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Outline
• Motivation and introduction
• Definitions and concepts
• A survey of verification and validation methods

▪ Informal methods
▪ Static methods
▪ Dynamic methods
▪ Formal methods

• Case studies
▪ Validation using confidence intervals
▪ Validation using a statistical hypothesis test
▪ Comparing real and simulated missile impact data

• Summary
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Motivation and introduction
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Motivating example:  Operation

• Milton Bradley Operation game
▪ Remove plastic “ailments” from “Cavity Sam”
▪ Avoid touching tweezers to perimeter of opening

• Suitable for training surgeons?

Operation game equipment Representation of human anatomy?
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Motivating example: Zero-flight time simulators

• Zero-flight time simulators
▪ Simulator recreates aircraft controls, flight dynamics
▪ Airline pilots train on new aircraft type in simulator

• Suitable for training pilots?

Flight simulator cockpit Participants in pilot’s first flight in the aircraft type?
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Motivation and learning objectives
• Motivation
▪ VV&A essential to credible and reliable use of M&S
▪ Full range of V&V methods not widely known
▪ V&V execution depends on context and application

• Learning objectives
▪ Define and compare verification and validation
▪ Define and contrast categories of V&V methods
▪ List V&V methods within each category
▪ For select V&V methods, explain each method

and state what types of models it applies to
▪ State important findings from V&V case studies

There’s more to V&V than “that looks about right”.
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Definitions and concepts
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Concepts
• Model:  representation of something else
• Simulation:  executing a model over time
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Definition
Model. A physical, mathematical, or otherwise 
logical representation of a system, entity, 
phenomenon, or process.  [DOD, 1996] [DOD, 2009]

• Representation of something else,
often a “real-world” system

• Some aspects of the modeled system
are represented in the model, others not
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Definition
Simulation. Executing a model over time.
Also, a technique for testing, analysis, or training in 
which real world systems are used, or where a 
model reproduces real world and conceptual 
systems.  [DOD, 1996] [DOD, 2009]

Alternative uses of term (to be avoided)
• A large composite model
• Software implementation of a model
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t

h(t)
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Example:  Height under gravity
Model:  h(t) = –16t2 + vt + s Data:  v = 100, s = 1000

t h(t)

1 1084
0 1000

2 1136
3 1156
4 1144
5 1100
6 1024
7 916
8 776
9 604

10 400
11 164

Start
state
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Real-world system
in start state

Real-world system
in end state

Model
in start state

Model
in end state

Modeling Initialization Interpretation Validation

Time

Simulation

h(t) = –16t2 + vt + s
1000 = –16(0)2 + 100(0) + 1000

h(t) = –16t2 + vt + s
0 = –16(11.63)2 + 100(11.63) + 1000

Physics

Computation

Simulation vs reality



Model Verification and Validation Methods 13

© 2014 University of Alabama in Huntsville;  © 2014 Mikel D. Petty, Ph.D.

h(t) = -16t2 + vt + s

h >= 0.0 h = -16t2 + vt + s
true

false

Requirements
• Intended uses
• Needed validity, resolution, scale

Simuland
• Real-world system
• Thing to be simulated

Conceptual model [Banks, 2010]
• Simuland components, structure
• Aspects of simuland to model
• Implementation specifications
• Use cases
• Assumptions
• Initial model parameter values

Background definitions, 1 of 2
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/* Height of an object moving in gravity.  */
/* Initial height v and velocity s constants. */
main()
{
float h, v = 100.0, s = 1000.0;
int t;
for (t = 0, h = s; h >= 0.0; t++)
{
h = (-16.0 * t * t) + (v * t) + s;
printf(“Height at time %d = %f\n”, t, h);

}
}

500

1000

t

h(t)

5 10

t h(t)

1 1084
0 1000

2 1136
3 1156
4 1144
5 1100
6 1024
7 916
8 776
9 604
10 400
11 164

Background definitions, 2 of 2

Results
• Output of model
• Produced during simulation

Executable model
• Computer software
• Implemented conceptual model
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Definition
Verification.  The process of determining that a 
model implementation and its associated data 
accurately represents the developer’s conceptual 
description and specifications.  [DOD, 2009]

