promoting an 

interdisciplinary approach to solving propulsion problems.  This paper summarizes recent metrics from 

academic and research programs.  The emphasis this year is on describing the fifteen different laboratories 

associated with the UAH Propulsion Research Center.  Laboratory highlights in 2018 include a significant 

upgrade of our Rocket Test Stand capabilities, which includes a 2-pound-per-second cryogenic feed system, a 

2,000 pound capacity thrust test stand, and a new high-speed data acquisition and control system.  In the 2017 

fiscal year, total research expenditures from fifteen different agencies rose to $1.884 million (a 20% increase).  

Two Ph.D., eight master’s students, and numerous undergraduate students obtained degrees in conjunction 

with the center. The PRC continues to be a resource to perform both fundamental and applied research.  It is 

also a significant contributor to workforce development in the propulsion and energy field.  

I. Introduction 

HE Propulsion Research Center (PRC) marked its 27th year as a University of Alabama in Huntsville (UAH) 

research organization in 2018.  This paper is part of a series of periodic updates1,2,3 about PRC activities and 

capabilities.  In 2005, Drs. Hawk and Frederick wrote a summary of the research activities of the first thirteen years 

of the UAH Propulsion Research Center. A 25th-anniversary summary paper2 provided insights into the formation and 

overall progress of the PRC at that anniversary.  Last year, the PRC paper detailed seven technical research areas 

active in center operations.3  This paper details fifteen laboratories operated by or associated with the UAH Propulsion 

Research Center and summarizes recent metrics from academic and research programs.  The introduction describes 

the PRC mission and strategy, overall metrics, current research sponsorship.  The following sections describe 

academic infrastructure, laboratory capabilities (the focus of this paper), team development, and plans. 
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A. PRC Mission and Strategy  

The mission of the PRC is to provide an environment that connects the academic research community with the 

needs and concerns of the propulsion community, while promoting an interdisciplinary approach to solving propulsion 

problems.  Individuals and groups within the university collaborate to achieve the PRC’s research goals.  Researchers 

from government laboratories, other universities, and the aerospace industry also collaborate with the PRC.  This 

environment produces leading-edge research results and scholarly activity leading to new discoveries and significant 

workforce development. 

Figure 1 shows the current PRC Organization Chart. The Propulsion Research Center is an assembly of staff, 

faculty, and students that work together under the PRC business unit.  Research centers are business units within UAH 

that focus on specific technical areas.  Each box represents a functional area in the organization. Currently, there are 

over one hundred faculty, staff, and students associated with PRC research activities.  The PRC Center Director 

oversees staff that include a Deputy Director that advises in strategic and technical matters, Program Coordinators 

who manage administrative/fiscal items, a Senior Researcher who oversees Safety and Test Operations, and a Test 

Engineer who oversees laboratory operations at the Johnson Research Center.  The organization chart also shows eight 

Topic Areas from Energy and Power Systems to Propulsion Systems Technology Test-bed.  Propulsion and Systems 

Integration is a new Topic Area added this year focusing on propulsion system reliability and nuclear thermal 

propulsion systems.  Each of these eight areas has a lead person identified as contact.  The names beneath these boxes 

show participating faculty, staff, graduates students, and undergraduate students who are active in each area.  

 

  

Figure 1.  The PRC Organization Chart 
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B.  Overall Metrics  

Figure 2 shows the cumulative production of 

advanced degrees for students associated with 

the Propulsion Research Center from its 

inception in 1991 to 2018. The total master’s 

degree production has now surpassed 210 and 

the total Ph.D. production is approaching 40. 

During the 2017 academic year (fall 2017 

through summer 2018), eight master’s students 

and two Ph.D. students completed advanced 

degrees while working on PRC research. Most 

of the students who receive advanced degrees 

are in the UAH School of Mechanical & 

Aerospace Engineering (MAE).  

Vijay Rani’s dissertation4 described a new 

analytic model for thermoacoustic instabilities 

in a premixed combustor.  Andrew Hiatt’s 

dissertation explored the electrolytic properties 

and combustion characteristics of electric solid 

propellants.5  Students also completed master’s 

theses involving: experimentation on electric 

thrusters,6,7 jet array heat transfer, 8,9 rocket test 

stand optimization,10 and Nuclear Thermal 

Rockets.11 

Figure 3 shows the annual research 

expenditures from external sources for the 

Propulsion Research Center since its inception 

in FY 1991 through a projection of FY 2018. 

The average annual expenditure level of the 

entire period is $1.5 million dollars per year. 

The periodic “surges” in funding generally 

represent the growth and completion of 

significant research programs with a particular 

sponsor.  

Research expenditures increased about 

20% per year in both FY 16 and FY 17.  Total expenditures rose from $1.308 million (FY15) to $1.563 million (FY16), 

to $1,884 million (FY17).  The research expenditure numbers do not include cost shares, internal university research 

funds, or UAH Foundation investments into the PRC. 

C. Current Research Sponsors 

This section highlights the sponsors and funding distributions in FY17 and FY18 (October 2017 through May 

2018). Figure 4 shows the percentage of total research expenditures categorized by income sources for the two periods.  

The “Business” category includes funding from small business (mostly SBIR) and corporate sponsorship.  The main 

shift between FY17 and FY18 is the realignment of effort from DoD to NASA funding percentages.  Two factors 

drive this change.  The first is a short-term funding gap in one of the PRC’s large DoD programs that reduced DoD 

expenditures this year.  The second is the addition of several NASA research contracts related to Space Grant activities.  

