Physics-Based Modeling:
Principles, Methods and Examples

Wesley N. Colley
Leslie A. Litten
Center for Modeling, Simulation and Analysis
University of Alabama in Huntsville
Purpose of Tutorial

- Motivate need for good physics in M&S
- Motivate idea that good physics can often be carried out efficiently
 - Familiarize audience with numerical techniques that radically enhance computational efficiency
 - Present physics-based examples that benefit from such techniques
 - Present an example where difficult physics has a simple mathematical solution
Quick Acknowledgements

- Much of this material can be found in *Numerical Recipes*
 - in C++, C and FORTRAN
 - Press, Teukolsky, Vetterling, Flannery
- Charts and much analysis prepared for this talk carried out in IDL
 - Interactive Data Language
 - see www.itt-vis.com
 - otherwise C++
Outline

• Intro to physics in M&S
• Quadrature (Integration of Functions)
• Integration of Differential Equations
 – orbits and trajectories
• Radiative Processes
 – atmospheric effects on visibility
• Fourier methods
 – image processing
How does physics play a role in M&S?

• Physics and M&S share a similar goal
 – Model the world around us

• Physics started when
 – Computers didn’t exist
 – Questions were simple, like “why do arrows fly?”

• M&S and Physics meet when
 – Modeler: Accurate models of natural behavior are needed in my simulation
 – Physicist: Computers are necessary to handle the math in my physics problem
Strengths of Physics

• Physics (at some level) describes everything in the Universe
 - Sub-atomic interactions
 • Binding of quarks in proton
 - Cosmological scale interactions
 • Expansion and acceleration of the Universe
 - Everything in between
 • Atoms, molecules, baseballs, mountains, planets, stars, galaxies

What about a human thought?

Okay, smarty, no. The electrons in the neurons, though...
Macroscopic Stuff

• Basic mechanics
 – Flight of baseballs, pendula, springs, orbits

• Thermo-/Hydro-dynamics
 – Airframe modeling, mixing of airborne agents, dam engineering, rockets, explosives, heat pump

• Materials
 – Heat resistance, tensile strength, conductive properties, lightness

• Electricity and Magnetism
 – Optics, radar, compasses, electrical engineering

• Quantum Physics
 – Lasers, microchips, nuclear
The Weakness of Physics

• Physics tends to break down when very large numbers of physical entities are involved
 – Cannot compute bridge properties through quantum interactions (~10^{35} atoms in a bridge!)
• Chemistry, Chem E: rule sets approximating quantum mechanics
• Biology, Materials Science: rule sets approximating Chemistry and quantum
• Astrophysics: rule set approximating gravity, hydro and quantum
• Engineering: (often) use of physical properties of materials, gases, etc. for large systems
So physics is (often) useful…

• How do we model it?
• MATH
• Physics is very often a means of mapping reality into mathematics
 – Almost all macroscopic interactions are governed by a second-order partial differential equation
• Just math? Then is knowledge of Nature’s apparent rules “deep?” Does $F = ma$
 – Tell us something fundamental about Nature
 – Or just provide a synopsis of our observations?
Math...

- The math physics generates is typically complicated
 - Very few realistic problems can be solved analytically

- Answer: Computer
 - Use numerical mathematics

\[
-\frac{\hbar^2}{2m} \nabla^2 \psi(r) - \frac{ke^2}{r} \psi(r) = i\hbar \frac{\partial \psi(r)}{\partial t}
\]

This equation governs a single electron in a Hydrogen atom!
The strategy

• When faced with a problem, identify the type of physics at its root

• Make approximations that simplify the problem
 – Air resistance is negligible on a falling coin
 • Not true from Empire State building
 – Moon is a point mass
 • Not true if concerned about tides on moon
The Strategy (cont.)

• Once you are working at the right level, begin looking at the physics involved
• Identify the mathematical issues the physics presents
• Choose the correct numerical methods for handling that math
• Model away!
Outline

• Intro to physics in M&S
• Quadrature (Integration of Functions)
• Integration of Differential Equations
 – orbits and trajectories
• Radiative Processes
 – atmospheric effects on visibility
• Fourier methods
 – image processing
Quadrature Segue

• First things first
• Introduce a powerful mathematical technique that can be generalized into physics applications

• Simple math question:
 – How do I find the area under the function $f(x)$?
Riemann Sum: Simple Question
What is Area Under Curve $f(x)$?

$$F(a,b) = \int_{a}^{b} f(x)dx = \lim_{h \to 0} \sum_{i=0}^{(a-b)/h-1} f(a + ih)h$$

