## Physics-Based Modeling: Principles, Methods and Examples

Wesley N. Colley Leslie A. Litten Center for Modeling, Simulation and Analysis University of Alabama in Huntsville





#### Purpose of Tutorial

- Motivate need for good physics in M&S
- Motivate idea that good physics can often be carried out efficiently
  - Familiarize audience with numerical techniques that radically enhance computational efficiency
  - Present physics-based examples that benefit from such techniques
  - Present an example where difficult physics has a simple mathematical solution

## **Quick Acknowledgements**

- Much of this material can be found in Numerical Recipes
  - in C++, C and FORTRAN
  - Press, Teukolsky, Vetterling, Flannery
- Charts and much analysis prepared for this talk carried out in IDL
  - Interactive Data Language
  - see <u>www.itt-vis.com</u>
  - otherwise C++

## Outline

- Intro to physics in M&S
- Quadrature (Integration of Functions)
- Integration of Differential Equations

   orbits and trajectories
- Radiative Processes
  - atmospheric effects on visibility
- Fourier methods

   image processing

## How does physics play a role in M&S?

- Physics and M&S share a similar goal
   Model the world around us
- Physics started when
  - Computers didn't exist
  - Questions were simple, like "why do arrows fly?"
- M&S and Physics meet when
  - Modeler: Accurate models of natural behavior are needed in my simulation
  - Physicist: Computers are necessary to handle the math in my physics problem

## Strengths of Physics

- Physics (at some level) describes everything in the Universe
  - Sub-atomic interactions
    - Binding of quarks in proton
  - Cosmological scale interactions
    - Expansion and acceleration of the Universe
  - Everything in between
    - Atoms, molecules, baseballs, mountains, planets, stars, galaxies

What about a human thought?

Okay, smarty, no. The electrons in the neurons, though...

## Macroscopic Stuff

- Basic mechanics
  - Flight of baseballs, pendula, springs, orbits
- Thermo-/Hydro-dynamics
  - Airframe modeling, mixing of airborne agents, dam engineering, rockets, explosives, heat pump
- Materials
  - Heat resistance, tensile strength, conductive properties, lightness
- Electricity and Magnetism
  - Optics, radar, compasses, electrical engineering
- Quantum Physics
  - Lasers, microchips, nuclear

#### The Weakness of Physics

- Physics tends to break down when very large numbers of physical entities are involved
  - Cannot compute bridge properties through quantum interactions (~10<sup>35</sup> atoms in a bridge!)
- Chemistry, Chem E: rule sets approximating quantum mechanics
- *Biology, Materials Science*: rule sets approximating Chemistry and quantum
- Astrophysics: rule set approximating gravity, hydro and quantum
- *Engineering*: (often) use of physical properties of materials, gases, etc. for large systems

## So physics is (often) useful...

- How do we model it?
- MATH
- Physics is very often a means of mapping reality into mathematics
  - Almost all macroscopic interactions are governed by a second-order partial differential equation
- Just math? Then is knowledge of Nature's apparent rules "deep?" Does F = ma
  - Tell us something fundamental about Nature
  - Or just provide a synopsis of our observations?

## Math...

- The math physics generates is typically complicated
  - Very few realistic problems can be solved analyitically
- Answer: Computer
  - Use numerical mathematics

$$-\frac{\hbar^2}{2m}\nabla^2\psi(\mathbf{r}) - \frac{ke^2}{r}\psi(\mathbf{r}) = i\hbar\frac{\partial\psi(\mathbf{r})}{\partial t}$$

This equation governs a single electron in a Hydrogen atom!



## The strategy

- When faced with a problem, identify the type of physics at its root
- Make approximations that simplify the problem
  - Air resistance is negligible on a falling coin
    - Not true from Empire State building
  - Moon is a point mass
    - Not true if concerned about tides on moon

## The Strategy (cont.)

- Once you are working at the right level, begin looking at the physics involved
- Identify the mathematical issues the physics presents
- Choose the correct numerical methods for handling that math
- Model away!