The “Other” category has single DoD, DARPA, and State of Alabama Funds grouped in it.   

  

 

Figure 2. Cumulative Production of Advanced Degrees 

Associated with the PRC. 

 

 

Figure 3. Annual PRC Research Expenditures by FY.  

D
ow

nl
oa

de
d 

by
 R

ob
er

t F
re

de
ri

ck
 o

n 
M

ar
ch

 2
5,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
8-

48
05

 

https://arc.aiaa.org/action/showImage?doi=10.2514/6.2018-4805&iName=master.img-001.jpg&w=268&h=199
https://arc.aiaa.org/action/showImage?doi=10.2514/6.2018-4805&iName=master.img-002.jpg&w=270&h=169


 

American Institute of Aeronautics and Astronautics 

4 

Since the beginning of FY17, the PRC has 

received funding from 19 different agencies.  

The PRC FY17 sponsors included Aerojet 

Rocketdyne, Barber-Nichols, Inc., Boeing, C3 

Propulsion, Combustion Research & Flow 

Tech., Inc., The Missile Defense Agency 

(MDA), Gloyer-Taylor Laboratories (GTL), 

Hyper V Technologies, NASA Goddard 

Spaceflight Center, NASA Marshall 

Spaceflight Center  (MSFC), State of 

Alabama, and Varian Medical Systems, 

Incorporated.  The PRC FY18 Sponsors add 

the following organizations: IHI Corporation, 

Jacobs, Manufacturing Technical Solutions 

(MTS), McConnell Jones Lanier & Murphy 

LLP, NASA Headquarters, Solar Turbines, 

Inc., and Vector (formally known as Garvey 

Spacecraft Corp). 

 Academic Infrastructure 

A. Mechanical & Aerospace Engineering   

The PRC draws a majority of academic 

participants from The UAH Department of 

Mechanical & Aerospace Engineering (MAE). 

This also fulfills our strategic priority to 

support academic achievements.  The MAE 

Department offers Bachelors of Science 

Programs in both Aerospace Engineering and 

Mechanical Engineering accredited by the 

Accreditation Board for Engineering and 

Technology, Inc. (ABET). At the graduate 

level, the MAE Department offers Master’s 

and Ph.D. Programs in Aerospace Systems 

Engineering and Mechanical Engineering. 

The undergraduate MAE program had a 

remarkable growth rate last year, expanding 

from 1,068 undergraduates in academic year 

(AY) 16-17 to 1,238 in AY 17-18.  The 

undergraduate Aerospace Engineering 

program component has concurrently grown 

from about one-third to just below one-half of 

the undergraduate population. The Aerospace 

Engineering enrollment may surpass that of 

the Mechanical Engineering program in fall, 

2018.  Enrollment in the graduate program 

increased slightly last year from 152 students 

in AY 16-17 to 158 students in AY 17-18.  

The MAE Department added two new tenure-track faculty in AY 17-18, bringing the total to twenty-one tenured 

and tenure-track faculty.  The new faculty members specialize in the areas of aerodynamics of unmanned vehicles and 

Table 1. UAH Undergraduate and Graduate (Dual Level) 

Academic Courses Related to Propulsion and Energy 

  

 

Figure 4. Research Expenditures Distribution by Sponsor 

Category for FY17, and FY18 to date. 
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in computational materials science.  The MAE Department also maintains five full-time lecturer positions to assist 

with the growing undergraduate population. Several part-time instructors also help carry the teaching load for the 

department.  

B.  Propulsion-Related Courses  

Table 1 shows several propulsion-related classes offered at UAH in Mechanical and Aerospace Engineering. The 

dual-level courses allow undergraduate and graduate students to learn together.  Qualified undergraduates can 

participate in a Joint Undergraduate Master’s Program (JUMP) in which they can simultaneously earn undergraduate 

and graduate credit for taking up to nine hours of approved graduate-level classes.  The increasing totals in the dual-

level classes of Table 1 show how the student growth is increasing class production.  The MAE Department has slated 

MAE 754, Hypersonic Flow, for the fall of 2018.  It covers theories for treating the laminar and turbulent boundary 

layers of reacting fluids, mixtures, related chemical, thermodynamic, and physical phenomena in hypersonic flows, 

leading edge bluntness, shock wave interactions, and vorticity effects. 

  UAH also has a College of Professional and Continuing Studies (CPCS).  The CPCS offers a certificate in 

propulsion by combing three of the following courses: Rocket Propulsion Fundamentals, Advanced Solid Rocket 

Propulsion, Combustion Instability in Solid Rockets, and Liquid Rocket Engineering.  These courses assist 

professionals who might be transitioning into new technical areas and want to receive advanced material for 

professional development credit.  CPCS offers these courses periodically in person or with on-demand, online 

learning. 

 PRC Laboratory Capabilities 

Last year, the PRC review paper presented summaries of activities in each of the seven (now eight) technical topic 

areas shown in Figure 1.  This year, the following sections present specific laboratories and their capabilities that the 

PRC uses to perform research.  Error! Reference source not found.The Propulsion Research Center utilizes the 

sixteen laboratories shown in Table 2. The PRC manages operations at the Propulsion Test Facility and Johnson 

Research Center, the High-Pressure Solid Propellant Laboratory, and the Solar Thermal Laboratory. Other business 

or academic units at UAH manage the “Other” laboratories in which PRC Principal Investigators conduct in their 

research. The following sections present short capabilities write-ups for the laboratories listed in Sections A through 

M.  Each section also contains a figure or diagram and cites publications relevant to each laboratory.   

Figure 5 shows the Johnson Research Center. This floor plan illustrates the JRC laboratories shown in Table 2.  