• Transformational accuracy
▪ Transform specifications to code 

• Software engineering quality
▪ Software engineering methods apply

• Summary question
▪ Is the model coded right?  [Balci, 1998]
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Definition
Validation.  The process of determining
the degree to which a model or simulation and its 
associated data are an accurate representation of 
the real world from the perspective of the intended 
uses of the model.  [DOD, 2009]

• Representational accuracy
▪ Recreate simuland with results

• Modeling quality
▪ Special validation methods needed

• Summary question
▪ Is the right model coded?  [Balci, 1998]
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Definition
Accreditation.  Official certification [by a 
responsible authority] that a model or simulation is 
acceptable for use for a specific purpose.  [DOD, 2009]

• Official usability for specific purpose or function
▪ Management decision, not technical process
▪ Not a blanket or general-purpose approval

• Accrediting (or accreditation) authority
▪ Agency or person responsible for use of model
▪ Normally not model developer

• Summary question
▪ Is the model the right one for the job?  [Petty, 2010]
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Requirements

Modeling

Simuland

Conceptual
modelResults

ImplementationSimulation

Requirements
analysis

Verification

Accreditation

Validation

Transformation
Comparison Executable

model

Validation

Verification

VV&A comparisons

[Petty, 2009]
[Petty, 2010]
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Model
not valid

Model
valid

Model
not relevant

Model
not used

Model
used

Correct

Type II error
Use of invalid model;

Incorrect V&V;
Model user’s risk;
More serious error

Correct

Type I error
Non-use of valid model;

Insufficient V&V;
Model builder’s risk;
Less serious error

Type III error
Use of irrelevant model;
Accreditation mistake;

Accreditor’s risk;
More serious error

Correct

VV&A errors and risks  [Balci, 1981] [Balci, 1985] [Balci, 1998]
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Credibility, cost, and utility
[Shannon, 1975] [Sargent, 1996] [Balci, 1998] [Sargent, 2000]
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How much VV&A is enough?

VV&A cost
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A survey of verification
and validation methods
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V&V methods
• Many available, ~85 in 1998 [Balci, 1998], more since
• Different purposes, advantages

-Audit
-Desk checking
-Documentation

Checking
-Face validation
-Inspections
-Reviews
-Turing test
-Walkthroughs

Informal Static Dynamic Formal
-Cause-Effect

Graphing
-Control Analysis
-Data Analysis
-Fault/Failure

Analysis
-Interface Analysis
-Semantic Analysis
-Structural Analysis
-Symbolic Evaluation
-Syntax Analysis
…

-Acceptance Testing
-Alpha Testing
-Assertion Checking
-Beta Testing
-Bottom-up Testing
-Comparison Testing
-Statistical

Techniques
-Structural Testing
-Submodel/Module

Testing
…

-Induction
-Inductive Assertions
-Inference
-Logical Deduction
-Lambda Calculus
-Predicate Calculus
-Predicate

Transformation
-Proof of Correctness

[Balci, 1998]
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V&V methods
• > 100 V&V methods
• Organized into categories  [Balci, 1998]

▪ Informal
▪ Static
▪ Dynamic
▪ Formal

• Similarities
▪ Forms of testing
▪ Involve comparisons  [Petty, 2009] [Petty, 2010]

• Differences
▪ What is being compared
▪ Degree of formality and quantitativeness
▪ Appropriate applications
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MethodMethod

ModelModel DataData

SkillsSkillsResourcesResources

Certain methods
apply best to specific

types of model

Certain methods
require specific types
or amounts of data

Some methods
require more resources

than others

Some methods 
require specific
skills to apply
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Problems can arise if the factors conflict
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Informal methods
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Informal V&V methods
• Characteristics
▪ Methods that rely heavily on Subject Matter Expert

(SME) expertise and evaluation
▪ More often qualitative and subjective
▪ More often performed by SMEs

• Example informal V&V methods
▪ Inspection
▪ Face validation
▪ Turing test
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Inspection (verification)
• Organized teams of developers, testers,

and users inspect artifacts
• Compare
▪ Requirements to conceptual model
▪ Conceptual model to executable model

• Errors found by manual examination
• General software verification method



Model Verification and Validation Methods 29

© 2014 University of Alabama in Huntsville;  © 2014 Mikel D. Petty, Ph.D.

