
A High Resolution Scheme for the MHD
Equations

Matthew Bedford

December 9, 2012



Background

To generate a numerical model for the propagation of shock waves in a
plasma, it is necessary to solve a system of equations consisting of
conservation laws for mass, momentum, and energy, along with
Maxwell’s equations. Such a system in one dimension can be written in
vector form as

∂~U

∂t
+
∂~F (~U)

∂x
= 0, (1)

where ~F is the flux of the conservative variables ~U.



Applying the chain rule, this system can be written as

∂~U

∂t
+ A(~U)

∂~U

∂x
= 0, (2)

where the matrix A(~U) = ∂~F (~U)

∂~U
is diagonalizable. Here the vectors

depend on the density ρ, velocity ~v = (u, v ,w), pressure p, and magnetic

field ~B = (Bx ,By ,Bz).



~U =



ρ
ρu
ρv
ρw
e

Bx

By

Bz


, ~F (~U) =



ρu

ρu2 + p0 − B2
x

4π

ρuv − BxBy

4π

ρuw − BxBz

4π

(e + p0)u − Bx

4π (~v · ~B)
0

uBy − vBx

uBz − wBx


, and ~u =



ρ
u
v
w
p

Bx

By

Bz


,

(3)

where e = p
γ−1 + ρ(u2+v2+w2)

2 +
B2
x +B2

y +B2
z

8π is the total energy, γ = 5
3 is

the adiabatic index, p0 = p + B2

8π is the total pressure, and ~u are the
primitive variables, which are often more convenient to use.



Since A is diagonalizable, there exist real eigenvalues λk and a complete
set of eigenvectors. Multiplying (2) by the left eigenvector ~lk yields

~lk ·

(
∂~U

∂t
+ λk

∂~U

∂x

)
=~lk ·

(
d ~U

dt

)
k

= 0, (4)

where the total time derivative is taken in the characteristic direction
dx
dt = λk . If the matrix A is constant, then the solution to (4) propagates
along straight lines in the x-t plane:

x = λkt + constant. (5)

The eigenvalues are the characteristic velocities of the plasma:
u, u ± vA, u ± vf , and u ± vs . Here vA is the Alfven velocity, and vf ,s are
the fast and slow magnetosonic velocities.



Numerical Model

The problem solved here is the time evolution of a one-dimensional MHD
system with discontinuous initial conditions: on the spatial interval (0, 1)
the primitive variables are given by

~u(x) =

{
~uL if x < 0.5

~uR if x ≥ 0.5,
where ~uL =



0.18405
3.8964
0.5361
2.4866
0.3641

4.0
2.394
1.197


and ~uR =



0.1
−5.5
0.0
0.0
0.1
4.0
2.0
1.0


.

(6)
The x-component of the magnetic field must be continuous across the
boundary in order to satisfy ~∇ · ~B = 0: in one dimension, ~∇ → ∂

∂x x̂ .
Results are given at t = 0.15.



The initial conditions (6) were chosen because they lead to both MHD
shocks and a contact discontinuity.
To solve (2) numerically on the spatial interval (0, 1), the first step is to
discretize the interval: designate N equally spaced grid points xi = i∆x
separated by ∆x = 1

N = 0.0025 for N = 400. Each time step will advance

the solution by an increment ∆t ≤ 0.8 ∆x
λmax

satisfying the CFL condition.
In this case it is sufficient to choose ∆t = 0.00025. At the grid point
(xi , tk) the variables are written ~Uk

i .
The method used for advancing the time interval is an explicit two-step
”predictor-corrector” scheme that assumes the Jacobian matrix A to be
constant within each computational cell, so that the characteristics are
piecewise linear. The result is accurate to second order in both space and
time.