The JRC is a 15,000 square foot facility that houses offices and laboratory spaces.  PRC Staff and Students have office 

space in the south end of the building.  The PRC Research Engineer and Test Engineer also have offices in the JRC. 

They oversee research operations and mentor our students.  There is a classroom space suitable for holding classes, 

hosting a seminar for up to ninety people, and other group functions.  Card access is required to gain access to the 

working laboratories. Aerojet Rocketdyne has autonomous office and laboratory space of their own in this facility as 

well.  This paper presents overviews of each of the individual JRC laboratory spaces in subsequent sections.   

The Propulsion Test Facility (PTF) is located behind the Johnson Research Center.  The PTF has a bay that houses 

the Supersonic Wind Tunnel and a bay for the Rocket Test Stand.  Between these two bays, an Instrumentation Room 

provides a climate-controlled, protected area for instrumentation, data acquisiton computers, and optical equipment.  

The Rocket Test Stand is operated remotely from the JRC.  The JRC and the PRC have access limted by a security 

fence and a warning light system that shows when tests are in operation.   
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Table 2. Table PRC and Associated Laboratories* 

 

Sec. Propulsion Test Facility (PTF) Location 

A    Rocket Test Cell     UAH Johnson Research Center 

B    Supersonic Wind Tunnel Laboratory (SWTL)    UAH Johnson Research Center 

 Johnson Research Center Location 

C    Charger Rocket Works (Sounding Rockets)    UAH Johnson Research Center 

D    Injector Spray Facility    UAH Johnson Research Center 

E    Plasma and Electrodynamics Research Lab (PERL)    UAH Johnson Research Center 

F    Thermal Fluids Sciences Lab    UAH Johnson Research Center 

G    Vacuum Chamber Test Lab    UAH Johnson Research Center 

 Other PRC Location 

H    High-Pressure Solid Propellant Lab    UAH Materials Science Building 

I    Solar Thermal Lab    UAH Werner von Braun Research Hall 

 Other UAH Location 

J    Adaptive Structures Lab    UAH Technology Hall 

K    Advanced Materials and Processing 

    Laboratory (AMPL) 

   Aerophysics Research Center at  

   Redstone Arsenal 

L    Charger 1    Aerophysics Research Center at    

   Redstone Arsenal 

M    Complex System Integration Lab (CSIL)    UAH Werner von Braun Research Hall 

N    Mechanics of Materials Under Extreme 

     Environments 

   UAH Optics Building 

O    Transport, Reaction, and Energy Conversion Lab    UAH Shelby Center 

     * https://www.uah.edu/prc/facilities 

  

 

Figure 5.  The PRC Johnson Research Center   

D
ow

nl
oa

de
d 

by
 R

ob
er

t F
re

de
ri

ck
 o

n 
M

ar
ch

 2
5,

 2
02

1 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
8-

48
05

 

https://www.uah.edu/prc/facilities


 

American Institute of Aeronautics and Astronautics 

7 

The PRC implemented improved safety infrastructure and practices in the past year highlighted in PRC 2017 Safety 

Plan.12 The PRC staff completed the 2017 Safety Plan to consolidate safety practices that pertain to general and 

hazardous activities that are in the domain of the Johnson Research Center and PRC.  The Safety Plan documents 

many of the practices already in place including emergency communication plans, Johnson Research Center safety 

information, testing guidelines, and JRC certification/inspections.  All participants on PRC Red Teams (persons 

operating hazardous procedures) must now pass 

an online Quiz based on material from the PRC 

2017 Safety Plan.  The PRC also completed a 

formal Test Facility Site Plan in January of 2018.  

The plan describes test operations areas, proper 

handling and storage of energetic materials, and 

other pertinent matters.   

The Safety Plan and Site Plan passed an 

external review by the Defense Contract 

Management Agency in conjunction with a new 

DoD-based contract award to UAH.  The PRC 

hosted a course in Process Hazards Analysis for 

Energetic Materials and Hazardous Chemicals as 

well as a national meeting of the Rocket Test 

Group on our campus.  These activities train our 

students, staff, and faculty in up-to-date and 

practical aspects of working in the propulsion test 

business safely. 

A. Propulsion Test Facility (PTF) –Rocket Test Cell 

The Propulsion Test Facility provides the PRC with capabilities to test propulsion systems and components. 

Propellant capabilities include gaseous oxygen, methane, hydrogen, and nitrogen. The facility can also provide 

controlled flows of liquid fuels such as RP-2, cryogenic oxygen, and cryogenic nitrogen. The PRC recently upgraded13 

the test stand, cryogenic flow, and instrumentation capabilities in the Rocket Test Cell.  The Thrust Stand, shown in 

Error! Reference source not found., has thrust load capabilities from 500 lbf to 2,000 lbf.  Operators can also 

configure the test stand for either horizontal firing or inclined firing (up to 45 degrees) for cryogenic liquid engines.  

