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Experiments with new concepts and 
advanced technologies to develop 
requirements in doctrine, training, 
leader development, organizations, 
materiel, and soldiers

Evaluates the impact of horizontal 
technology integration through 
simulation & 
experimentation
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weapon systems and equipment

Performs scientific inquiry to discover or revise facts 
and  theories of phenomena, followed by transformation 
of  these discoveries into physical representations
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IDEEAS Analysis ProcessIDEEAS Analysis Process

Model Development and Analysis:
Acts as subject matter experts to create appropriate 
representations of systems and analyze results.

Software 
Development:

Modify current parameters 
used in models & develop 
new code when needed.

Operations Research:
Design experiments, determines vignettes, and 
statistically analyzes results. 

Customer:
Provides input to teams and 
reviews prototypes to 
assure problem 
representations and study 
output are correct.

STUDY

Operationally Relevant?   Achievable?  Comparable?  Measurable? Document.

http://www.dese.com/index.html
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Definition used by Simone 
Youngblood in her class at UAH

Definition used by Simone 
Youngblood in her class at UAH

“The conceptual model is a simulation 
developer’s way of translating 
modeling requirements into a detailed 
design framework, from which the 
software, hardware, networks, and 
systems/equipment that will make up 
the simulation can be built, modified, 
or assembled.”

from SIW Paper 00F-SIW-019, “Simulation Conceptual Model
Development Issues and Implications for 
Reuse of Simulation Components” by Dr. Dale Pace
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Online M&S Glossary
(DoD 5000.59-M)

Online M&S Glossary
(DoD 5000.59-M)

• Conceptual Model
“A statement of the content and internal representations which 
are the user's and developer's combined concept of the model. 
It includes logic and algorithms and explicitly recognizes 
assumptions and limitations.”

Reference:  "A Glossary of Modeling and Simulation Terms for Distributed Interactive Simulation 
(DIS)," August, 1995 Conceptual Model of the Mission Space (CMMS)

• Conceptual Model of Mission Space (CMMS)
“First abstractions of the real world that serve as a frame of 
reference for simulation development by capturing the basic 
information about important entities involved in any mission 
and their key actions and interactions. They are simulation-
neutral views of those entities, actions, and interactions 
occurring in the real world.”
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From: Conceptual Model Development and Validation
RPG Special Topic
15 September 2006
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Conceptual Model ComponentsConceptual Model Components

From: Conceptual Model Development and Validation
RPG Special Topic
15 September 2006
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Steps in Conceptual
Development

Steps in Conceptual
Development

Step 1: collect authoritative simulation context info

Step 2: identify entities and processes                         
for representation

Step 3: develop simulation elements

Step 4: address relationships among 
simulation elements

I t
 e 

r a
 t e

Adapted from work by Dr. Dale Pace, sponsored by DMSO
and briefed by Simone Youngblood in her UAH Class 
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• Conceptual Model Portion Identification
• Principal Simulation Developer POCs
• Requirements and Purpose
• Overview
• General Assumptions
• Identification of Possible States, Tasks, Actions, and 

Behaviors, Relationships and Interactions, Events, and 
Parameters and Factors for Entities and Processes being 
described

• Identification of Algorithms
• Simulation Development Plans
• Summary and Synopsis

Conceptual Model
Documentation

Conceptual Model
Documentation

Adapted from work by Dr. Dale Pace, sponsored by DMSO
and briefed by Simone Youngblood in her UAH Class 
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• I hope the following facilitates discussion on the 
application of conceptual modeling.

• These slides represent some “real-life” examples of 
our view in our application of conceptual modeling.

• Comments between the audience is encouraged.
• Non-attribution.

Examples?Examples?
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A Specific View of Conceptual 
Modeling

A Specific View of Conceptual 
Modeling

The three simple questions asked by Chris Burns to 
our team at the beginning of each effort:

“What are we modeling?”
“What is the purpose of the conceptual 
model?”
“Who is the target audience?”

Chris Burns is the lead computer scientist for IDEEAS –
an engagement level constructive simulation
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Our use of Conceptual Models?Our use of Conceptual Models?

• The type of model created is driven by what you are modeling
– More information is required when complex specifics are involved
– Software models are not sufficiently able to convey engineering details that are 

not directly related to the software design.
• Our Team uses:

– System Architecture Conceptual Models
• Domain description, components, and the communication flow
• Purpose: Define the components involved and their 

intercommunication 
• Audience: Integrators, Network Engineers, Developers, Users

– Physics/Engineering Conceptual Models
• Inputs, outputs, algorithms
• Purpose: Defines the mathematical representation of a system, 

including the inputs, algorithms, and outputs 
• Audience: Physicists, Engineers to Software Developers

– Software Conceptual Models
• Software centric design representation of the system
• Purpose: Representation of the system from a software centric 

view, to convey operation, assumptions, and limitations
• Audience: Software Developers to Physicists, Engineers
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Radar Modeling for Analysis Radar Modeling for Analysis 
Utilizing IDEEASUtilizing IDEEAS

Surasak P. Hauger, Ph.D.