The first step predicts the value at half a time step:

~U
k+1/2
i = ~Uk

i − (~F k
i+1/2 − ~F

k
i−1/2)

∆t

2∆x
, (7)

where the flux at the cell boundary is given by

~F k
i+1/2 =

1

2
[(~F k

i+1 + ~F k
i − (ΩR |Λ|ΩL)ki+1/2(~Uk

i+1 − ~Uk
i )]. (8)

This is the Roe flux, designed to satisfy A(~Ui+1 − ~Ui ) ≈ ~Fi+1 − ~Fi [2].
Here ΩR is the column matrix of right eigenvectors, ΩL = Ω−1

R is the row
matrix of left eigenvectors, and |Λ| = diag(|λk |). The derivation of the
matrices is long and cumbersome; the corresponding matrices ωR , ωL for

the primitive variables are given in [1]. They are related by ΩR = ∂~U
∂~u ωR .

The Jacobian matrix ∂~U
∂~u and its inverse can be calculated by hand

relatively easily. These matrices are functions of the primitive variables;
the spatial half index means to interpolate the primitive variables to the
cell boundary. Here the interpolation is simply the arithmetic average of
the adjacent cells.



The advance of half a time step leads to a first order accurate estimation,
which is insufficient to model discontinuities such as in the initial
conditions. The next step uses a discontinuous piecewise linear flux by
interpolating ~U and ~F to the left and right sides of each cell boundary
separately, rather than a simple averaging at the boundary. For ~u, the
procedure is as follows:

~uR
i+1/2 = ~u

k+1/2
i+1 − 1

4
((1− η)∆̃i+3/2 + (1 + η) ˜̃∆i+1/2) (9)

~uL
i+1/2 = ~u

k+1/2
i +

1

4
((1− η) ˜̃∆i−1/2 + (1 + η)∆̃i+1/2) (10)

∆̃i+1/2 = minmod(∆i+1/2, ω∆i−1/2) (11)

˜̃∆i+1/2 = minmod(∆i+1/2, ω∆i+3/2). (12)



Here ∆1+1/2 = ~u
k+1/2
i+1 − ~uk+1/2

i . The minmod function returns the
argument with the least absolute value if the signs are the same;
otherwise it returns zero. This limits the slope near discontinuities,
preventing spurious oscillations. Smoothly changing variables are not
affected. Other slope limiters are available, the choice of which depends
on the type of discontinuity to be sharpened. The parameter ω is a
number between 1 and 2 that determines the level of artificial
compression, allowing better resolution discontinuities. The parameter η
is a number between −1 and 1 that weights the spacial dependence of
the surrounding cells. Increasing ω results in a small increase in shock
resolution, while varying η can have a much more dramatic effect.



The interpolated primitive variables above are then used in the corrector
step to achieve second order accuracy:

~Uk+1
i = ~Uk

i − (~F
k+1/2
i+1/2 − ~F

k+1/2
i−1/2 )

∆t

∆x
, where (13)

~F
k+1/2
i+1/2 =

1

2
[~F (~UR

i+1/2) + ~F (~UL
i+1/2)− (ΩR |Λ|ΩL)

k+1/2
i+1/2 (~UR

i1/2 − ~U
L
i+1/2)].

(14)
Both the predictor and corrector are applied for 2 ≤ i ≤ N − 2 since the
flux limiters in the corrector step require a four-point stencil. The two
points at each boundary are kept constant at the initial conditions. This
condition holds at least for time t = 0.15, but if the solution were
allowed to propagate much further the shocks would reach the
boundaries and render this assumption invalid.



Results

The scheme was run for 600 time steps at fixed ∆t = 0.00025. Using
Ubuntu with a Pentium 4 3.8GHz CPU, this took 10 to 12 seconds.
Plots of results are presented below. Note that the x component of
magnetic field remains unchanged after 600 time steps in accordance
with the condition ~∇ · ~B = 0. It is possible for this to be violated as
numerical error accumulates.
The first plot shows the reconstructed primitive variables with ω = 2 and
η = 1, which corresponds to a central difference scheme. Most of the
discontinuities are spread over a few cells. The first type, a contact
discontinuity, occurs at x = 0.5. Here all quantities except for density are
continuous, which occurs if there is no particle flux through the
discontinuity surface. The others are MHD shocks.



Figure: Primitive variables at time t = 0.15 with ω = 2 and η = 1.