## Outline

- Intro to physics in M&S
- Quadrature (Integration of Functions)
- Integration of Differential Equations

   orbits and trajectories
- Radiative Processes
  - atmospheric effects on visibility
- Fourier methods

   image processing

#### Quadrature Segue

- First things first
- Introduce a powerful mathematical technique that can be generalized into physics applications
- Simple math question:
   How do I find the area under the function *f(x)*?

Riemann Sum: Simple Question What is Area Under Curve f(x)?



#### **Riemann Sum Example**

Riemann •  $y = \sin(x)$ 1.0 • *a* = 0 0.8 •  $b = \pi/2$ • n = 80.6 У  $\mathbf{r}^{\pi/2}$  $\sin(x)dx = 1$ 0.4 0.2 • Estimate: 0.89861040 0.0 0.0 0.1 0.2 0.3 0.4 0.5  $x / \pi$ 50-50 result

# Improving

- Examine errors made
- Basically look
   like triangles >>
- Can we correct for that?





$$F(a,b) \approx \frac{h}{2} \sum_{i=0}^{(a-b)/h-1} f(a+ih) + f(a+ih+h)$$
$$= h \sum_{i=1}^{(a-b)/h-1} f(a+ih) + \frac{h}{2} [f(a) + f(b)]$$

sum up trapezoids, not rectangles

simplify: same as Riemann, except endpoints... hmmm

## Trapezoid Rule

- Return to sine
   curve
- Much better looking
- Estimate: 0.99678517
- Much better!
- Same number of calls to derivative function!



Note: Need continous first derivative for it to work right...

## **Trapezoid Errors**

- Now errors
- are much smaller
- They look like<sup>∞</sup> parabolas
- What next?



#### Simpson's Rule

- Fit parabolas to every three points
   find area under each parabola
- Sounds complicated, but the area under the parabola is given by a simple linear formula

not quadratic as one might guess

For a parabola fitting the points

$$(x_0, y_0), (x_0 + h, y_1), (x_0 + 2h, y_2)$$

 $A = \frac{h}{3}(y_0 + 4y_1 + y_2)$  Simply adjust weights in sum!

## Simpson's Rule

- Find area under parabolas in every interval of 2h.
- Estimate: 1.0000083
- Very good, and still same number of calls.



Note: Need continous second derivative for it to work right...

## Simpson Errors

- Errors are now quite small
- Cubic in nautre
- Curiously, cubic terms cancel, leaving quartic errors



## Bode's Rule

- Okay, fit quartics to each interval of 4h
- Just different weights in sum again
- Estimate: 0.99999988
- Still better, still same number of calls



Note: Need continous fourth derivative for it to work right...

#### Convergence

- One can also improve estimate by "brute force"
  - Simply carry out more iterations
- How much do estimates improve as a function of number of iterations?





#### Convergence

- Riemann sum improves linearly with increased iterations
- Trapezoid: quadratically
- Simpson's Rule: quartically
- Bode's Rule: 6<sup>th</sup> order
  - a million times better with ten times the iterations!
- Why not keep going?

# Getting silly

- One could keep fitting higher-order polynomials to improve the fit

   and maintain computational load
- However, these high-order rules require increasingly well-behaved functions
  - Namely, functions must be continuously differentiable at the order of the polynomial
  - Not likely in real world too often
    - If it is, the integral is probably analytic or semianalytic... Just look up the answer!

# One Counter-Example

The derivative rules really do matter

- Continuous firstderivative
- discontinuous
   2<sup>nd</sup> derivative
- Trapezoid and Riemann shouldn't notice
- Simpson and Bode should



#### Convergence for baddish function

- Riemann and trapezoid behave normally
- Simpson and Bode do not
  - improvement
     is essentially
     2<sup>nd</sup> order,
     same as
     trapezoid



## **Quadrature Summary**

- Several different methods use the exact same calls to the derivative function with vastly different results
  - higher order means better estimates AND
  - better convergence with more iterations
- But, beware the caveats of higher order methods
- My advice: try Simpson's Rule
- Advanced methods use extrapolation from results of different iteration numbers