Face validation (validation)
• SMEs, modelers, and users observe model

execution and/or examine results
• Compare results to simuland behavior,

as understood by SMEs
• Assessment
▪ Model validity evaluated subjectively
▪ Based on expertise, estimates, and intuition

• Comments
▪ Frequently used because of simplicity
▪ Often used when user interaction important
▪ Clearly better than no validation
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Face validation example
• Joint Operations Feasibility Tool [Belfore, 2004]

▪ Assess deployment transportation feasibility
▪ Assess logistical sustainment feasibility

• Validation process
▪ Special scenarios exercise full range of capabilities
▪ 20 SMEs with extensive experience evaluated model
▪ Assessments elicited via written questionnaires

• Process structure addressed face validation limits
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Turing test (validation) [Petty, 1994]

• Method
▪ Subject Matter Experts observes behavior
▪ Identify behavior as human- or model-generated

• Compares model behavior to human behavior
• Comments
▪ Suitable primarily for human behavior models
▪ Inability to reliably distinguish suggests

model-generated behavior is valid or realistic
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Semi-automated forces (SAF) systems
• Generate and control multiple simulated entities
• Used standalone or with other models
• Autonomous behavior for SAF entities
▪ Generated by software in SAF model
▪ Controlled by human operator via user interface
▪ Military hierarchy represented

OneSAF



Model Verification and Validation Methods 33

© 2014 University of Alabama in Huntsville;  © 2014 Mikel D. Petty, Ph.D.

Turing test example [Potomac, 1990] [Wise, 1991]

• SIMNET (Simulator Networking)
▪ Mounted combat team tactics training
▪ Distributed, virtual, entity-level, real-time
▪ Homogenous, proprietary

• SAF (Semi-Automated Forces)
▪ Automated opponents within SIMNET
▪ Behavior generated by software

Simulator bay Out-the-window

M1 driver

M1 turret
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• Experimental design
▪ Soldiers in M1 simulators fought multiple tank battles
▪ Two scenarios (1 and 2), two platoons (A and B)
▪ Opponents were other platoon, SIMNET SAF, or both

• Results
▪ Defenders not able to identify attackers, i.e., “pass”
▪ Restricted field of view from simulators and

small tactical behavior repertoire limited information

Scenario Defender Attacker
1 A B
1 A SAF
1 A B + SAF
1 B A
1 B SAF
1 B A + SAF

Scenario Defender Attacker
2 A B
2 A SAF
2 A B + SAF
2 B A
2 B SAF
2 B A + SAF

Experimental design
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Static methods
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Static V&V methods
• Characteristics
▪ Methods based on artifact characteristics that can

be determined without running a simulation
▪ Often involve analysis of executable model code
▪ May be supported by automated tools

or manual notations or diagrams
▪ More often performed by technical experts

• Example static V&V methods
▪ Data analysis
▪ Cause-effect graphing
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Data analysis (verification)
• Compare data definitions and operations in

conceptual model to same in executable model
▪ Data consistency
▪ Data dependency analysis
▪ Data flow analysis

• Compare conceptual model to executable model
• Determine if treatment and use of data

consistent between artifacts
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Cause-effect graphing (validation)
• Compare causes and effects in simuland

to those in conceptual model
▪ Cause:  event or condition
▪ Effect:  state change triggered by cause

• Compare simuland to conceptual model
• Identify missing, extraneous, and inconsistent

cause-effect relationships
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Dynamic methods
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Dynamic V&V methods
• Characteristics
▪ Methods that involve running the executable model

and assessing the results
▪ May compare results with simuland or other models
▪ More often quantitative and objective
▪ More often performed by technical experts

• Example dynamic V&V methods
▪ Execution tracing
▪ Sensitivity analysis
▪ Comparison testing
▪ Statistical methods
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Execution tracing (verification or validation)
[Balci, 1998] [Mans, 2010]

