UAHuntsville Propulsion Research Center Overview

Dr. Robert A. Frederick, Jr.
Interim Director, UAH Propulsion Research Center
Robert.Frederick@uah.edu
http://prc.uah.edu

Date: March 9, 2012

for

Raytheon Missile Systems

UAH Contact Information

- UAH Propulsion Research Center http://prc.uah.edu
 - Dr. Robert Frederick, Interim Director
 - 256-824-7200, Robert.Frederick@uah.edu
 - Dr. David Lineberry, Research Engineer
 - 256-824-2888, <u>David.Lineberry@uah.edu</u>
 - Dr. James Blackmon
 - 256-824-5106, <u>James.Blackmon@uah.edu</u>
 - Mr. Anthony Edmondson, Research Program Coordinator
 - 256-824-7209, Anthony.edmondson@uah.edu
- UAH Department of Mechanical and Aerospace Engineering
 - Dr. Robert Frederick, Interim Chairman, Professor
 - 256-824-6154, Robert.Frederick@uah.edu
 - Dr. Jason Cassibry, Assistant Professor
 - 256-824-5107, <u>Jason.cassibry@uah.edu</u>
 - Dr. Nathan Slegers, Associate Professor
 - 256-824-6543, Nathan.Slegers@uah.edu

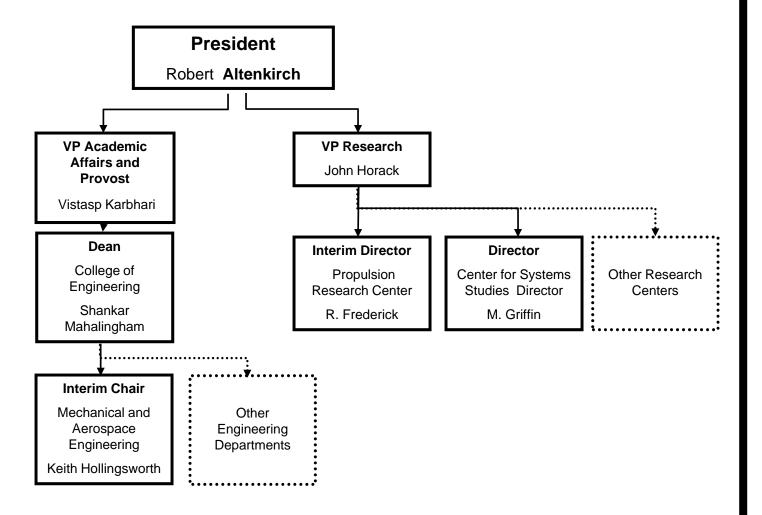
Agenda

- PRC Background
- Example
- Future Collaborations

UAHuntsville Propulsion Research Center

Mission

PRC connects the Academic Research Community with Industry & Government to advance basic science and technology development related to propulsion and energy.


PRC Strategic Vision 2015

The PRC will be a major generator of talent and innovative solutions in propulsion and energy related technologies.

UAHuntsville Organization Chart

MAE Faculty/Administration UAH Department of Mechanical and Aerospace Engineering MAE Faculty **Emeritus Faculty MAE Lecturers**

UAH NIRPS University Consortium

National Institute of Rocket Propulsion Systems

Grand Challenges in Propulsion Research Workshop Chairs

Dr. Robert Frederick, Jr.
Int. Dir. Propulsion Res. Center
Professor MAE
Robert.Frederick@uah.edu

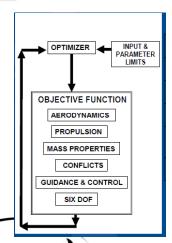
Dr. Shankar Mahalingam
Dean. College of Engineering
Professor, MAE
Shankar.Mahalingam@uah.edu

Back Row: Robert Frederick, UAHuntsville, Mark Brandyberry, University of Illinois; Robert Santoro, Penn State,
Alan Wilhite, Georgia Tech.; Vadim Smelyanskiy, NASA Ames; Shankar Mahalingam, UAHuntsville.

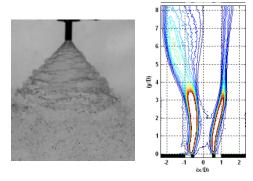
Front Row: Ken Yu, University of Maryland; Roy Hartfield; Auburn; C.P. Chen; UAH; Mitchell Walker; Georgia Tech; and Bill Anderson, Purdue University.