## Outline

- Intro to physics in M&S
- Quadrature (Integration of Functions)
- Integration of Differential Equations

   orbits and trajectories
- Radiative Processes
  - atmospheric effects on visibility
- Fourier methods

   image processing

# Diff Eq Segue

- Similar methods to those of numerical integration carry over into ordinary differential equations
- A great many physical systems are governed by such equations
  - orbits
  - ballistics
  - analog circuits
  - springs, dampers
  - pendula

## **Tangential Integration**

Consider

$$\frac{dx}{dt} = f(t, x)$$

- One could integrate the solution:
  - start with an initial value
  - compute derivative
  - find next value

$$x(t_0) = x_0$$
  
 
$$x(t_0 + \Delta t) = x(t_0) + f(t_0, x_0) \Delta t$$

# Graphically

• Slope at  $t_0, x_0 = f(t_0, x_0)$ 



# Graphically

• Slope at  $x_1$ ,  $t_1 = f(t_1, x_1)$  Estimate of  $x_2 \approx x(t_0 + 2\Delta t)$ 



## **Errors Mount**

- Errors are worse than in integration of functions
  - With functions, derivative estimate is always correct
  - With diff eq's, derivative estimate becomes invetiably poorer as errors are made
  - Errors are compounded



#### **Midpoint Method**

 Find x<sub>1/2</sub> by using slope at x<sub>0</sub> but only moving half a time-step



## Midpoint

• Use slope at  $(t_{1/2}, x_{1/2})$  to propagate full step from  $(t_0, x_0)$ 



## Midpoint Formula

- Mitigates compounding errors significantly
- Allows for curvature during timestep



Note: 16 calls to derivative function for each

## Runge-Kutta

- Similar idea to midpoint, but four points
- use slope at start to go to 1<sup>st</sup> midpoint
- use slope at 1<sup>st</sup> midpoint from start back to a 2<sup>nd</sup> midpoint
- use slope at 2<sup>nd</sup> midpoint to go to endpoint and obtain slope



## Runge-Kutta

#### Four-point method

- same principle as midpoint
- somewhat more complicated
  - two different midpoint evaluations
  - one endpoint evaluation
- still straight-forward to code and use
- Much better behavior



Note: 16 calls to derivative function for each

## Real World Example: Orbits

- Planetary orbits
  - Earthlike orbit (circular at earth distance from sun)
  - Elliptical orbit around sun
- Ballistic Missile trajectory
  - Siberian launch at Los Angeles
    - just Newtonian (Keplerian) gravity
    - no earth-rotation

$$\mathbf{a} = -\frac{GM}{r^3}\mathbf{r} \quad \text{(only)}$$

```
Simple Orbit Code
create 6-element state vector: x, y, z, v_x, v_y, v_z
const double GM = 1.33e23;
derivs(double* xv, double* dxvdt) {
    double r=sqrt(xv[0]*xv[0]+xv[1]*xv[1]+xv[2]*xv[2]);
    double r3=r*r*r;
    for (int i=0,i<3;i++) {</pre>
                                              \mathbf{a} = -\frac{GM}{\sigma^3}\mathbf{r}
         dxvdt[i] = xv[i+3];
         dxvdt[i+3] = -GM*xv[i]/r3; \leftarrow
int main()
for (int i=0,i<niter;i++) {</pre>
    rk4(xv,dt,xvnew,derivs); — use canned RK integrator
    xv = xvnew;
```

## **Orbit Integration**

- Earthlike orbit
  - circular, 1 AU radius
- Runge-Kutta vs. Tangential (Eulerian)
  - 400 calls each to derivatives function
- Errors after one orbit

|          | RK        | Tangential |
|----------|-----------|------------|
| Energy   | 0.000002% | 14%        |
| Position | 0.00003%  | 82%        |



## **Orbit Integration**

- Eccentric orbit
  - 1 AU radius
  - eccentricity = 0.5
  - b/a = 0.866
- Errors after one orbit

|          | RK     | Tangential |
|----------|--------|------------|
| Energy   | 0.003% | 34%        |
| Position | 0.001% | 70%        |



## Ballistic Missile Flight

- Simple Keplerian gravity, no earth rotation
- Siberian launch, target Los Angeles
- Tangential vs.
   Runge-Kutta







### Convergence

How rapidly does estimate improve with more iterations (CPU cycles)?