Area of rectangle
base = h
height = $f(a+ih)$
Riemann Sum Example

- $y = \sin(x)$
- $a = 0$
- $b = \pi/2$
- $n = 8$

$$\int_0^{\pi/2} \sin(x)\,dx = 1$$

- Estimate: 0.89861040

so-so result
Improving

- Examine errors made
- Basically look like triangles
- Can we correct for that?
F(a, b) \approx \frac{h}{2} \sum_{i=0}^{(a-b)/h-1} f(a + ih) + f(a + ih + h)

= h \sum_{i=1}^{(a-b)/h-1} f(a + ih) + \frac{h}{2} [f(a) + f(b)]

sum up trapezoids, not rectangles

simplify: same as Riemann, except endpoints… hmmm
Trapezoid Rule

- Return to sine curve
- Much better looking
- Estimate: 0.99678517
- Much better!
- Same number of calls to derivative function!

Note: Need continuous first derivative for it to work right…
Trapezoid Errors

- Now errors
- are much smaller
- They look like parabolas
- What next?
Simpson’s Rule

• Fit parabolas to every three points
 – find area under each parabola

• Sounds complicated, but the area under the parabola is given by a simple linear formula
 – not quadratic as one might guess

For a parabola fitting the points

\((x_0, y_0), (x_0 + h, y_1), (x_0 + 2h, y_2)\)

\[A = \frac{h}{3} (y_0 + 4y_1 + y_2) \]

Simply adjust weights in sum!
Simpson’s Rule

- Find area under parabolas in every interval of \(2h\).
- Estimate: \(1.0000083\)
- Very good, and still same number of calls.

Note: Need continuous second derivative for it to work right…
Simpson Errors

- Errors are now quite small
- Cubic in nature
- Curiously, cubic terms cancel, leaving quartic errors
Bode’s Rule

- Okay, fit quartics to each interval of 4h
- Just different weights in sum again
- Estimate: 0.99999988
- Still better, still same number of calls

Note: Need continuous fourth derivative for it to work right…
Convergence

• One can also improve estimate by “brute force”
 – Simply carry out more iterations

• How much do estimates improve as a function of number of iterations?
Convergence

- Riemann sum improves linearly with increased iterations
- Trapezoid: quadratically
- Simpson’s Rule: quartically
- Bode’s Rule: 6th order
 - a million times better with ten times the iterations!
- Why not keep going?
Getting silly

- One could keep fitting higher-order polynomials to improve the fit
 - and maintain computational load

- However, these high-order rules require increasingly well-behaved functions
 - Namely, functions must be continuously differentiable at the order of the polynomial
 - Not likely in real world too often
 - If it is, the integral is probably analytic or semi-analytic… Just look up the answer!
One Counter-Example
The derivative rules really do matter

- Continuous first-derivative
- Discontinuous 2nd derivative
- Trapezoid and Riemann shouldn’t notice
- Simpson and Bode should
Convergence for baddish function

- Riemann and trapezoid behave normally
- Simpson and Bode do not
 - improvement is essentially 2nd order, same as trapezoid
Quadrature Summary

• Several different methods use the exact same calls to the derivative function with vastly different results
 – higher order means better estimates AND
 – better convergence with more iterations
• But, beware the caveats of higher order methods
• My advice: try Simpson’s Rule
• Advanced methods use extrapolation from results of different iteration numbers
Outline

• Intro to physics in M&S
• Quadrature (Integration of Functions)
• Integration of Differential Equations
 – orbits and trajectories
• Radiative Processes
 – atmospheric effects on visibility
• Fourier methods
 – image processing
Diff Eq Segue

• Similar methods to those of numerical integration carry over into ordinary differential equations
• A great many physical systems are governed by such equations
 - orbits
 - ballistics
 - analog circuits
 - springs, dampers
 - pendula
Tangential Integration

• Consider

\[\frac{dx}{dt} = f(t, x) \]

• One could integrate the solution:
 - start with an initial value
 - compute derivative
 - find next value

\[x(t_0) = x_0 \]
\[x(t_0 + \Delta t) = x(t_0) + f(t_0, x_0)\Delta t \]
Graphically

• **Slope at** $t_0, x_0 = f(t_0, x_0)$

Estimate of $x_1 \approx x(t_0 + \Delta t)$

Called “Tangential” because slope is tangent to the curve at the point of evaluation.
Graphically

- **Slope** at x_1, $t_1 = f(t_1, x_1)$
 Estimate of $x_2 \approx x(t_0 + 2\Delta t)$

Derivative is now incorrect, because x_1 is not exactly $x(t_0 + \Delta t)$. The error is equivalent to having started with different initial conditions.
Errors Mount