A new data acquisition chassis was installed on the PRC test stand and has sixteen high-frequency measurement 

 

Figure 6.  Process Hazards Analysis for Energetic Materials 

and Hazardous Chemicals Course 

 

Figure 7.  The Propulsion Test Facility  
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channels, forty eight pressure channels, thirty two thermocouple channels, eight strain gauge channels, forty-eight 

digital input/output channels, integrated test camera support, analog and digital control cards, and enables remote 

monitoring of valve states and system pressures. The PRC pressure system was upgraded to support supply pressures 

of 3,000 psi, and two bulk nitrogen tanks for system pressure were acquired and added to the system. The new tanks 

provide 110 ft3 of storage volume with pressure limits up to 3,000 psi.  A new high-flow oxidizer leg was added to the 

test cell in 2018. The new leg has 1-inch feed lines that allow up to four times the mass flow rates of the existing PRC 

system and with the increased supply pressure, it can offer significantly longer test durations. Initial demonstration 

tests in 2018 consisted of a 1,600-lbf thrust solid rocket motor horizontal test firing that acquired chamber pressure 

and thrust.  The new cryogenic flow system also demonstrated a 2.7 lb./s LN2 flow for over 30 seconds. Both systems 

used the new data acquisition system for measurements during testing. 

The PRC also demonstrated a new vertical test stand in 2018 for small liquid rocket engines. Recent papers 

describe capabilities13 and results of testing14,,15,16.at the Rocket Test Stand.  

B. Propulsion Test Facility – Supersonic Wind Tunnel Laboratory (SWTL) 

Laboratory capabilities include measurements of phenomena related to turbomachines, as well as aerospace engine 

components with test section inlet Mach numbers from 0.2 up to 3.0. Three parallel test sections provide means to 

investigate transonic and supersonic flow phenomena, either with or without heat transfer. The high-speed flows are 

provided using an elaborate air pressure tank supply system with specially provisioned flow and pressure control 

regulating valves. One currently employed research test section, shown in the foreground of Figure 10, is designed to 

operate at an inlet Mach number of 1.54. This facility provides excellent flow characteristics at supersonic velocities, 

including uniform inlet flow with low turbulence intensity, and minimal flow disturbances. Unique apparatus are 

employed to control shock wave structure, orientation, and unsteadiness, including a shock wave holding plate and a 

downstream choking flap. A photograph of a resulting normal shock wave, along with the associated lambda foot, 

obtained using shadowgraph visualization, is shown in Figure 11. 17,18  Unique capabilities include apparatus to 

investigate SWBLI – Shock Wave Boundary Layer Interactions, shock waves and surface heat transfer on and near 

gas turbine blade tips, and other aerodynamics and turbomachinery phenomena (as applied either to aero-propulsion, 

aerodynamic, aerospace, or turbomachinery components) with high-speed, compressible flows at transonic and 

supersonic Mach numbers. A new transonic test section, containing a linear turbine blade cascade, is under 

development, which will allow investigation of innovative blade tip configurations, both with and without advanced 

film cooling arrangements.19,20  Also available is a test section for teaching laboratory demonstrations of oblique shock 

 

 

 

 

Figure 8.  New UAH Vertical Rocket Test Stand (With LOX Liquid 

Rocket Engine) 

 

Figure 9.  New UAH Rocket Test 

Stand (With Solid Rocket Motor)13 
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waves generated by wedge flows, which is shown within the left-hand side of Figure 9. Experimental techniques 

include a variety of devices for measurements of pressure, velocity, temperature, mass flow rates, and heat transfer 

characteristics, using a variety of devices, including millimeter-scale multiple-hole pressure probes, hot-wire 

anemometry sensors including subminiature sensors, and infrared thermography. Also available are a variety of flow 

visualization technologies and apparatus, including Schlieren and shadowgraph systems for visualization of shock 

wave phenomena. Note that components of these visualization systems are also evident within Figure 11. 

 

 

C. JRC – Charger Rocket Works 

 

Figure 10.  Supersonic Wind Tunnel research test section, teaching demonstration test section, 

Schlieren and shadowgraph visualization apparatus, and associated components. 

 

Figure 11.  Shadowgraph visualization image from testing on 04-05-2018 of normal shock wave, lambda 

foot, and resulting separated boundary layer. Flow direction is from right to left, with shock wave 

holding plate on left side of image, and with rectangular distance reference marker. 
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Mechanical & Aerospace Engineering majors who 

participate in the NASA Student Launch Initiative (SLI) 

program through a two-semester senior design course, 

MAE 490/493 Rocket Design work on the Charger Rocket 

Works (CRW) space at the JRC. By participating in the SLI 

program, students gain hands-on experience in rocket 

design, fabrication, and testing and receive academic credit 

for MAE 490/493 Rocket Design. The CRW workshop has 

tools, works areas, equipment to fabricate small parts. It has 

capabilities to test mechanical, electrical, and computer 

components. There are areas to assemble the inert sounding 

rocket components.  The area is equipped with a drill press, 

standard machine tools, an electronics bench, worktables, 

and racks for parts and materials.  A recent addition to the 

laboratory is an ROBO R2 3D FDM Printer.  This printer 

will facilitate rapid turnaround of both prototype and 

flightworthy components such as fins, electronics housing, 

nosecones, and other custom parts. Another recent addition is an X-winder® 4-Axis Model 4X-23 filament winder that 

enables fabricating of composite airframe components such as bodytubes, couplers, and nosecones. 

The following paper21  describes recent activities supported by the Charger Rocket Works area. 

D. JRC – Injector Spray Facility 

The Injector Spray Facility, shown in  

Figure 13, provides the ability to cold flow liquid and gaseous rocket injectors (with inert fluids), and rapid 

prototyped flow components, for the measurement of flow performance, observation of spray patterns, and 

measurement of droplets.  The facility has an atmospheric spray bench dedicated to the observation of sprays at 

ambient pressures.  There is also a high-pressure chamber to observe injection at pressures up to 500 psig and flow 

rates of up to 2 lb/sec.  K-bottle packs or the wind tunnel tank farm supplies the pressure to run the system. 