## Convergence

- For same number of function calls
  - Tangential method improves linearly with increased iterations
  - Midpoint method improves quadratically with increased iterations
  - Runge-Kutta improves quartically with increased iterations
- Beware of choppy derivative functions that could screw this up

## Problem with Even Stepsize

 Often the derivative function is highly variable

- A high eccentricity orbit has much greater acceleration near the sun
- Even stepsize methods
  - far too little effor near sun (where planet zips around)
  - too much effort far from the sun (where planet moves slowly)
- Results
  - **DISASTROUS**



## **Adaptive Stepsize**

- Errors can be estimated along the way
  - estimates of different order with same derivative calls
- If error too large, stepsize shrinks
- If error too small, stepsize grows
- Results
  - Fine stepping near sun
  - Coarse stepping far from sun
  - Efficient use of CPU!





383 calls to derivative function fewer calls!

#### Errors:

|          | Adaptive RK |
|----------|-------------|
| Energy   | 0.001%      |
| Position | 0.002%      |

## **Differential Equations Summary**

- Canned packages exist for Runge-Kutta
  - it's a good place to start
  - usually doesn't get you into too much trouble
- Consider adaptive stepsize
  - if derivative is known to vary a lot or suddenly
- Other methods: Bulirsch-Stoer, etc.
  - may offer radically fast performance, if derivatives are reasonably stable
  - often very similar calls can be made to multiple integrators, so play around!

## Outline

- Intro to physics in M&S
- Quadrature (Integration of Functions)
- Integration of Differential Equations

   orbits and trajectories
- Radiative Processes
  - atmospheric effects on visibility
- Fourier methods

   image processing

### **Radiative Processes Segue**

- Now an example of seemingly complicated physics
- But an extremely simple mathematical solution
  - can't get more efficient than that!

## **Radiative Processes**

- Optical/IR detection depends not only on an obstruction-free line-of-sight, but also on atmospheric effects
- The atmosphere can basically do two things to light
  - absorb
  - scatter
- Fortunately, the math for these is straight-forward

## Absorption

- Absoprtion attenuates light exponentially with distance.
  - If half of light is absorbed in the first meter, half of the remaining light is absorbed in the second
- Exponent proportional to density



## **Absorption Math**

- Absorption is quantified in terms of an opacity  $\kappa$ , in units of m<sup>-1</sup>
- Opacity is the product of the number density, *n*, and the cross-section,  $\sigma$ , of the absorbing particle

### **Absorption Math**

- Optical Depth,  $\tau$ , is the product of  $\kappa$  and the distance to the object of interest
  - or integral over the distance
- The light received is simply

$$I = I_0 \exp(-\tau)$$
$$\tau = \int \kappa ds = \int n \sigma ds$$

Note that  $\sigma$  depends on quantum interaction probabilities, but tables are well-established for countless species.

## Scattering

- Scattering features particles that bounce light in a random direction
  - light isn't attenuated by made more uniform in medium
    - smoke, fog, snow, rain
- Effect is again proportional to density



## Intuitive Fog Example

- Demonstrate fog mathematics
- Problem, need 3-D
- Photograph selected for easy 3-D model
  - green pixels aren't Parris
  - ground is a simple plane
  - background trees treated as a plane



## 3-D Toy Model

- Dark = far
- light = close

 some minor errors



## Toy Fog Model • Fairly convincing to the eye no fog, $\kappa = 0$ thin fog, $\kappa = 0.01$

thicker fog,  $\kappa = 0.05$ 



## **Real Scattering**

Wavelength-dependent scattering (blue more scattered than red) = reddened sun, blue sky simple scattering by fog around streetlight

#### more blue scattering

NASA PHOTO

# **Toy Absorption** • Very fine coal dust?

 $\kappa = 0$ 



 $\kappa = 0.05$ 

## **Real Absorption**

Black smoke from Iraqi oil fire

#### Dark interstellar dust



## **Infrared Absorption**

• Water vapor (among other molecules) very effectively absorbs infrared radiation

Transmission of Air Path Length = 1 km



### Water Vapor and IR

- Spectral dependence is quite complex
  - water densities given in terms of mm
    - if I took all the water vapor in line of sight and made it liquid, how much water would I have?