• Record and examine simulation execution
▪ “Line by line” or “step by step”
▪ Output simulation state variables at each state change
▪ Examine state for consistency, reasonableness

• Compare results to conceptual model, simuland
• Comments
▪ Output may be to GUI or trace file
▪ Examination may be manual or automated
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Execution tracing example [Banks, 2010]

Simulation state variables
CLOCK = Simulation time
EVTYP = Event type (Start, Arrival, Departure, or Stop
NCUST = Number of customers in queue at time given by CLOCK
STATUS = Status of server (0 = Idle, 1 = Busy)

Event trace (status after event occurs)
CLOCK = 0 EVTYP = ‘Start’ NCUST = 0 STATUS = 0
CLOCK = 3 EVTYP = ‘Arrival’ NCUST = 1 STATUS = 0
CLOCK = 5 EVTYP = ‘Depart’ NCUST = 0 STATUS = 0
CLOCK = 11 EVTYP = ‘Arrival’ NCUST = 1 STATUS = 0
CLOCK = 12 EVTYP = ‘Arrival’ NCUST = 2 STATUS = 1
CLOCK = 16 EVTYP = ‘Depart’ NCUST = 1 STATUS = 1

• Single server, single queue discrete event simulation
• Test produced mean queue length 0.4375, reasonable
• Trace reveals at time 3:  queue length 1 and server status 0, error

. . .
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Comparison testing (verification or validation)
• Run simulations of simuland (and scenario)

using two different models, compare results 
• Compare results to results
• Differences between results signal problems
• Comments
▪ If differences, which model has problems?
▪ If one model assumed valid, validation method
▪ If neither model assumed valid, verification method
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Comparison testing example  [Filiposka, 2011]

• Durkin’s radio propagation model 
▪ Estimates radio coverage area of a transmitter
▪ Models attenuation caused by diffraction
▪ Considers shadowing caused by terrain
▪ Predicts transmission loss using path geometry

• Verified using comparison testing
▪ Durkin’s model compared to freely available

Longley-Rice Irregular Terrain Model
▪ Estimated radio coverage areas compared
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Longley-Rice Durkin’s Coverage comparison
Green = Both
Yellow = Longley-Rice only
Red = Durkin’s only

[Filiposka, 2011]
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Statistical methods (validation)
• Compare model results to simuland observations

using statistical methods 
▪ Various statistical methods:  regression analysis,

analysis of variance, confidence intervals,
hypothesis tests, others [Balci, 1998] [Petty, 2010]

▪ May be used in combination with other methods
• Compare results to simuland
• Comments
▪ Each statistical method defines statistic or metric

of “closeness” or similarity; measure of validity
▪ Generally underutilized
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Example applications of statistical methods

Spacecraft propulsion
system sizing tool Regression Paired data,

simuland–model

Confidence intervals Single simuland observation,
multiple model runs

Bombing accuracy MC Confidence intervals
with error tolerance

Single simuland observation,
multiple model runs,

error tolerance available
Bank drive-up waiting line Hypothesis test

comparing distributions
Multiple simuland observations,

multiple model runs

Command decision making Hypothesis test
for equivalence

Multiple simuland observations,
multiple model runs

assumption of equality avoided

Missile impact MC Hypothesis test
comparing variances

Multiple simuland observations,
multiple model runs

Model(s) Statistical method Reason for selection

Historical tank battle

Medical clinic waiting
Seaport loading/unloading

Entity-level combat
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Formal methods
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Formal V&V methods
• Characteristics
▪ Methods based on formal mathematical proofs

of program correctness
▪ Quantitative (or logical) and objective
▪ Performed by technical experts
▪ Difficult to apply in practice  [Balci, 1998]

• Example formal V&V methods
▪ Inductive assertions
▪ Predicate calculus
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Inductive assertions (verification)
• Construct proof of executable model correctness 
▪ Assertions, statements about required executable

model input-to-output relations, are associated
with execution paths in executable model

▪ Proofs of assertions along paths are constructed
▪ Proofs along all paths imply correctness