Instrumentation at the facility includes pressure, temperature, and flow rate sensors.  There are also high-speed 

video cameras, a 2-D Phase Doppler Particle Analyzer (PDPA), and a 2-D Particle Image Velocimetry (PIV) system, 

all for the collection of atomization and velocity profile characteristics in flows and sprays.   

Past work at the facility has included research on impinging22 and the self-pulsation of swirl coaxial23,24,25 

bipropellant injectors. Current work includes developmental testing of shear coaxial injectors, impinging injectors, 

and fundamental research focused on the effects of surface roughness resulting from additive manufacturing in 

cavitating venturis. 

 

Figure 12.  Staff and Student at Charger Rocket 

Works 

 

 
 

Figure 13.  The PRC Spray Facility 

 

 

 
Figure 14. 2-D Phase Doppler Particle Analyzer. 
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E. JRC – Plasma and Electrodynamics Research Lab (PEARL) 

The Plasma Electrodynamics Research Lab conducts 

experimental research in areas of low-temperature 

plasmas and their engineering applications. Projects have 

included satellite electric propulsion, plasma-assisted 

combustion, nanomaterial synthesis, atmospheric plasma 

jets, and soft and biomaterial treatment with plasmas. The 

lab has a small vacuum chamber capable of 1E-6 Torr 

base pressure for space environment simulation. 

Laboratory power systems provide dc, pulsed high 

voltage dc, ac, rf, and microwave power to generate 

various plasmas. The available diagnostics include a 

tunable dye laser, nanosecond gated intensified CCD 

camera, nanosecond gated spectrometer, scanning monochromator, and various temperature, pressure, and other 

physical probes.  Recent papers26, 27, 28, 29, 30 detail results published by the research team. 

F. JRC – Thermal Fluids Sciences Lab 

The Thermal Fluid Sciences Laboratory (TFSL) 

capabilities include investigation of impingement 

cooling with impingement jet Reynolds numbers up 

to 100,000, Mach numbers up to 0.8, and coolant to 

surface temperature ratios as low as 0.6. Of 

particular interest are effects of special surface 

roughness textures, and shaped impingement-hole 

configurations 71-78. Another facility is employed for 

double wall cooling investigations over a wide range 

of flow conditions, and has provision to include the 

simultaneous effects of impingement jet array 

cooling, cross-flow coolant supply, full coverage 

effusion cooling, and conjugate heat transfer 

phenomena 79-87. The effusion cooling is provided 

with a full-coverage array of holes. One unique 

aspect is a main flow mesh heating system, which 

allows for transient heat transfer measurements, 

which, when employed with infrared thermography, 

provides simultaneous spatially-resolved 

distributions of surface heat transfer coefficients and 

surface adiabatic temperature (from which, distributions of adiabatic film cooling effectiveness are determined) 84-86 

Figure 3 shows a diagram of the double wall cooling test facility, including photographs of individual components 79-

80. The laboratory also has capabilities for investigations of micro-fluidic and millimeter-scale-fluidic phenomena, 

including micro-pump flows, and the effects of slip phenomena on gas and liquid flows in micro-scale passage flows 

with and without surface roughness, including the effects of hydrophobic surfaces and elastic turbulence. Recent 

elastic turbulence investigations involve measurements within Viscous Disk Pumps and Rotating Couette Flow 

environments [88-95], where the heat transfer apparatus associated with the latter environment is shown in Figure 18 
95. Also of interest is experimental and numerical investigation of unsteady impingement cooling within a blade 

leading edge passage 96, as well as unsteady structure and development of both laminar and turbulent impingement 

jets, including Kelvin-Helmholtz vortex development 97-101. Other recent studies consider determination of entropy 

production from the flow field around a turbine guide vane 102-103, and the numerical simulation of this flow field by 

means of Computational Fluid Dynamics (CFD) 102. Also considered is impingement cooling of electronic chips, 

 
Figure 15.  Atmospheric plasma jet discharge. 

Figure 17.  The PRC Johnson Research Center  

 

Figure 16.  Double wall cooling experimental facility with 

heated main flow, cross channel coolant flow, and 

impingement coolant flow components. 
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which are equipped with different cylindrical 

pedestal fin arrangements 104-105. More 

recently, confined, milliscale unsteady laminar 

impinging slot jets are investigated as they 

influence surface Nusselt numbers with 

constant surface heat flux and constant surface 

temperature thermal boundary conditions 106-
110. Other investigations employ spiral inertial 

microfluidic devices for continuous blood cell 

separations 111, as well as microfluidic inertial, 

continuous SPLITT, and field-flow 

fractionation technologies for separations of 

whole blood components 112. More recently, 

secondary Dean vortices 113-114 in spiral 

microchannels are investigated 115, and used to 

advantage for cell separations 115-116. 

Experimental techniques include a variety of 

devices for measurements of pressure, 

velocity, temperature, mass flow rates, and 

heat transfer characteristics, using a variety of 

devices, including millimeter-scale multiple-

hole pressure probes, hot-wire anemometry 

sensors including subminiature sensors, liquid 

crystal thermography, and infrared 

thermography. Also available are a variety of 

flow visualization technologies and apparatus, 

including smoke wires, fog generators for gas 

flow visualizations, and dye injection in 

liquids.  