## In practice

 Integrate the absorption spectra against the bandpass of your detector to get a simple function of total absoprtion vs. water column.

## Outline

- Intro to physics in M&S
- Quadrature (Integration of Functions)
- Integration of Differential Equations

   orbits and trajectories
- Radiative Processes
  - atmospheric effects on visibility
- Fourier methods

   image processing

### Fourier Transform Segue

 The purpose here is to present a very advanced computational technique with a great many applications

# Intro

- The Fourier Transform
  - facilitates solution of partial differential equations
  - has applications in
    - compression
    - image processing
    - signal analysis
    - statistics
- The big advantage:
  - Allows many  $N^2$  processes to be carried out in  $N \log N$  time.
- First, the MATH

# **Basis Vectors**

- Consider 3-vectors
- 3 coordinates are really projections of the vector onto the independent axes
- Each coordinate can be formed by taking the dot product of the vector with the axis's **basis** vector:  $\mathbf{f} = \sum_{\mathbf{\hat{e}}} (\mathbf{f}, \mathbf{\hat{e}})$ .

$$\mathbf{x} = \hat{\mathbf{e}}_{x} \cdot \mathbf{f} = (1,0,0) \cdot \mathbf{f} = 1$$
  

$$y = \hat{\mathbf{e}}_{y} \cdot \mathbf{f} = (0,1,0) \cdot \mathbf{f} = 3$$
  

$$z = \hat{\mathbf{e}}_{z} \cdot \mathbf{f} = (0,0,1) \cdot \mathbf{f} = 2$$

Find components by taking dot-product with basis vectors

#### **Different Basis Sets**

Example: rotated coordinate axes



#### A different way to see it

 Regard x,y,z components as heights on a 3-bar histogram

- exactly same information contained

 $C_m$ 

height = **f**  
$$\mathbf{f} = \sum_{m=x,y,z} C_m \hat{\mathbf{e}}_m$$



## Now basis vectors are just unit columns







#### *n*-vectors

 Bar graph simply grows, with dimension along horizontal axis



## Rule for basis vectors

Vectors must remain orthonormal

$$\hat{\mathbf{e}}_i \cdot \hat{\mathbf{e}}_j = \begin{cases} 1 \text{ if } i = j \\ 0 \text{ if } i \neq j \end{cases}$$

- Simple enough
- lots of possibilities
  - we'll focus on one shortly

# Adding more dimensions...

• With enough dimensions, the vector starts to look like a function



#### Basis of interest

• **Discrete Fourier Transform**, for a vector of length *N* 

$$(\hat{\phi}_m)_j = \exp\left(\frac{2\pi im}{N}j\right)$$
  
 $C_m = \mathbf{f} \cdot \hat{\phi}_m^* = \sum_j f_j (\hat{\phi}_m^*)_j$ 

$$i = \sqrt{-1}$$

Asterisk is for complex conjugate

 $\mathbf{f} = \frac{1}{N} \sum C_m \hat{\phi}_m$ 

Note:

 $\exp\left(\frac{2\pi i m}{N} j\right) = \cos\left(\frac{2\pi m}{N} j\right) + i \sin\left(\frac{2\pi m}{N} j\right)$ 

# Don't Panic! Tedious Math is Hidden...

• In IDL, for vector f

IDL> C = fft(f)
IDL> fsame = fft(C,/inverse)

• Using Numerical Recipes in C++

```
int main() {
```

```
NR::four1(a,1)
NR::four1(b,-1)
```

(NR uses in-place storage)

# Okay, what does this look like? For N = 16







# Why do this?!

# Spectrum of Light

Fourier Transform Yields the *Spectrum* 

 Spectrum of Sound

# Why?

- Each Fourier Basis vector is a waveform of a different frequency
- Finding the components of frequency that make up a function is, by definition, taking its spectrum





## Fourier Derivative

#### Reconsider

let  $k_m = \frac{2\pi m}{N} \leftarrow \frac{\text{notational}}{\text{convenience}}$  $\hat{\phi}_m = \exp\left(\frac{2\pi i m}{N}j\right) = \exp(ik_m j)$  $C_m = \mathbf{f} \cdot \exp(-ik_m j)$  $f_j = \frac{1}{N} \sum_m C_m \exp(ik_m j)$ 

Derivative has become simple multiplication!