• Compare executable model to conceptual model
• Comments
▪ Closely related to general program proving techniques
▪ Proofs done using mathematical induction
▪ “Correctness” is with respect to conceptual model
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Predicate calculus (validation)
• Logically analyze conceptual model
▪ Predicate calculus is a formal logic system
▪ Create, manipulate, and prove statements
▪ Simuland, conceptual model described in pred calc
▪ Prove properties of both to show logical consistence

• Compare conceptual model to simuland
• Quite difficult to apply to non-trivial problems

(∀x)[D(x) → (∀y)(R(y) → C(x, y))]
(∃x)[D(x) ∧ (∀y)(R(y) → C(x, y))]
(∀y)[R(y) → (∀x)(C(x, y) → D(x))]
(∀x)(∀y)[R(y) ∧ C(x, y) → D(x)]

Last two:  “Only dogs chase rabbits.” [Gersting, 2003]
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Case study:
Validation using

confidence intervals
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Confidence interval concept
• Basic terminology
▪ Population; all “objects” of interest
▪ Sample; selected subset of population
▪ Parameter; numeric measure of population, e.g., mean
▪ Statistic; numeric measure of sample, e.g., mean

• Confidence intervals as estimates
▪ Sample mean point estimate of population mean
▪ Range of values calculated from sample

interval estimate of population mean
▪ Calculated to have known confidence

that population mean is within interval



Model Verification and Validation Methods 54

© 2014 University of Alabama in Huntsville;  © 2014 Mikel D. Petty, Ph.D.

Confidence interval formulas and critical values
• General form

[point estimate – margin of error, point estimate + margin of error]

• Normal z distribution

• Student t distribution

⎥⎦
⎤

⎢⎣
⎡ σ

+
σ

−
n

zx
n

zx cc ,

⎥⎦
⎤

⎢⎣
⎡ +−

n
stx

n
stx cc ,

Confidence level c Normal z

0.80 1.282
0.90 1.645
0.95 1.960
0.99 2.576

Student t
d.f. = 5
1.476
2.015
2.571
4.032

d.f. = 10
1.372
1.812
2.228
3.169

d.f. = 20
1.325
1.725
2.086
2.845

d.f. = 30
1.310
1.697
2.042
2.750
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Choosing a distribution
• Analyst must choose normal z or Student t
• Considerations
▪ Population distribution:  normal, approx normal, unknown
▪ Population standard deviation σ:  known, unknown
▪ Sample size n:  ≥ 30, < 30

If ((the population distribution is normal or
approximately normal) or (the population
distribution is unknown and the sample size
n ≥ 30)) and (the population standard deviation σ
is known),

then calculate the confidence interval using z and σ.

If ((the population distribution is normal or
approximately normal) or (the population
distribution is unknown and the sample size
n ≥ 30)) and (the population standard deviation σ
is unknown),

then calculate the confidence interval using t and s.

If (the population distribution is unknown and the
sample size is < 30),

then a confidence interval can not be calculated.These rules from [Brase, 2009];
sources differ.
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Statistical interpretation
• Incorrect
▪ “Confidence interval [L, U] with confidence level c

has a probability c of containing population mean μ”
▪ L, U, μ all constants
▪ Either L ≤ μ ≤ U or not; probability = 0 or 1

• Correct
▪ “If many samples taken and confidence interval [L, U]

with confidence level c calculated for each sample,
(100 · c)% of them would contain population mean μ”
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Validation method interpretation
• Population
▪ All possible runs of model
▪ Finite size on digital computer

• Model executions sample from population
• Confidence interval for model, not simuland
• Conventional validation interpretation
▪ Simuland value within confidence interval

implies model valid
▪ No statistical justification or refutation
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Validation procedure
1 Select model response variable x to use for validation
2 Select number of model executions, i.e., sample size n
3 Execute model n times, producing sample x1, x2, … xn
4 Calculate sample mean x and sample std dev s
5 Select distribution normal z or Student t
6 Select confidence level c
7 Calculate confidence interval [L, U]
8 If known simuland value y within [L, U], i.e., L ≤ y ≤ U,

declare model valid (or not invalid) for x
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Comments on validation procedure
• Assumes known simuland value y available
• Sample size n ≥ 30 recommended
• Be cautious about assuming normality;

recall that population is model, not simuland
• Confidence level c = 0.95 most common,

some simulation experts recommend c = 0.80
• Simple inclusion test L ≤ y ≤ U most common
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Example:  Seaport infrastructure [Demirci, 2003]