G. JRC – Vacuum Chamber Test Lab 

The PRC Large Vacuum Test Facility is 

a 13-ft long by 6-ft diameter cylindrical 

stainless clad chamber. It has the capability 

of reaching base pressures down to 10-6 

Torr or around 90 miles above sea level. It 

uses a combination of roughing pump and 

a diffusion pump to remove air from the 

chamber. It is configured with four 

convection gauges, one ionization gauge, 

and pressure transducers for measurement. 

The chamber wall features a series of high 

voltage/current, sensor and propellant feed 

ports. The test facility offers a relevant 

environment for low cost testing to 

evaluate: 1) high altitude atmospheric 

conditions for UAVs and flapping wing 

dynamics, 2) Low Earth orbit space conditions for small-scale air-breathing, chemical, and electric propulsion devices.  

Past experimentation has included; gas-gas reaction control thruster at low earth conditions, Vicon motion capture 

of camera butterfly testing31 at elevated altitudes, and a MagLev micro-thruster demonstration at reduced pressure 

environments.32, 33 

Figure 19.  The PRC Vacuum Chamber 

 

Figure 18.  Photograph of experimental apparatus employed 

for heat transfer measurements and analysis of elastic 

turbulence phenomena within a Rotating Couette Flow 

configuration. 
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H.  Other PRC–High-Pressure Solid Propellant Laboratory  

The PRC High Pressure Laboratory (HPL) 

is a state-of-the-art lab for performing 

experimentation on solid energetics. The PRC 

HPL allows researchers to test solid propellants 

under high-pressure conditions in order to 

evaluate burn rate at varying levels of chamber 

pressure up to 5000 psi. In the lab, there are two 

test cells with 1-foot thick steel reinforced 

concrete walls, a fume hood for chemical 

cleanup, and a grounded work area for handling 

energetics. One test cell utilizes a stainless steel 

combustion chamber with an ultrasonic sensor 

to take burn rate at high pressures. The other 

test cell has an x-ray system capable of doing 

live x-ray videography of burning samples 

through combustion chambers under high-

pressure conditions. The x-ray system also 

performs computed tomography of samples 

configurations.  The PRC established the HPL 

in 1991. 

Recent research includes: fundamental 

studies of electric solid propellants with 

laboratory demonstrations of flame sensitivity 

and electrochemical dependency,34 burn rate 

determination of solid propellant samples using 

ultrasonic pulse-echo techniques,35,36 burn rate 

determination of electric solid propellants with 

live x-ray videography,37 and non-destructive 

examination of porous hybrid grains using x-

ray computed tomography.38  A recent paper 

also details safety practices and technology 

control methods that are used in the HPL.39 

 

 

I. Other PRC– Solar Thermal Laboratory 

The Solar Energy Test Facility (SETF) was originally developed 

in the 1990’s for testing various flat plate solar thermal collectors. 

Its capabilities were extended to include a ~10-ft diameter parabolic 

concentrator for “solar furnace” and solar thermal rocket test. With 

the addition of a vacuum chamber and quartz windows, it was used 

to test optical properties of high temperature materials, including 

shield materials for a near-sun orbit satellite.  Tests have also been 

conducted on a novel chain drive heliostat drive unit (patent 

pending) that incorporates special low-cost damping mechanisms to 

avoid the high impact loads from wind gusts exerted on 

conventional heliostats. The novel load configuration provides a 

constant static load with superimposed gust loads to more fully 

 
Figure 20.  Solid Propellant Sample Preparation in HPL 

 
Figure 21.  Electric Solid Propellant Combustion Experiment 

Showing Local Combustion at Electrode Inteface34 

 

Figure 22.  The PRC Solar Laboratory 
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simulate actual wind load and gust conditions. That drive unit was subjected to thousands of cycles over several weeks 

to simulate the fatigue equivalent life of over 150 years, compared to the usual 30-year life, and it is still operational. 

The area has also been used to test Army remote power systems based on solar photovoltaic collectors coupled in a 

hybrid mode for use with conventional mobile/remote power generation.  

The solar thermal laboratory was decommissioned in 2011.  The heliostat and other mirror systems remain intact 

for future research programs.  Past prgrams are document in the fillowng papers.40, 41,42,43,44, 

J. Other UAH– Adaptive Structures Laboratory 

The Adaptive Structures Laboratory conducts 

experimental research in areas of piezoelectricity for 

applications in structural health monitoring and energy 

harvesting. Current projects include the development 

of piezoelectric sensors from in-house poled fibers. 

The Adaptive Structures laboratory is created by the PI 

and offers a set of unique equipment to conduct both 

fundamental and applied research when these smart 

materials are integrated with aerospace structures. 

Laboratory equipment includes high-efficiency high 

bandwidth power amplifier, NI USB multifunction 

DAQ, Modal Shaker Table (1-3000Hz), Oscilloscope 

and Function Generators, Fast sampling Laser sensor. 

Recent publications illustrate the capability of 

UAH Adaptive Structures Laboratory.45, 46,47  

K. Other UAH – Advanced Materials and Processing Laboratory (AMPL) 

Advanced manufacturing is a topic that draws upon many engineering disciplines and is vital to the new 

industrial revolution in the USA.  Involvement in these advanced manufacturing processes relies on a fundamental 

understanding of material behavior and response to the conditions imposed by the manufacturing technique.  Unique 

microstructures, and hence properties, can be obtained if the underlying principles are understood and used to control 

the process.  Key to effective utilization of advanced manufacturing techniques is the link between structural 

performance and material properties.  