- Errors are worse than in integration of functions
 - With functions, derivative estimate is always correct
 - With diff eq’s, derivative estimate becomes inevitably poorer as errors are made
 - Errors are compounded

\[x = \exp(0.3t) \]
\[\frac{dx}{dt} = 0.3x \]
Midpoint Method

- Find $x_{1/2}$ by using slope at x_0 but only moving half a time-step

\[x_{1/2} = x(t_0) + f(t_0, x_0) \left(\frac{\Delta t}{2} \right) \]
Midpoint

- Use slope at \((t_{1/2}, x_{1/2})\) to propagate full step from \((t_0, x_0)\)

\[
x_1 = x(t_0) + f(t_{1/2}, x_{1/2})\Delta t
\]
Midpoint Formula

- Mitigates compounding errors significantly
- Allows for curvature during timestep

Note: 16 calls to derivative function for each
Runge-Kutta

- Similar idea to midpoint, but four points
- Use slope at start to go to 1st midpoint
- Use slope at 1st midpoint from start back to a 2nd midpoint
- Use slope at 2nd midpoint to go to endpoint and obtain slope
- Add up slopes thus

\[x_1 = x_0 + \Delta t \left(m_1 + 2m_2 + 2m_3 + m_4 \right) / 6 \]
Runge-Kutta

Four-point method
- same principle as midpoint
- somewhat more complicated
 - two different midpoint evaluations
 - one endpoint evaluation
- still straight-forward to code and use

Much better behavior

$t = \exp(0.3t)$

Note: 16 calls to derivative function for each
Real World Example: Orbits

- Planetary orbits
 - Earthlike orbit (circular at earth distance from sun)
 - Elliptical orbit around sun

- Ballistic Missile trajectory
 - Siberian launch at Los Angeles
 - just Newtonian (Keplerian) gravity
 - no earth-rotation