 Let x = j, and take x derivative

$$f(x) = f_j = \frac{1}{N} \sum_m C_m \exp(ik_m x)$$
$$\frac{\partial \mathbf{f}}{\partial x} = \frac{\partial}{\partial x} \frac{1}{N} \sum_m C_m \exp(ik_m x)$$
$$\frac{1}{N} \sum_m ik_m C_m \exp(ik_m x)$$

$$=\frac{1}{N}\sum_{m}ik_{m}C_{m}\exp(ik_{m}x)$$

$$C_m\left(\frac{\partial \mathbf{f}}{\partial x}\right) \rightarrow ik_m C_m(\mathbf{f})$$

#### Fourier Differentiation of a Gaussian



Fourier and Partial Diff Eqs

A wave is a traveling function

$$F(x,t) = f(x - vt)$$

v is the velocity of the wave



# Fourier Wave propagation F(x,t) = f(x-vt) $\frac{\partial F}{\partial x} = -\frac{1}{v} \frac{\partial F}{\partial t}$

Consider coefficients as time-dependent

$$F = \frac{1}{N} \sum_{m=0}^{\infty} C_m(t) \exp(ik_m x)$$
  
$$\frac{\partial F}{\partial x} = \frac{1}{N} \sum_{m=0}^{\infty} ik_m C_m(t) \exp(ik_m x) = -\frac{1}{\nu} \frac{\partial F}{\partial t}$$
  
$$\frac{\partial C_m}{\partial t} = -ik_m \nu C_m(t) \leftarrow Use \ ODE \ integrator to \ propagate \ C_m's$$

# Gaussian wave, FFT propagation

- speed is 1
- Use RK4 steps (with FFT spatial derivatives)





That's 10<sup>6</sup>

1.0 0.5 lO 0.0 × 4 -0.5 -1.050 150 100 200 250300 n х

# Gaussian wave, Finite Difference



MUCH better performance by Fourier method



# Cooler example

- Water waves
  - wave propagation speed proportional to squareroot of wavelength =  $2\pi/k$
  - all wave propagation in Fourier space
  - fancy shadows and reflections from basic geometry in real-space



#### movie runs about $3 \times$ calculation speed on PC... FFTs are FAST!

# **Combined Wave and Diffusion**

 Terms in first and second order spatial derivatives

$$\frac{\partial f}{\partial t} = D \frac{\partial^2 f}{\partial x^2} - v \frac{\partial f}{\partial x}$$

- In real media, waves typically diffuse due to friction or viscosity
  - Gaussian solution

$$f = \frac{1}{\sqrt{4\pi Dt}} \exp\left(-\frac{(x - vt)^2}{4Dt}\right)$$

### Simulation results, v=0.1, D=0.2



# Fourier in PDEs

- Often much more accurate that finite differencing
  - uses information from all points, not just two
- Still very fast
   *— M*og*N* operation

# Convolution

- Convolution is usually a method of smoothing
  - can be used for filtering and unsmoothing
- Convolving *f*(*x*) with *g*(*x*) is accomplished thus

$$f(x) \otimes g(x) = \int_{y_0}^{y_1} g(y) f(x-y) dy$$

# **Typical Example**

Smooth with a Gaussian Function

$$f(x) \otimes g(x) = \frac{1}{\sqrt{2\pi\sigma}} \int_{-\infty}^{\infty} \exp\left(-\frac{y^2}{2\sigma^2}\right) f(x-y) dy$$

 This smooths over features smaller than sigma, leaving only the long wavelength, smoother components