In addition to designing and controlling the material microstructure and properties, for structural applications, 

many of these processes are automated and fully instrumented.  Thus, the ability to design and control the robotics is 

also needed.   Linking the robotic systems with the data generated during the processing provides the potential for 

both feedback control schemes and in-situ part qualification. 

 

 

 

Figure 23.  A Galloping Piezoelectric Energy 

Harvester (GPEH). 

aboratory 
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  Equipment in the Advanced Materials and Processing Laboratory at UAH includes the friction stir weld equipment 

in (a) and the direct deposition, wire fed, additive manufacturing equipment in (b).  Additional equipment is available 

for microstructural characterization and mechanical property measurement.  

 

Current research at UAH in areas of advanced manufacturing is focused on solid state joining (friction stir welding) 

and additive manufacturing.  Current research topics are related to physics based process modeling, transient 

temperature mapping, design optimization of mechanical properties, feedback control schemes, in-situ process 

qualification.   Results of UAH research are documented in recent publications.48,49,50,51,52,53,54,55, 

L. Other UAH – Charger 1 

The objectives of University of Alabama in Huntsville (UAH) Fusion Propulsion Research Facility (FPRF) are to 

study phenomena enabled by high power pulsed z-pinch technologies to develop fusion propulsion for human flight 

to the planets.  Spacecraft concepts 

developed in collaboration with the NASA 

MSFC Advanced Concept Office could 

perform both 1-month and 3-month one-

way trips to Mars were shown to be 

possible.  UAH is focused on magneto-

inertial fusion driven, specifically z-

pinch.  A Z-pinch is an electrical discharge 

created by pulsed power electrical sources.  

This effort initiated with the receipt of the 

3 terawatt (TW), DECADE Module 2 from 

the Defense Threat Reduction Agency in 

May of 2012 which we have renamed 

Charger 1.  The machine is the last existing 

prototype developed as part of a $65M 

program to develop the next generation of 

pulsed power for reaching high-energy 

states.  The FPRF team has reassembled 

Charger 1 and is repurposing it for pulsed z-pinch research at the UAH Aerophysics Research Laboratory (ARC).   

 

Figure 26.  The 3 Terrawatt, DECADE Module 2 Pulse Power 

Machine 

 

 

 

Figure 24.  NovaTech G10K/ Large Panel 

Gantry FSW/TSW equipped with high torque 

motor and auxiliary induction heating 

Figure 25.  Direct Metal Deposition (DMD), 

wire fed, additive manufacturing platform. 

.. 
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     UAH Propulsion Research Center (PRC) and ARC are working with NASA MSFC, The Boeing Company, L3 

Communications, Oak Ridge National Laboratories, and Y-12 National Security Complex in this effort.   Recent 

publications56, 57, 58,59 ,60, 61, describe the ongoing work in Charger 1. 

M. Other UAH - Complex Systems Integration Laboratory (CSIL) 

The Complex Systems Integration Laboratory (CSIL) is a state-of-the-art facility for advanced systems 

engineering with a focus on Model Based Systems Engineering research.  The CSIL has the capability to develop 

holistic system models supporting full product lifecycle from requirements development through manufacturing and 

long-term sustainment – end-to-end modeling and virtual prototyping.  The laboratory includes desks and computer 

workstations for five Graduate Research Assistants.  The CSIL also includes servers and large graphic displays for 

the development and communication of system models, which can be developed on hosted platforms including Cameo 

Enterprise Architecture (MagicDraw), using either System Modeling Language (SysML), or the Architecture Analysis 

and Design Language (AADL).  System models can incorporate parametric models developed using Satellite Toolkit 

and MatLab/SimuLink, also hosted on the CSIL servers.  Models developed within the CSIL are typically executable 

system models, and LabView is frequently employed to display key performance parameters and technical 

performance measures during life cycle or mission simulations. 

 

Current NASA projects include development of executable integrated systems models for the Nuclear Thermal 

Propulsion Program, and integrated systems models for the Lynx X-ray Observatory Project and the Space Launch 

System Core Stage Engine (RS-25) Project.  A variety of other DoD and commercial projects are underway within 

the laboratory.62, 63,64,65,66,67,68,69,70 

N. Other UAH – Mechanics of Materials under Extreme Environments 

The Mechanics of Materials Under Extreme Environments Laboratory has capabilities to perform mechanical 

loading over the following strain rates (quasi-static tension and compression:10-4 s-1, dynamic tension: 10-3 s-1, and 

dynamic compression: 104 s-1). The laboratory is also capable of performing low and high cycle fatigue tests. A 

dynamic tension and compression testing machine, such as a Kolsky bar (split Hopkinson pressure bar), is used to test 

the high strain rate material properties of varying materials. The versatile bar is used to impose a dynamic load on a 

material specimen akin to that which the material will experience in dynamic situations like vehicle crashes or other 

high-energy events.  Test materials temperatures up to 800 oC are possible. Mechanical loading capabilities in in 

vacuum are up to 10 -4 torr. Mechanical loading in vacuum can be also perfumed at elevated temperature up to 500℃. 