\[a = -\frac{GM}{r^3} \] (only)
Simple Orbit Code

create 6-element state vector: x, y, z, v_x, v_y, v_z

```c
const double GM = 1.33e23;
derivs(double* xv, double* dxvdt) {
    double r = sqrt(xv[0]*xv[0] + xv[1]*xv[1] + xv[2]*xv[2]);
    double r3 = r*r*r;
    for (int i=0; i<3; i++) {
        dxvdt[i] = xv[i+3];
        dxvdt[i+3] = -GM*xv[i]/r3;
    }
}

int main()
...
for (int i=0; i<niter; i++) {
    rk4(xv, dt, xvnew, derivs); ← use canned RK integrator
    xv = xvnew;
}
Orbit Integration

- Earthlike orbit
  - circular, 1 AU radius
- Runge-Kutta vs. Tangential (Eulerian)
  - 400 calls each to derivatives function
- Errors after one orbit

<table>
<thead>
<tr>
<th></th>
<th>RK</th>
<th>Tangential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>0.000002%</td>
<td>14%</td>
</tr>
<tr>
<td>Position</td>
<td>0.00003%</td>
<td>82%</td>
</tr>
</tbody>
</table>
Orbit Integration

- **Eccentric orbit**
  - 1 AU radius
  - eccentricity = 0.5
  - $b/a = 0.866$

- **Errors after one orbit**

<table>
<thead>
<tr>
<th></th>
<th>RK</th>
<th>Tangential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>0.003%</td>
<td>34%</td>
</tr>
<tr>
<td>Position</td>
<td>0.001%</td>
<td>70%</td>
</tr>
</tbody>
</table>
Ballistic Missile Flight

• Simple Keplerian gravity, no earth rotation
• Siberian launch, target Los Angeles
• Tangential vs. Runge-Kutta
Ballistic Missile Flight

- tangential
- Runge-Kutta

Runge-Kutta: direct hit
Tangential: not close
Main Error is Height

- Again, tangential overshoots
  - no curvature

Error budget:

<table>
<thead>
<tr>
<th></th>
<th>RK</th>
<th>Tangential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>$7 \times 10^{-7}%$</td>
<td>2%</td>
</tr>
<tr>
<td>Position</td>
<td>3 km</td>
<td>660 km</td>
</tr>
</tbody>
</table>

The diagram shows the comparison between tangential and Runge-Kutta methods over time.
Convergence

How rapidly does estimate improve with more iterations (CPU cycles)?

- $\sim n^{-1}$
- $\sim n^{-2}$
- $\sim n^{-4}$

Graph showing the final error against the number of iterations for different methods, with trends indicated by $n^{-1}$, $n^{-2}$, and $n^{-4}$. The graph also shows that the error decreases by 10x, 100x, and 10000x with more iterations.
Convergence

- For same number of function calls
  - Tangential method improves linearly with increased iterations
  - Midpoint method improves quadratically with increased iterations
  - Runge-Kutta improves quartically with increased iterations

- Beware of choppy derivative functions that could screw this up
Problem with Even Stepsize

- Often the derivative function is highly variable
  - A high eccentricity orbit has much greater acceleration near the sun
- Even stepsize methods
  - far too little effort near sun (where planet zips around)
  - too much effort far from the sun (where planet moves slowly)
- Results
  - DISASTROUS

<table>
<thead>
<tr>
<th>Errors</th>
<th>RK</th>
<th>Tangential</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>102%</td>
<td>540%</td>
</tr>
<tr>
<td>Position</td>
<td>350%</td>
<td>480%</td>
</tr>
</tbody>
</table>
Adaptive Stepsize

- Errors can be estimated along the way
  - estimates of different order with same derivative calls
- If error too large, stepsize shrinks
- If error too small, stepsize grows
- Results
  - Fine stepping near sun
  - Coarse stepping far from sun
  - Efficient use of CPU!

Adaptive Runge-Kutta
383 calls to derivative function
fewer calls!

- eccentricity = 0.9

Errors:

<table>
<thead>
<tr>
<th></th>
<th>Adaptive RK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy</td>
<td>0.001%</td>
</tr>
<tr>
<td>Position</td>
<td>0.002%</td>
</tr>
</tbody>
</table>
Differential Equations Summary

- Canned packages exist for Runge-Kutta
  - it’s a good place to start
  - usually doesn’t get you into too much trouble
- Consider adaptive stepsize
  - if derivative is known to vary a lot or suddenly
- Other methods: Bulirsch-Stoer, etc.
  - may offer radically fast performance, if derivatives are reasonably stable
  - often very similar calls can be made to multiple integrators, so play around!
Outline

• Intro to physics in M&S
• Quadrature (Integration of Functions)
• Integration of Differential Equations
  – orbits and trajectories
• Radiative Processes
  – atmospheric effects on visibility
• Fourier methods
  – image processing
Radiative Processes Segue

• Now an example of seemingly complicated physics
• But an extremely simple mathematical solution
  – can’t get more efficient than that!
Radiative Processes

- Optical/IR detection depends not only on an obstruction-free line-of-sight, but also on atmospheric effects
- The atmosphere can basically do two things to light
  - absorb
  - scatter
- Fortunately, the math for these is straight-forward
Absorption

- Absorption attenuates light exponentially with distance.
  - If half of light is absorbed in the first meter, half of the remaining light is absorbed in the second

- Exponent proportional to density

\[ n = \text{density of absorbers} \]
Absorption Math

• Absorption is quantified in terms of an opacity $\kappa$, in units of m$^{-1}$
• Opacity is the product of the number density, $n$, and the cross-section, $\sigma$, of the absorbing particle

$$\kappa = n \sigma$$

![Diagram showing high $n$, low $\sigma$ on the left and low $n$, high $\sigma$ on the right, leading to an equal opacity $\kappa$.](image)
Absorption Math

- Optical Depth, \( \tau \), is the product of \( \kappa \) and the distance to the object of interest