# Typical Example

Smooth with a Gaussian Function



# **Discrete Convolution**

$$f(x) \otimes g(x) = \int_{y_0}^{y_1} g(y) f(x - y) dy$$
$$\left(f \otimes g\right)_j = \sum_{k=0}^{N-1} g_k f_{(j-k)}$$

By definition, an N<sup>2</sup> process

 – each of N elements of the convolution requires a sum over N terms

g(x) is the "convolution kernel"

# **Fourier Convolution**

Continuous limit: N becomes very large

 Vectors become continuous functions
 Dot products become integrals

$$\phi(k, x) = \exp(ikx)$$
$$\widetilde{f}(k) = \int f(x) \exp(-ikx) dx$$
$$f(x) = \frac{1}{2\pi} \int \widetilde{f}(k) \exp(ikx) dk$$

$$\frac{2\pi m}{N} = k_m \to k$$
$$j \to x$$

$$f_j \to f(x)$$
$$C_m \to \tilde{f}(k)$$

# **Fourier Convolution**

 Convolution is simply multiplication in Fourier space, STILL N logN!

$$f \otimes g = \int_{y} g(y) f(x - y) dy$$
  
=  $\int_{y} g(y) \int_{k} \tilde{f}(k) \exp(ik(x - y)) dk dy$   
=  $\int_{k} \tilde{f}(k) \exp(ikx) \int_{y} g(y) \exp(-iky) dy dk$   
=  $\int_{k} \tilde{f}(k) \exp(ikx) \tilde{g}(k) dk$ 

$$f \otimes g = \int_{k} \tilde{f}(k) \tilde{g}(k) \exp(ikx) dk$$

#### (complete the square)

One Last Trick

 Fourier Transform of a Gaussian is a Gaussian with

 $\sigma_k = 1/\sigma$ 

 $g(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{x^2}{2\sigma^2}\right)$  $\widetilde{g}(k) = \frac{1}{\sqrt{2\pi\sigma}} \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2\sigma^2}\right) \exp(-ikx) dx$  $=\frac{1}{(2\pi)^{3/2}\sigma}\int_{-\infty}^{\infty}\exp\left(-\frac{x^2}{2\sigma^2}-ikx\right)dx$  $-\frac{x^2}{2\sigma^2}-ikx = -\frac{1}{2\sigma^2}(x^2+2\sigma^2ikx)$  $=-\frac{1}{2-2}\left[(x+\sigma^{2}ik)^{2}+\sigma^{4}k^{2}\right]$  $=-\frac{1}{2\sigma^{2}}\left[\left(x+\sigma^{2}ik\right)^{2}\right]-\frac{\sigma^{2}k^{2}}{2}$  $\widetilde{g}(k) = \frac{1}{(2\pi)^{3/2}\sigma} \exp\left(-\frac{\sigma^2 k^2}{2}\right) \int_{-\infty}^{\infty} \exp\left(-\frac{(x+\sigma^2 i k)^2}{2\sigma^2}\right) dx$  $= \operatorname{constant} \times \exp\left(-\frac{\sigma^2 k^2}{2}\right)$ 

## **Fourier Convolution**



# Again, Advantage Fourier

- Fourier Convolution happens in *N*log*N* time, not *N*<sup>2</sup> time.
- Becomes very important at large N.

## 2-D Convolution: Boxcar Smoothing

#### • Average all pixels in an *n* x *n* box



# 2-D Gaussian SmoothingSame math as in 1-D



#### **Edge Detection**

- Edges have large gradients

   cliffs are steep
- Search for gradients by taking advantage of Fourier derivative = multiplication

$$\frac{df}{dx} \otimes g = \int \frac{d}{dx} \tilde{f}(k) \tilde{g}(k) \exp(ikx) dk$$
$$= \int \frac{ik}{\tilde{f}} \tilde{f}(k) \tilde{g}(k) \exp(ikx) dk$$

Fourier Derivative in continuous space:  $ik_m \rightarrow ik$ 

#### **Edge Detection**

#### • Can look for gradients at any angle



#### **Edge Detection**

#### 60° gradient edge, and some of squares of x & y edges



#### Matched Filtering

- Some applications require enhancement of modes only in a particular band = (attenuation of other bands)
  - high- and low- pass filter, like one column on a spectrum analyzer
- In image processing, source location is a biggie