Brian Cantwell; Stanford to present on October 28th at UAH.

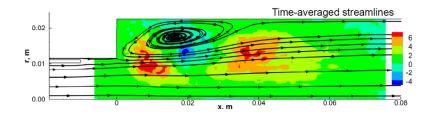
October 14, 2010, Huntsville, AL


Current State of Academia in Propulsion UAH NIRPS Worship Report

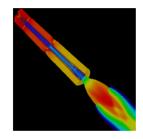
System Architecture and Cost

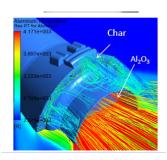

NEA

- 2008EV5 Opportunity in 2004
- Depot Re-Fueling not on Mission
Critical Path
- NEA Mission Duration 390 days


Deliver Fill
Depot
- Depot

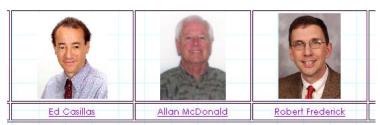

Fundamental Processes





Multi-Physics Modeling

Example Class - Adv. Solid Rocket Propulsion


Developed by Robert Geisler and Dr. Robert Frederick, Jr.

ITAR Cleared, UAH Graduate Course, UAH Professional Development Course, and AIAA Short Course

UAH

The University of Alabama in Huntsville

> Advanced Solid Rocket Propulsion

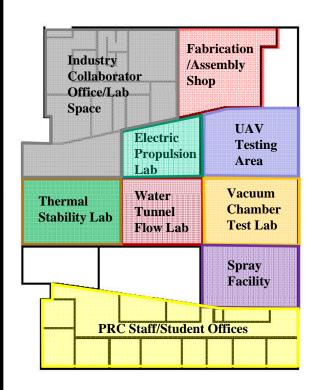
> > Course

Spring 2007

www.uahsolidrockets.com

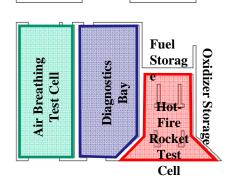
Nationally Recognized Student Launch Initiative

National First-Place Design-Fab.-Build - R. Frederick, UAH Faculty Advisor



UAHuntsville
The University of Alabama in Huntsville

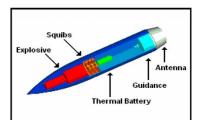
UAH University Student Launch Initiative

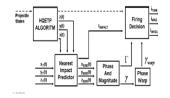


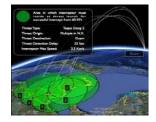
State of the Art Laboratories

PRC Labs at the Johnson Research Center Approximately 15,000 ft² of Laboratory Space

- Air-breathing Test Cell
- Hot-Fire Rocket Test Cell
- Thermal Stability Test Lab
- Solar Thermal Lab (not Shown)
- High-Pressure Solid Propellant Lab (not shown)
- Electric Propulsion Lab
- Gaseous Cold Flow Lab
- Water Tunnel Flow Lab
- Vacuum Chamber Test Lab

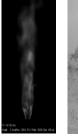

PRC's Propulsion Test Facility





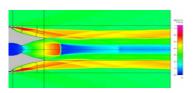
PRC Core Competencies

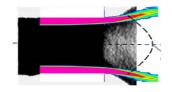
Aerospace System Design
 Systems Requirements
 Technology /Assessment Integration
 System Modeling/Evaluation