  - or integral over the distance
- The light received is simply

\[
I = I_0 \exp(-\tau) \\
\tau = \int \kappa ds = \int n \sigma ds
\]

Note that \( \sigma \) depends on quantum interaction probabilities, but tables are well-established for countless species.
Scattering

- Scattering features particles that bounce light in a random direction
  - light isn’t attenuated by made more uniform in medium
    - smoke, fog, snow, rain
- Effect is again proportional to density

\[ n = \text{density of absorbers} \]

Half of light scattered  Half of light scattered

multiple scatter
Intuitive Fog Example

• Demonstrate fog mathematics

• Problem, need 3-D

• Photograph selected for easy 3-D model
  - green pixels aren’t Parris
  - ground is a simple plane
  - background trees treated as a plane
3-D Toy Model

- Dark = far
- light = close
- some minor errors
Toy Fog Model

• Fairly convincing to the eye

- no fog, $\kappa = 0$
- thin fog, $\kappa = 0.01$
- thicker fog, $\kappa = 0.05$

strictly notional, but math is right
Real Scattering

Wavelength-dependent scattering (blue more scattered than red) = reddened sun, blue sky

simple scattering by fog around streetlight

more blue scattering
Toy Absorption

- Very fine coal dust?

\[ \kappa = 0 \]

\[ \kappa = 0.01 \]

\[ \kappa = 0.05 \]
Real Absorption

Black smoke from Iraqi oil fire

Dark interstellar dust
Infrared Absorption

- Water vapor (among other molecules) very effectively absorbs infrared radiation.
Water Vapor and IR

- Spectral dependence is quite complex
  - water densities given in terms of mm
    - if I took all the water vapor in line of sight and made it liquid, how much water would I have?
In practice

• Integrate the absorption spectra against the bandpass of your detector to get a simple function of total absorption vs. water column.
Outline

- Intro to physics in M&S
- Quadrature (Integration of Functions)
- Integration of Differential Equations
  - orbits and trajectories
- Radiative Processes
  - atmospheric effects on visibility
- Fourier methods
  - image processing
Fourier Transform Segue

• The purpose here is to present a very advanced computational technique with a great many applications
Intro

• The Fourier Transform
  – facilitates solution of partial differential equations
  – has applications in
    • compression
    • image processing
    • signal analysis
    • statistics

• The big advantage:
  – Allows many $N^2$ processes to be carried out in $N\log N$ time.

• First, the MATH
Basis Vectors

- Consider 3-vectors
- 3 coordinates are really projections of the vector onto the independent axes
- Each coordinate can be formed by taking the dot product of the vector with the axis’s basis vector:

\[ f = \sum_{m=x,y,z} \hat{e}_m (f \cdot \hat{e}_m) \]

\[
\begin{align*}
x &= \hat{e}_x \cdot f = (1,0,0) \cdot f = 1 \\
y &= \hat{e}_y \cdot f = (0,1,0) \cdot f = 3 \\
z &= \hat{e}_z \cdot f = (0,0,1) \cdot f = 2
\end{align*}
\]

Find components by taking dot-product with basis vectors.
Different Basis Sets

- Example: rotated coordinate axes

$$ (1,3,2) = (2.019, 2.777, 1.487)' $$

$$ x' = \hat{e}_x \cdot \mathbf{f} = 2.018725 $$

$$ y' = \hat{e}_y \cdot \mathbf{f} = 2.777474 $$

$$ z' = \hat{e}_z \cdot \mathbf{f} = 1.486739 $$

$$ \mathbf{f} = \sum_{m'} \hat{e}_{m'}(\mathbf{f} \cdot \hat{e}_{m'}) $$

Same $\mathbf{f}$, different representation. Still find components by taking dot-product with basis vectors.
A different way to see it

- Regard $x, y, z$ components as heights on a 3-bar histogram
  - exactly same information contained

$$\text{height} = f$$

$$f = \sum_{m=x,y,z} C_m \hat{e}_m$$
Now basis vectors are just unit columns

\[ \begin{align*}
1 \times & \left( \begin{array}{c}
1 \\
3 \\
2
\end{array} \right) \\
3 \times & \left( \begin{array}{c}
1 \\
0 \\
0
\end{array} \right) \\
2 \times & \left( \begin{array}{c}
0 \\
0 \\
1
\end{array} \right)
\end{align*} \]

= \sum

Cartesian Bases

\[ \hat{e}_x \]
\[ \hat{e}_y \]
\[ \hat{e}_z \]
Rotated Basis as a Histogram

\[
\begin{align*}
\hat{\mathbf{e}}_x' & = 2.019 \times \sum \hat{\mathbf{e}}_x \\
\hat{\mathbf{e}}_y' & = 2.777 \times \sum \hat{\mathbf{e}}_y \\
\hat{\mathbf{e}}_z' & = 1.487 \times \sum \hat{\mathbf{e}}_z
\end{align*}
\]
\( n \)-vectors

- Bar graph simply grows, with dimension along horizontal axis

\[
\mathbf{f} = (1,3,-5,2,-3,-3,1,3,2,4,0,3,1,-5,6)
\]

\[
f_j = \hat{\mathbf{e}}_j \cdot \mathbf{f}
\]

\[
\hat{\mathbf{e}}_8 = (0,0,0,0,0,0,0,1,0,0,0,0,0,0,0)
\]
Rule for basis vectors

- Vectors must remain orthonormal

\[ \hat{e}_i \cdot \hat{e}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases} \]

- Simple enough
- Lots of possibilities
  - We’ll focus on one shortly
Adding more dimensions...

• With enough dimensions, the vector starts to look like a function

\[ x_j = x(t_0 + j\Delta t) \]

Increase \( N \), approach **continuous** function
Basis of interest

- **Discrete Fourier Transform**, for a vector of length $N$

\[
(\hat{\phi}_m)_j = \exp\left(\frac{2\pi i m}{N} j\right) \quad \text{for } j = 0, 1, \ldots, N-1
\]

\[
C_m = \mathbf{f} \cdot \hat{\phi}_m^{*} = \sum_j f_j (\hat{\phi}_m^*)_j
\]

\[
f = \frac{1}{N} \sum_m C_m \hat{\phi}_m
\]

Asterisk is for complex conjugate

Note:

\[
\exp\left(\frac{2\pi i m}{N} j\right) = \cos\left(\frac{2\pi m}{N} j\right) + i \sin\left(\frac{2\pi m}{N} j\right)
\]
Don’t Panic! Tedious Math is Hidden…

• In IDL, for vector \( f \)

  \[
  \text{IDL}> \ C = \text{fft}(f) \\
  \text{IDL}> \ \text{fsame} = \text{fft}(C,/\text{inverse})
  \]

• Using Numerical Recipes in C++