• Simuland
▪ Seaport of Trabzon Turkey
▪ Quays for berthing, unloading, loading ships
▪ Three types of ships:  G1, G2, G3

• Model
▪ Discrete event simulation
▪ Represents ships, cargos, quays, warehouses, cranes
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• Confidence intervals
▪ Mean processed (count) for each ship type and total
▪ Sample size (number of model runs) n = 45
▪ Confidence level c = 0.95 (95%)
▪ Distribution:  Student t
▪ Degrees of freedom d.f. = n – 1 = 44
▪ Critical value tc = 2.015

• Results:  2 of 4 intervals contain simuland value
Ship
Type

Simuland
count

G1 109
G2 169
G3 19

Total 297

Model
Mean x
111.14
174.42
17.28
303.68

Std dev s
14.45
16.07
5.26
35.89

L
106.8
169.6
15.7
292.9

U
115.5
179.2
18.8
314.5

Confidence interval Within
interval?

Yes
No
No
Yes
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Example:  WWII vehicle combat [Kelly, 2006]

• Simuland
▪ Battle of Villers-Bocage, Normandy, June 1944
▪ Small WWII tank battle, Britain vs Germany
▪ Three types of British vehicles destroyed

• Model
▪ OneSAF
▪ WWII vehicle data (movement, Pk, Ph) added
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• Confidence intervals
▪ Mean destroyed (count) for each vehicle type
▪ Sample size (number of model runs) n = 20
▪ Confidence level c = 0.95 (95%)
▪ Distribution:  Student t
▪ Degrees of freedom d.f. = n – 1 = 19
▪ Critical value tc = 2.093

• Results:  1 of 3 intervals contain simuland value

Vehicle
Type

Simuland
count

Firefly 4
Cromwell 10
Halftrack 10

Model
Mean x

1.6
5.3
9.2

Std dev s
0.502
1.695
2.745

L
1.365
4.510
7.915

U
1.835
6.093
10.485

Confidence interval Within
interval?

No
No
Yes
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Using this validation method
• Appropriate applications
▪ Single simuland value for response variable
▪ e.g., outcome of historical event
▪ e.g., specific measurement

• Comments
▪ If multiple simuland values available,

alternate methods preferred (e.g., hypothesis test)
▪ Historical outcome may have been atypical
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Case study summary
• Models
▪ Seaport traffic; WWII combat
▪ Different modeling paradigms

• Validation
▪ Confidence intervals for means of model outputs
▪ If confidence interval includes simuland value,

model considered valid
• Lessons learned
▪ Calculating confidence interval:  easy
▪ Determining suitable confidence level:  not easy
▪ Confidence interval useful when only one actual

value available, e.g., historical result



Model Verification and Validation Methods 66

© 2014 University of Alabama in Huntsville;  © 2014 Mikel D. Petty, Ph.D.

Case study:
Validation using a

statistical hypothesis test
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Fifth National Bank of Jaspar [Banks, 2010]

• Simuland
▪ Bank drive-up window
▪ Staffed by single teller; cars wait in single line

• Model
▪ Conventional discrete event simulation
▪ Single server, single queue
▪ Simulate average delay (time spent in queue)

. . .
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Data collection and modeling
• Simuland data collection
▪ Collected for 90 customers, Friday 11:00am–1:00pm
▪ Observed service times S = {S1, S2, …, S90}
▪ Observed interarrival times A = {A1, A2, …, A90}

• Data modeling
▪ Interarrival times:  Exponentially distributed,

rate λ = 45 per hour, mean 1/λ = 0.22
▪ Service times:  Normally distributed,

mean μ = 1.1 minutes, standard deviation σ = 0.2 minutes
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Simuland and model variables