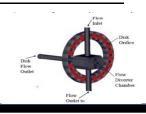


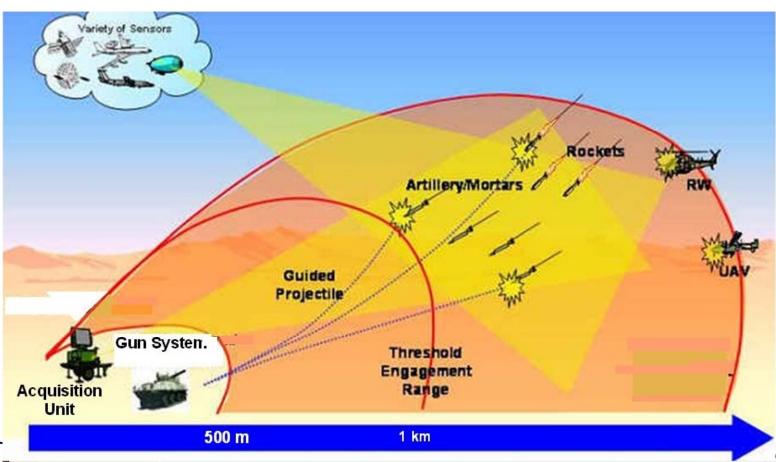
Liquid Propulsion
 Integrated Methodology
 Combustion Efficiency/Instability
 Laboratory-Scale Rocket Engine
 Advanced Diagnostics

Solid Propulsion
 Propellant Formulation
 Burn Rate Determination
 Motor Testing

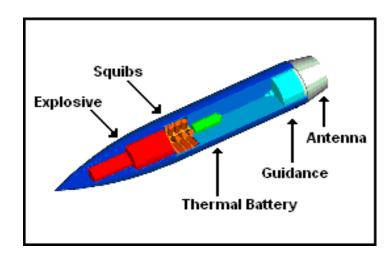

Advanced Propulsion
 Plasma Modeling
 Plume Characterization
 Solar Propulsion



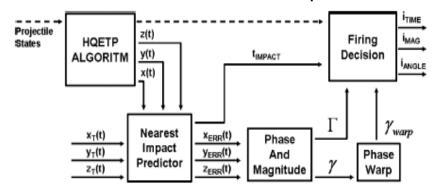


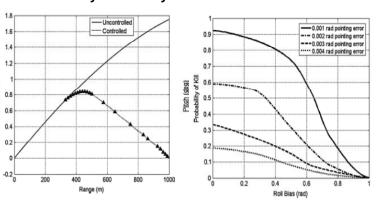

Numerical Analysis
 Sprays
 Acoustics

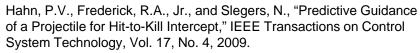
Aerospace Systems Design Guided Bullet Study



Guided Bullet Study


Student IPTs. - Competing Concepts

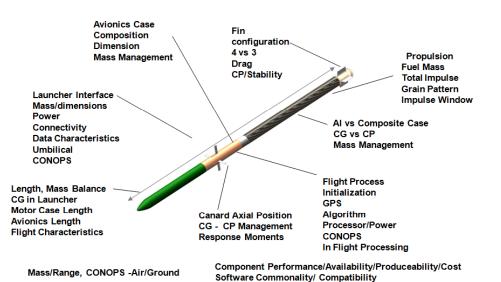

Selected Design - Army Contract.

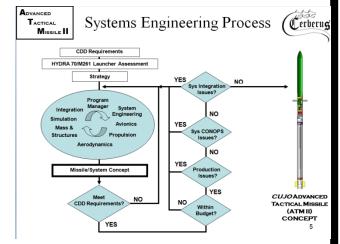


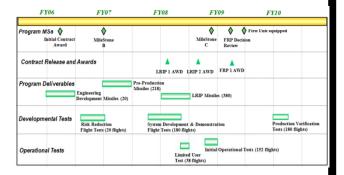
Additional Research - Autopilot

System Analysis - Journal Article

Guided 2.75 Rocket – Graduate Class


ADVANCED


TACTICAL


Missile II

Systems Engineering Trade Considerations During Development

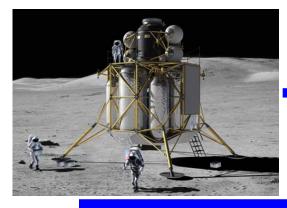
MDA – Innovative Propulsion Technology Support

UAH/MDA Charter

- Identify, Assess, and Prioritize Promising Technologies
- Establish Consortium of Propulsion Technical Experts
- Conduct Analytic and Laboratory-Scale Assessments of Promising Technologies as Independent Verification of Characterization
- Synthesize, Document, and Maintain Propulsion Technology Investment Strategy