  ```c
 int main() {
 ...
 \text{NR::fourl1(a,1)}
 \text{NR::fourl1(b,-1)}
 ...
 }
  ```

(NR uses in-place storage)
Okay, what does this look like?

For $N = 16$
Example: \( f_j = j, \ N = 128 \)

- Building up the sum

\[
C_m &= \mathbf{f} \cdot \hat{\phi}_m \\
\mathbf{f} &= \frac{1}{N} \sum_m C_m \hat{\phi}_m
\]
Example: \( f = j, \ N = 128 \)

- Building up the sum

\[
C_m = f \cdot \hat{\phi}_m^* \\
f = \frac{1}{N} \sum_m C_m \hat{\phi}_m
\]
Fourier Transform Yields the Spectrum

- Spectrum of Light
- Spectrum of Sound
Why?

- Each Fourier Basis vector is a waveform of a different frequency
- Finding the components of frequency that make up a function is, by definition, taking its spectrum
• Musical notes are really Fourier components

F only

F

F+A+C

F major
Fourier Derivative

- Reconsider

let \( k_m = \frac{2\pi m}{N} \) ← notational convenience

\[
\hat{\phi}_m = \exp\left(\frac{2\pi i m}{N} j\right) = \exp(ik_m j)
\]

\[
C_m = f \cdot \exp(-ik_m j)
\]

\[
f_j = \frac{1}{N} \sum_mC_m \exp(ik_m j)
\]

- Let \( x = j \), and take \( x \) derivative

\[
f(x) = f_j = \frac{1}{N} \sum_mC_m \exp(ik_m x)
\]

\[
\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \frac{1}{N} \sum_mC_m \exp(ik_m x)
\]

\[
= \frac{1}{N} \sum_m ik_mC_m \exp(ik_m x)
\]

Derivative has become simple multiplication!

\[
C_m \left( \frac{\partial f}{\partial x} \right) \rightarrow ik_mC_m(f)
\]
Fourier Differentiation of a Gaussian

\[ y = \frac{1}{\sqrt{2\pi}(20)} \exp\left( -\frac{(x-127)^2}{2 \cdot 20^2} \right) \]

Gaussian Function

\[ y' = \frac{1}{\sqrt{2\pi}(20)} \left( -\frac{x}{20^2} \right) \exp\left( -\frac{(x-127)^2}{2 \cdot 20^2} \right) \]

Fourier Derivative

actual derivative

Fourier derivative
Fourier and Partial Diff Eqs

- A wave is a traveling function

\[ F(x, t) = f(x - \nu t) \]

\( \nu \) is the velocity of the wave
Fourier Wave propagation

\[ F(x,t) = f(x - vt) \]

\[ \frac{\partial F}{\partial x} = -1 \frac{\partial F}{\partial t} \]

- Consider coefficients as time-dependent

\[ F = \sum_{m=0}^{\infty} \frac{1}{N} C_m(t) \exp(ik_m x) \]

\[ \frac{\partial F}{\partial x} = \frac{1}{N} \sum_{m=0}^{\infty} ik_m C_m(t) \exp(ik_m x) = -\frac{1}{v} \frac{\partial F}{\partial t} \]

\[ \frac{\partial C_m}{\partial t} = -ik_m v C_m(t) \]

Use ODE integrator to propagate \( C_m \)'s
Gaussian wave, FFT propagation

- speed is 1
- Use RK4 steps (with FFT spatial derivatives)
- 200 iterations with $\Delta t = 0.7$ sec

That’s $10^6$
Gaussian wave, Finite Difference

- Use finite-difference steps

\[ \frac{\partial f}{\partial x} \bigg|_{x=x_i} = \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x} \]

MUCH better performance by Fourier method
Cooler example

• Water waves
  - wave propagation speed proportional to square-root of wavelength = \( \frac{2\pi}{k} \)
  - all wave propagation in Fourier space
  - fancy shadows and reflections from basic geometry in real-space

movie runs about 3× calculation speed on PC… FFTs are FAST!
Combined Wave and Diffusion

• Terms in first and second order spatial derivatives

\[
\frac{\partial f}{\partial t} = D \frac{\partial^2 f}{\partial x^2} - v \frac{\partial f}{\partial x}
\]

• In real media, waves typically diffuse due to friction or viscosity
  – Gaussian solution

\[
f = \frac{1}{\sqrt{4\pi Dt}} \exp\left(-\frac{(x - vt)^2}{4Dt}\right)
\]
Simulation results, $v=0.1$, $D=0.2$

Fourier methods

Finite Differencing
Fourier in PDEs

- Often much more accurate than finite differencing
  - uses information from all points, not just two
- Still very fast
  - $N \log N$ operation
Convolution

- Convolution is usually a method of smoothing
  - can be used for filtering and unsmoothing