With η = −1, however, high frequency oscillations appear in the vicinity
of the discontinuities. This is because η = −1 corresponds to an upwind
scheme, where the stencil consists entirely of points in the opposite
direction of the shock velocity (”upwind” of the shock). Upwind schemes
tend not do do well near discontinuities [2], especially in MHD [1].



Figure: Primitive variables at time t = 0.15 with ω = 2 and η = −1.



The minmod function is used as a slope limiter to lower the resolution of
the scheme in the vicinity of discontinuities to prevent oscillations.
Different limiters can be used to sharpen certain types of shock profiles:
for example, the superbee limiter

∆SB
i = S ×max

[
0,min(2|∆i+1/2|,S∆i−1/2),min(|∆i+1/2|, 2S∆i−1/2)

]
,

(15)
where S = ∆i+1/2, is used for rotational discontinuities where the
magnitudes of the velocity and magnetic field are continuous but the
individual components are not. Then (9) is written instead as

~uR
i+1/2 = ~u

k+1/2
i+1 − 1

2
∆SB

i+1, (16)

~uL
i+1/2 = ~u

k+1/2
i +

1

2
∆SB

i . (17)



Figure: Magnitudes of v and B at time t = 0.15 with ω = 2 and η = 1 using
superbee limiter.



Figure: Primitive variables at time t = 0.15 with ω = 2 and η = 1 using
superbee limiter.



However, the initial conditions (6) do not result in rotational
discontinuities: comparison of Figs. 3 and 4 shows that the
discontinuities in the components of v and B are also present in their
magnitudes. From Fig. 4 it is apparent that the shocks are spread over
more computational cells, so the superbee limiter is worse than the
minmod limiter for this problem.



These plots show that the numerical solution can vary depending on the
choice of slope limiter, including the compression parameter ω and weight
η, for this approach to the problem. Here the flux at the cell boundaries
was found by interpolating the primitive variables and then using them to
calculate the flux. It is also possible to find the flux at cell boundaries for
the corrector step without explicit reference to the primitive variables:

~F
(2)
i+1/2 = ~F

k+1/2
i+1/2 +

1

4

[
(1− η)

˜̃
δ~F +

i−1/2 + (1 + η)
˜
δ~F +

i+1/2

]
(18)

− 1

4

[
(1− η)

˜
δ~F−

i+3/2 + (1 + η)
˜̃
δ~F−

i+1/2

]
, (19)

˜
δ~Fi+1/2 = minmod(δ~Fi+1/2, ωδ~Fi−1/2), (20)

˜̃
δ~Fi+1/2 = minmod(δ~Fi+1/2, ωδ~Fi+3/2), (21)

δ~F−
i+1/2 = ~F k

i+1/2 − ~F
k
i , (22)

δ~F +
i+1/2 = ~F k

i − ~F k
i−1/2. (23)



Summary

Since the results of the equation (2) with initial conditions (6) for many
different parameters are given in [1], it is easy to verify that the attached
code leads to the correct numerical solution. The main lesson is that for
hyperbolic systems with discontinuous initial conditions, it is important
to test a variety of slope limiters and interpolation procedures to find a
combination that spreads discontinuities across few computational cells
and minimizes oscillations.
The most surprising part of this challenging programming exercise was
discovering that such simple initial conditions, constant apart from a
single discontinuity, can lead to a complicated solution with several
shocks, all moving at different speeds. This is not at all obvious from the
equations. Writing the code, seeing how certain errors change the results,
and experimenting with the parameters leads to a deeper understanding
of the problem than analytical tools alone can provide. In addition,
writing a large, complex code with many parts is excellent practice for
working with even more complex code libraries used in research, e.g.
adaptive mesh refinement. The same is true for the diversity of methods
used in the class assignments.



References

A. Kulikovskii, N. Pogorelov, A. Semenov, Mathematical Aspects of
Numerical Solution of Hyperbolic Systems. Chapman and Hall/CRC
Monographs and Surveys in Pure and Applied MAthematics; 118,
2001.

A. Morton, D. Mayers, Numerical Solution of Partial Differential
Equations. Cambridge University Press, 2005.