Technology gap summary of high temperature materials

(Couchman, Cassibry


Technology Gap Addressed	Technology Subcategory	Proposed Technology	Technology Limitations	SME
1. Long Duration Operating Time	e and f	Refractory Ceramics	Addresses high temperature, durability in question	Ken <u>Zuo</u> Gang Wang
1. Long Duration Operating Time	e and f	Superalloys	Limited temperature range but tolerates corrosive envir.	Jeff Evans
1. Long Duration Operating Time	e and f	HVOF	Limited temperature range but long duration	Mahesh, R.A. [9]
1. Long Duration Operating Time	e and f	UHTC	Addresses high temperature, durability in question	Ken <u>Zuo</u> Gang Wang
1. Long Duration Operating Time	e and f	rhenium- tungsten inserts	Limited long-term survivablity	

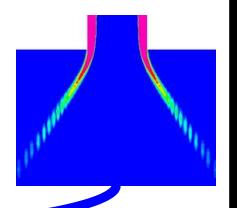
Example – UAH Integrated Methodology

System Engineering

New Component Technology

Cold-Flow Spray Facility

Low-Pressure Combustion Stability



High-Pressure Combustion Performance

Digital Database

Modeling and Verification

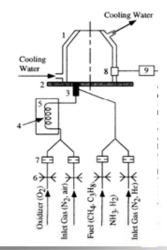
Laboratory-Scale Methodology for Injector Element Combustion Response (TCA-24)

TASK SUMMARY

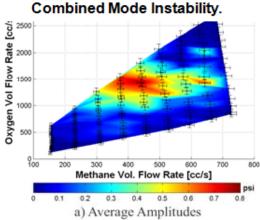
Objective: To evaluate and improve a laboratory-scale injector test facility that provides fundamental combustion data and maps the stability boundaries of practical injectors.

Team: UAH Propulsion Research Center

- · Dr. R. A. Frederick, PI; Dr. David Lineberry
- Numerous Graduate Students
- · Mr. James Hulka; Jacobs [Technical Monitor]



APPROACH


- Evaluate single, full-scale liquid rocket injectors with method from Russia
- Simulate key scaling parameters (such as momentum ratio) using atmospheric gases
- Measure the spontaneous oscillations in the atmospheric resonance chamber
- Correlate the amplitude and mode of observed instabilities with scaling parameters
- Verify Scaling Criteria with instabilities observed in high pressure motor firings

CONTENT

Burner Schematic

Results showing Regions of Spontaneous Radial and Combined Mode Instability.

ACCOMPLISHMENTS

Year 1 - Demonstrated Spontaneous Instability

AIAA Paper 2006-4528

Year 2 - Mapped Stability of Three Injectors

AIAA Paper 2007-5587

Year 3 - Mode Analysis

AIAA Paper 2008-4655

Year 4 - Comparisons with Engines AIAA Paper No. 2009-5493

Year 5 - Optical Diagnostics

(AIAA Paper 2010-6668, AIAA Paper 2010-6737)

Year 6 - Digital Analysis of Modes

PRC Statistics

PRC History

- Founded in 1991
- 30 Million in External Funding to Date
- 75 Refereed Publications to Date
- Over 25 Ph.D. degrees Advised
- Over 120 Masters Degrees Advised
- Over 125 Undergraduate Students Supported
- · Numerous Government, Academia, and **Industry Partners**

FY10 Statistics

- 14 Active Research Projects
- 5 Full time Staff
- 8 Faculty Collaborators
- 5 Ph.D. Students
- 20 Masters Degree Students
- 5 Undergraduate Students Researchers
- 1.2 Million in Expenditures

Sponsors and Collaborators

UAH PRC Affiliations

- AIAA Hypersonic Technical Committee
- AIAA Joint Propulsion Conference Organizing Committee [Propulsion Education]
- AIAA Solid Rocket Technical Committee
- Aerospace Consortium of Alabama (ACA), [UAH, Auburn, and Alabama]
- Air Force Educational Partnership Agreement, AFRL Edwards
- AMRDEC Standing Contracts
- ASEE Propulsion Education
- JANNAF Journal of Propulsion and Energy
- JANNAF Solid Performance Committee
- NASA Constellation University Institute Program (CUIP)
- NASA Educational Partnership Agreement, MSFC
- NASA MSFC Cooperative Agreement
- NASA Glenn RTAPS [Research and Technologies for Aerospace Propulsion Systems]
- ONERA France