- Convolving $f(x)$ with $g(x)$ is accomplished thus

$$f(x) \otimes g(x) = \int_{y_0}^{y_1} g(y) f(x - y) dy$$
Typical Example

- Smooth with a Gaussian Function

\[ f(x) \otimes g(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} \exp\left(-\frac{y^2}{2\sigma^2}\right)f(x-y)dy \]

- This smooths over features smaller than sigma, leaving only the long wavelength, smoother components
**Typical Example**

- Smooth with a Gaussian Function

\[ \sigma = 10 \]
Discrete Convolution

\[ f(x) \otimes g(x) = \int_{y_0}^{y_1} g(y) f(x - y) dy \]

\[ (f \otimes g)_j = \sum_{k=0}^{N-1} g_k f_{(j-k)} \]

- By definition, an \( N^2 \) process
  - each of \( N \) elements of the convolution requires a sum over \( N \) terms

\( g(x) \) is the “convolution kernel”
Fourier Convolution

- **Continuous limit:** $N$ becomes very large
  - Vectors become continuous functions
  - Dot products become integrals

$$\phi(k, x) = \exp(ikx)$$

$$\tilde{f}(k) = \int f(x) \exp(-ikx)dx$$

$$f(x) = \frac{1}{2\pi} \int \tilde{f}(k) \exp(ikx)dk$$
Fourier Convolution

- Convolution is simply multiplication in Fourier space, STILL \(N \log N\)!

\[
f \otimes g = \int_y g(y) f(x - y) dy
\]

\[
= \int_y g(y) \int_k \tilde{f}(k) \exp(ik(x - y)) dk dy
\]

\[
= \int_k \tilde{f}(k) \exp(ikx) \int_y g(y) \exp(-iky) dy dk
\]

\[
= \int_k \tilde{f}(k) \exp(ikx) \tilde{g}(k) dk
\]

\[
f \otimes g = \int_k \tilde{f}(k) \tilde{g}(k) \exp(ikx) dk
\]
One Last Trick

- Fourier Transform of a Gaussian is a Gaussian with $\sigma_k = 1/\sigma$

$$g(x) = \frac{1}{\sqrt{2\pi \sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$$

$$\tilde{g}(k) = \frac{1}{\sqrt{2\pi \sigma}} \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2\sigma^2}\right) \exp(-ikx) dx$$

$$= \frac{1}{(2\pi)^{3/2} \sigma} \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2\sigma^2} - ikx\right) dx$$

$$- \frac{x^2}{2\sigma^2} - ikx = - \frac{1}{2\sigma^2} \left(x^2 + 2\sigma^2 ikx\right)$$

$$= - \frac{1}{2\sigma^2} \left[(x + \sigma^2 ik)^2 + \sigma^4 k^2\right]$$

$$= - \frac{1}{2\sigma^2} \left[(x + \sigma^2 ik)^2 - \frac{\sigma^2 k^2}{2}\right]$$

$$\tilde{g}(k) = \frac{1}{(2\pi)^{3/2} \sigma} \exp\left(-\frac{\sigma^2 k^2}{2}\right) \int_{-\infty}^{\infty} \exp\left(-\frac{(x + \sigma^2 ik)^2}{2\sigma^2}\right) dx$$

$$= \text{constant} \times \exp\left(-\frac{\sigma^2 k^2}{2}\right)$$
Fourier Convolution

convolved data

Fourier Convolution
Again, Advantage Fourier

- Fourier Convolution happens in $N \log N$ time, not $N^2$ time.
- Becomes very important at large $N$. 
2-D Convolution: Boxcar Smoothing

- Average all pixels in an $n \times n$ box

$n = 15$
2-D Gaussian Smoothing

- Same math as in 1-D

\[ \sigma = 10 \]
Edge Detection

• Edges have large gradients
  – cliffs are steep

• Search for gradients by taking advantage of Fourier derivative = multiplication

\[
\frac{df}{dx} \otimes g = \int \frac{df}{dx} \tilde{f}(k) \tilde{g}(k) \exp(ikx) dk
\]

\[
= \int ik \tilde{f}(k) \tilde{g}(k) \exp(ikx) dk
\]

Fourier Derivative in continuous space: \( ik_m \rightarrow ik \)
Edge Detection

- Can look for gradients at any angle
Edge Detection

- $60^\circ$ gradient edge, and some of squares of x & y edges
Matched Filtering

• Some applications require enhancement of modes only in a particular band = (attenuation of other bands)
  – high- and low-pass filter, like one column on a spectrum analyzer

• In image processing, source location is a biggie
Fake astronomical image

- Fairly typical galaxy in fairly typical star-field
- Realistic noise added
Want to find stars

• Use matched filter – select frequencies that correspond to the stars’ “point spread function”
  - p.s.f. arises from blurring by atmosphere