Simuland A S Z

Variable
names Arrivals Service

times Response

Model W X Y

Decision variables
Number of servers: D1 = 1
Number of queues: D2 = 1

Input (stimulus) variables
Arrivals: W1, W2, …
Service times: X1, X2, …

Output (response) variables
Server utilization: Y1
Mean delay: Y2
Max queue length: Y3
Arrival rate: Y4
Mean service time: Y5
Std dev service time: Y6
Mean queue length: Y7
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Validation concept
• Mean delay important in queueing systems
• Compare model mean delay Y2 from simulations

to simuland mean delay Z2 from observations
• Simuland Z2 = 4.3 minutes (from observations)
• Comparison not simply comparing Z2 and Y2

and concluding “close enough”
• Hypothesis test statistically compares Z2 and Y2
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Simulation results

1 51 1.07 2.79

Run Y4
Arrival rate

Y5
Mean service time

Y2
Mean delay

2 40 1.12 1.12
3 45.5 1.06 2.24
4 50.5 1.10 3.45
5 53 1.09 3.13
6 49 1.07 2.38

2.51
0.82

2mean  Sample Y
s dev std Sample

minutes 51.21
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Statistical hypothesis test
• Student’s t-test  [Brase, 2009]

▪ Determine if a sample is consistent with a population 
▪ Population (simuland) mean known, std dev unknown
▪ Sample (model) mean known, std dev known

• Test structure
▪ Hypotheses

H0:  E(Y2) = 4.3 minutes (model not invalid)
H1:  E(Y2) ≠ 4.3 minutes (model invalid)

▪ Level of significance α = 0.05
▪ Sample size n = 6
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Critical value and test statistic
• Critical value of t [Brase, 2009]

▪ Found in statistical table 
▪ Use tα/2,n–1 for two-sided test (H1 ≠) 
▪ t0.025,5 = 2.571

• Test statistic
▪ Quantifies discrepancy between

sample mean and population mean
▪ Compared to critical value
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Test result and interpretation
• Rejection criteria for two-sided t test
▪ If |t0| > tα/2,n–1, then reject H0
▪ Otherwise, do not reject H0

• Result
▪ |t0| = 5.34 > t0.025,5 = 2.571
▪ Reject H0

• Interpretation
▪ Model is not valid w.r.t. mean delay
▪ P(H0 rejected | H0 is true) = α = 0.05 (Type I error) 
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Model
not valid

Model
valid

Model
not used

Model
used

Correct

Type II error
Use of invalid model;

Incorrect V&V;
Model user’s risk;
More serious error

Correct

Type I error
Non-use of valid model;

Insufficient V&V;
Model builder’s risk;
Less serious error

V&V errors and statistical errors
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Reject H0 when H0 true
i.e., reject a valid model

P(Reject H0 | H0 true) = P(Type I error) = α
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Statistical power and validation
• Significance and power in statistical tests
▪ Level of significance

P(Reject H0 | H0 true) = P(Type I error) = α
▪ Power

1 – P(Fail to reject H0 | H1 true) = 1 – P(Type II error) = 1 – β
• Practical heuristics
▪ To reduce P(Type I error), use small α
▪ To reduce P(Type II error), use large n
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Case study summary
• Model
▪ Bank drive-up window
▪ Conventional DES single server/single queue model

• Validation
▪ Suitable statistical test (t-test) chosen for comparison
▪ Population and sample means compared

• Lessons learned
▪ Test revealed problem, opportunity to improve model
▪ Rejecting H0 stronger conclusion than not rejecting
▪ Power can be increased with larger sample size
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Case study:
Comparing real and simulated 

missile impact data
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Introduction [Zhang, 2008]

• Application
▪ Deterministic 6DOF model of missile trajectory
▪ Used to calculate impact point given initial conditions
▪ Measure x and y error w.r.t. aiming point
▪ Compare model and live test x and y error variances
▪ Two ranges:  60 Km and 100 Km
▪ 6 live tests, 800 Monte Carlo model trials each range