#### Fake astronomical image

- Fairly typical galaxy in fairly typical star-field
- realistic noise added





#### Want to find stars

- Use matched filter select frequencies that correspond to the stars' "point spread function"
  - p.s.f. arises from blurring by atmosphere
  - remove high-frequency noise
  - remove low-frequency galaxy





#### Power Spectrum of image

The power spectrum show what needs
 to happen

## stellar p.s.f. at moderate k `



#### supress high k

 $\widetilde{g}(k) = \exp\left(-\frac{k^2 \sigma_{\rm psf}^2}{2}\right)$ 

#### First smoothing

- Removes high-k noise
  - greatly enhances large, smooth galaxy
  - remember higher k modes are shorter waves = smaller, choppier structures
- enhances stars by removing noise, but not relative to galaxy



#### supress high k = supress low k

$$\widetilde{g}(k) = \exp\left(-\frac{k^2 \sigma_{\text{psf}}^2}{2}\right) - \exp\left(-\frac{9k^2 \sigma_{\text{psf}}^2}{2}\right)$$

### Matched filter

- Filter out very low k bands as well
  - low k is long
     wavelength =
     large, smooth
     structures
  - galaxy now
     largely removed
  - stars greatly enhanced



#### To find sources, use a threshold

 Look at pixels only above a certain value

 stars pop right

out



#### What we did, in Fourier Space

- Removed high k noise by multiplying by Gaussian
- Removed low k structure by subtracting smaller Gaussian





#### Fourier Image Compression

- Frequently real life images have very little power in most of the Fourier modes
  - Throw those modes out entirely, and use only the important ones
- Compute power spectrum
  - sort power spectrum; keep only some fraction of the most important modes

#### **Fourier Compression**

Fourier Modes Used 100%

#### Fourier Modes Used 60%



#### Fourier Compression – 40% acceptable

Fourier Modes Used 100%

Fourier Modes Used 40%



#### Fourier Compression – 20% marginal

Fourier Modes Used 100%

Fourier Modes Used 20%



#### Fourier Compression – 5% blurry

Fourier Modes Used 100%

Fourier Modes Used 5%



#### Fourier Compression

- Large compression factors can be used with acceptable maintenance of image quality
  - 20% is probably acceptable if not zoomed in so tightly
- Caveat
  - storage of WHICH Fourier modes to be used is a factor
  - For a 512x512 image, need at least 18 bits to locate the mode, plus the original 8 bits to give the coefficient of the mode
  - could play other games:
    - a one-bit image of which modes to use
    - run-length encoding of that (ZIP)

#### JPEG Compression

- JPEG is a localized Fourier compression
- 8 x 8 squares are carved out of the image, and Fourier compression is carried out within
  - For boring parts of the image, often only one mode is used (the constant mode)
  - In interesting areas, most modes are used

Fourier Modes Used 100%

#### Fourier Modes Used 60%



Fourier Modes Used 100%

Fourier Modes Used 40%



Fourier Modes Used 100%

Fourier Modes Used 20%



Fourier Modes Used 100%

Fourier Modes Used 5%



#### Fourier vs. JPEG

Fourier Modes Used 20%

Fourier Modes Used 20%



#### Fourier vs. JPEG

- JPEG preserves more locally sharp features, though pesky square edges start showing up
- Fourier compression loses sharp information, but essentially looks like a smoothed version of original
- Both have some granularity, though JPEG's is confined to particular squares
  - advantage JPEG: annoying behavior confined locally
- Take your pick!

#### Conclusions

- Physics-based modeling has countless applications in DoD M&S
  - Saw today: missile trajectories, atmospheric effects on sensors
- Using efficient mathematical techniques dramatically enhances compute power
  - Efficient integration algorithms
  - Analytical results
  - Fourier techniques (with spillover into compression and image processing)
- Bottom Line:
  - THINK about the physics
  - Take the time to use appropriate efficient algorithms, and your computer will thank you!