  - remove high-frequency noise
  - remove low-frequency galaxy
Power Spectrum of image

- The power spectrum show what needs to happen

  useless noise at high $k$

  stellar p.s.f. at moderate $k$
First smoothing

• Removes high-$k$ noise
  - greatly enhances large, smooth galaxy
  - remember higher $k$ modes are shorter waves = smaller, choppier structures

• enhances stars by removing noise, but not relative to galaxy

\[
\tilde{g}(k) = \exp \left( -\frac{k^2 \sigma^2_{\text{psf}}}{2} \right)
\]
Matched filter

- Filter out very low $k$ bands as well
  - low $k$ is long wavelength = large, smooth structures
  - galaxy now largely removed
  - stars greatly enhanced

\[
\tilde{g}(k) = \exp\left(-\frac{k^2 \sigma^2_{\text{psf}}}{2}\right) - \exp\left(-\frac{9k^2 \sigma^2_{\text{psf}}}{2}\right)
\]
To find sources, use a threshold

- Look at pixels only above a certain value
  - stars pop right out
What we did, in Fourier Space

- Removed high $k$ noise by multiplying by Gaussian
- Removed low $k$ structure by subtracting smaller Gaussian

Fourier Filter
- high $k$ noise removal
- low $k$ galaxy removal

Filtered Power Spectrum
Fourier Image Compression

• Frequently real life images have very little power in most of the Fourier modes
  - Throw those modes out entirely, and use only the important ones

• Compute power spectrum
  - sort power spectrum; keep only some fraction of the most important modes
Fourier Compression

Fourier Modes Used 100%

Fourier Modes Used 60%
Fourier Compression – 40% acceptable

Fourier Modes Used 100%  
Fourier Modes Used 40%
Fourier Compression – 20% marginal

Fourier Modes Used 100%

Fourier Modes Used 20%
Fourier Compression – 5% blurry

Fourier Modes Used 100%  Fourier Modes Used 5%
Fourier Compression

• Large compression factors can be used with acceptable maintenance of image quality
  – 20% is probably acceptable if not zoomed in so tightly

• Caveat
  – storage of WHICH Fourier modes to be used is a factor
  – For a 512x512 image, need at least 18 bits to locate the mode, plus the original 8 bits to give the coefficient of the mode
  – could play other games:
    • a one-bit image of which modes to use
    • run-length encoding of that (ZIP)
JPEG Compression

- JPEG is a localized Fourier compression
- 8 x 8 squares are carved out of the image, and Fourier compression is carried out within
  - For boring parts of the image, often only one mode is used (the constant mode)
  - In interesting areas, most modes are used
JPEG-like Compression

Fourier Modes Used 100%

Fourier Modes Used 60%
JPEG-like Compression

Fourier Modes Used 100%  
Fourier Modes Used 40%
JPEG-like Compression

Fourier Modes Used 100%  Fourier Modes Used 20%
JPEG-like Compression

Fourier Modes Used 100%

Fourier Modes Used 5%
Fourier vs. JPEG

Fourier Modes Used 20%

Fourier Modes Used 20%
Fourier vs. J PEG

• J PEG preserves more locally sharp features, though pesky square edges start showing up
• Fourier compression loses sharp information, but essentially looks like a smoothed version of original
• Both have some granularity, though J PEG’s is confined to particular squares
  - advantage J PEG: annoying behavior confined locally
• Take your pick!
Conclusions

• Physics-based modeling has countless applications in DoD M&S
  - Saw today: missile trajectories, atmospheric effects on sensors

• Using efficient mathematical techniques dramatically enhances compute power
  - Efficient integration algorithms
  - Analytical results
  - Fourier techniques (with spillover into compression and image processing)

• Bottom Line:
  - THINK about the physics
  - Take the time to use appropriate efficient algorithms, and your computer will thank you!