• Monte Carlo analysis
▪ For each trial, generate trajectory initial

conditions from probability distributions
▪ Calculate impact point
▪ Repeat for 800 trials
▪ Compare variances
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Missile trajectory model
• Physics based
• Organized into modules:  velocity, rotation,

atmospheric conditions, aerodynamics, thrust
• Implemented in MATLAB Simulink

vvvv
v

vvvv

ZYP
dt

d
mV

mgZYp
dt
dmV

mgXP
dt
dVm

γ+γ+γβα−γα=
ϕ

θ−

θ−γ−γ+γβα+γα=
θ

θ−−βα=

cossin)sinsincossin(sincos

cossincos)sinsincoscos(sin

sincoscos
Velocity module
equations

Velocity module
block diagram
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Impact data
60

 K
m

10
0 

K
m

Model 526.62 85.91 800

Test 566.66 89.77 6

Trial x error s y error s n

Model 921.39 111.25 800

Test 980.52 120.68 6

Trial x error s y error s n
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Comparing variances:  F test [Bhattacharyya, 1977]

• Compares variability of two populations
• Assumes both populations normally distributed
• Test statistic F = s1

2/s2
2

• Hypotheses (two-tailed test)
▪ H0:  σ1

2/σ2
2 = 1 (variances equal)

▪ H1:  σ1
2/σ2

2 ≠ 1 (variances not equal)
• Reject H0 if
▪ If F ≥ Fα/2(n1–1, n2–1) or
▪ If F ≤ 1/Fα/2(n2–1, n1–1)
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Applying the F test
• 60 Km missile impacts
• Test parameters
▪ Level of significance α = 0.05
▪ Sample sizes n1 = 800, n2 = 6

• Critical values
▪ Fα/2(n1–1, n2–1) = F0.025(799, 5) = 6.0235
▪ Fα/2(n2–1, n1–1) = F0.025(5, 799) = 2.5823
▪ 1/Fα/2(n2–1, n1–1) = 1/F0.025(5, 799) = 1/2.5823 = 0.3873

• Test statistics and results
▪ Fx = 526.622/556.662 = 0.8950 < 6.0235; do not reject H0
▪ Fy = 85.912/89.772 = 0.9158 > 0.3873 ; do not reject H0
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Comparing variances:  Levene’s test [Levene, 1960]

• Applicability of F test to missile impact data
▪ Highly sensitive to assumption of normality
▪ Potentially misleading results if populations not normal

• Levene’s test
▪ Compares variability of two populations
▪ Does not assume populations normally distributed

• Test statistic

• Variances not equal if W ≥ Fα(k–1, N – k)
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Applying Levene’s test
• 60 Km missile impacts
• Test parameters
▪ Level of significance α = 0.05
▪ Sample sizes n1 = 800, n2 = 6, N = n1 + n2 = 806
▪ Number of groups k = 2

• Critical value
▪ Fα(k – 1, N – k) = F0.05(1, 804) = 3.8531

• Test statistics and results
▪ Wx = 0.0046; do not reject H0
▪ Wy = 24.6991; reject H0
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Case study summary
• Model
▪ Deterministic 6DOF model of missile trajectory
▪ Used to calculate impact point given initial conditions

• Validation
▪ Monte Carlo analysis, 800 trials and 6 live test
▪ Model and simuland variances compared

• Lessons learned
▪ Variances may be compared as well as means
▪ Be attentive to hypothesis test assumptions



Model Verification and Validation Methods 87

© 2014 University of Alabama in Huntsville;  © 2014 Mikel D. Petty, Ph.D.

Summary
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Tutorial summary

• Verification, validation, and accreditation
address related but distinct questions
▪ Verification:  Was the model built right?
▪ Validation:  Was the right model built?
▪ Accreditation:  Is the model the right one for the job?

• Validity defined w.r.t. model’s intended purpose
• VV&A involve comparisons
• Different types of risks are associated with VV&A
• Many VV&A methods available
• Statistics may be used for V&V comparisons
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End notes
• More information

▪ Mikel D. Petty, Ph.D.
▪ University of Alabama in Huntsville
▪ Center for Modeling, Simulation, and Analysis
▪ 256-824-4368, pettym@uah.edu

• Questions?
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