We have a wide range of cameras from 75 frames per second to 1 million frames per second, which are coupled to the 

load cells for measuring full-field strain map (DIC) and failure analysis. We are also capable of performing tension 

test in vacuum for sub-size specimens. Expected outcomes include: (i) the relationship between stress-strain at 

different strain rates and temperature, (ii) failure analysis as a function of strain rates and temperature using ultra-high 

speed imaging in conjunction with digital image correlation technique, and (iii) identification and quantification of 

underlying deformation mechanisms that govern macroscopic response at different strain rates and temperature, by 

coupling high-speed imaging and post-mortem microscopic investigations.  

           

Figure 27.  The Complex Systems Engineering Laboratory 
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O. Other UAH – Transport, Reaction, and Energy Conversion Lab 

 The Transport, Reaction, and Energy Conversion (TREC) Lab at UAH is a 1,500 ft2 laboratory in the Shelby 

Center for Science and Technology that houses equipment for materials processing and characterization, 

electrochemical testing, and catalyst testing. This facility supports research on electrochemical and catalytic material 

systems relevant to sustainable energy. Materials processing equipment includes a controlled atmosphere glove box 

and a fume hood for materials handling, two furnaces (1000 °C and 1200 °C), a vacuum oven for materials processing, 

film coating equipment, and an Arradiance GEMStar-6 atomic layer deposition system with ozone generator. Catalyst 

testing is supported by two gas chromatographs for gas composition analysis and a furnace for environmental control. 

A multichannel potentiostat/galvanostat (Bio-Logic) with 5 A boosters is used for electrochemical testing. The TREC 

lab also houses a 600 W Rigaku Miniflex X-ray Diffraction (XRD) system and a Woollam Alpha-SE ellipsometer for 

characterization of powder and thin film materials. The potentiostat/galvanostat, XRD system, and ellipsometer were 

purchased with support from the UAH Research Infrastructure Fund. 

 

With respect to computational modeling and microstructural analysis, Prof. Nelson’s research group has desktop 

workstations that are available for finite element simulations in COMSOL Multiphysics, image processing, and 

materials characterization. These systems include four Dell Precision workstations: T7810 (Dual 8 Core Intel XEON, 

2.4 GHz, 64 GB RAM), T5600 (Dual Six Core Intel XEON, 2.0 GHz, 64 GB RAM), a Dell Precision T7500 (Quad 

Core Intel XEON, 2.8 GHz, 24 GB RAM), and a T1700 (Quad Core Intel XEON, 3.1 GHz, 8 GB RAM). These 

workstations employ Nvidia GPUs with CUDA capabilities. 

 

Figure 28.  High Strain Rate Testing with Kolsky Bar and Servo Hydraulic Machine 

 

Figure 29. Work performed in the TREC lab is complemented by experiments at Department of Energy 

National User Facilities. Here battery samples are inspected (left) then imaged using a transmission x-ray 

microscope (right) at a DOE supported x-ray microscopy beamline. 
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 People Make the Difference 

During the past year, we continued to intentionally maintain and build our relationships with each other and our 

community.  The PRC hosted monthly student mentoring cookout lunches at the lab that included guest speakers and 

tours of the facilities for guests.  Luncheon topics included:  

 “Hydrogen Peroxide Kerosene Engine for a Small Launch Vehicle Liquid Upper Stage,” Steven Mustaikis, 

Dynetics 

 “Lessons Learned in Rocket Propulsion Testing,” Christina Blankenship, AMRDEC 

 “PRC Recognition of Spring 2017 Graduates,” Shankar Mahalingham, Dean, UAH College of Engineering 

 “Turborocket Turborocket Technology,” John Bossard 

 “Aerojet Propulsion Student Scholar Recognition and Report from AIAA National Student Paper Competition.” 

Dr. Robert Frederick 

 “Gluten-Free Rocket Science,” Dr. Ashley Ramirez, Co-Owner of Mason Dixon Bakery and Bistro, Huntsville, 

Alabama 

 “UAH Student Launch Rocket Project: Roll Control of a Sounding Rocket Trough Aerodynamic Surfaces.” 

Vivian Braswell, UAH Graduate Student 

 “Blue Origin and My Experiences as an Intern,” Dalton Hicks 

 “Explorer 1, 60th Anniversary Celebration,” Anna Frederick, Robert Naumann, Harry Reid, and William Snoddy 

 “Behind the World’s Largest Solid Rocket Motor, Julia Khodabandeh, NASA MSFC 

Luncheon talks are usually kept short (about 20 minutes) to ensure that we have time to meet new people and interact 

with each other.  We often have participants from our supporting organizations such as security, purchasing, sponsored 

programs, and accounting.  We keep a light atmosphere, celebrate birthdays, and recognize achievements.    

Our PRC Student Association (PRCSA) continued to support outreach events such as Girls Science and 

Engineering Day, the regional Science Olympiad, and NASA in the Park, a Huntsville tradition. Each year we hold 

two celebrations honoring our upcoming graduates and all the departments around campus that provide the support 

that makes our efforts successful. We also have periodic buffet lunches at a local BBQ restaurant where students and 

faculty perform on their musical instruments.  Figure 23 shows the PRC team at our December 2017 Graduate 

Recognition gathering. 

 

Figure 23. Propulsion Research Center faculty, staff, students, colleagues, and friends at the fall 2017 

Recognition of Graduates Reception.  “Keep relationships more important than tasks or problems” – Dr. 

Robert A. Frederick, Jr., Director, UAH Propulsion Research Center. 
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 Strategies for the Future  

Current growth areas that we are pursuing include upgrading our Propulsion Test Capability scramjet fuel studies, 

adding a new facility for heat transfer research, and the continued growth of additive manufacturing research for 

propulsion applications.   
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