Science Applications International Corporation (SAIC)
Huntsville, AL 35805, USA

An ExampleAn Example
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Presenting the process of radar modeling 
for analysis by utilizing the Interactive 
Distributed Engineering Evaluation and 
Analysis Simulation (IDEEAS).

Batteries

LCMR

TPQ-37
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RADAR RAdio Detection and Ranging

Transmitter

Receiver

Target detection and 
information extraction

Transmitted signal

Target

Antenna

Echo signal

Basic Principle of Radar

Image derived from “Introduction to Radar Systems” by M. I. Skolnik.

Range to target
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Radar Flow Chart in IDEEASRadar Flow Chart in IDEEAS

Radar ModelRadar Model

LOS
to Target
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A B
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A B
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Compute
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μ > P0μ > P0
Random

number(μ )
Random

number(μ )

NO DETECTIONNO DETECTION

Enough
Points for
Prediction 

Enough
Points for
Prediction 

Predict Impact
Location and Send

Warning to Field Commander

Predict Impact
Location and Send

Warning to Field Commander

No

Yes

Yes

No

Prediction
(LPP & IPP) No

Yes

Swerling III
with 10-6 False 

Alarm Rate

Swerling III
with 10-6 False 

Alarm Rate
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Phased Array Radar with fixed 
antenna panel where beams are 
moved electronically in any 
direction within a scanning limit

Mechanical Scanning Radar 
with rotating antenna panel

Beam ScanningBeam Scanning
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Scanning for TargetScanning for Target

- Line of Sight from radar to target required within scanning limit of radar. 
- Clutter can be minimized by only scanning the area above the horizon.
- Moving target in the heavily cluttered region can be detected by employing 

Doppler shift method. 

Radar Max Range

Highest point in this 
cross section of the terrain

Target not 
seen by radar

Target seen 
by radar

Heavily cluttered background
requiring Doppler frequency 

shift filtering for detection

Horizon

Radar

Line of sight to target

Line of sight to target
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- Radar Cross Section (RCS) is the property of a 
scattering object that represents the magnitude 
of the echo signal returned to the radar by the target

- Unit of RCS is m2 or dBsm

- Even though its unit is m2, the RCS may or may not 
correlate with the physical size or effective area of the 
object

Radar Cross Section
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Target Radar Cross Section

Measured RCS of a one-fifteenth scale model Boeing 737 
commercial jetliner at 10 GHz and vertical polarization. 
(from “Introduction to Radar Systems” by Merrill I. Skolnik)

Measured RCS pattern of a B-26 bomber at 10-cm 
wavelength. (from “Introduction to Radar Systems”
by Merrill I. Skolnik)
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COMPUTE SYSTEM 
NOISE POWER

COMPUTE RADAR SYSTEM AND 
PROPAGATION LOSSES, LTOT

COMPUTE ANTENNA GAIN 
IN DIRECTION OF TARGET, G

COMPUTE TARGET 
SIGNAL POWER, PS

COMPUTE INTEGRATED 
SIGNAL-TO-NOISE RATIO

EXIT

Signal to Noise Calculation
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τ
Fo

n
NkTP =

Pn =  Radar System noise power
k   =  Boltzmann's constant
To =  System reference noise temperature (°K)
NF =  Receiver noise figure
τ =  Radar pulse width

Noise Signal Level
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Antenna Beam and Gain Pattern
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Example of 3-D Antenna Pattern
(from “Radar Handbook” edited by Merrill I. Skolnik)



26 Yourfilename.ppt

Antenna Gain in the Direction of TargetAntenna Gain in the Direction of Target

Beam Boresight (Look Angle)

Antenna Gain Pattern

Target
Target Antenna Gain Target angle

Antenna gain representation 
within IDEEAS (note pattern 
characteristic is configurable 

through input)
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43
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PT =  Peak Power transmitted
G  =  Antenna gain in direction of target
λ =  Wavelength
σ =  Radar Cross Section of target
L   =  Radar system and propagation losses
R  =  Range to target 
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⎟⎟
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Compute Integration GainCompute Integration Gain

Dwell – The time on target, and time it takes to scan the antenna 
beam over a beamwidth or some fraction of a beamwidth

Duty Cycle – A measure of the fraction of the time a radar is transmitting

Number of pulses during dwell time = Dwell×PRF Integration Gain

Leading to:
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Pulse Compression Simplified Concept

Image from Radar Pulse Compression by Chris Allen, June 17, 2004.
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Pu
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on
Dwell

Pulse #1 Pulse #N Pulse #N+1

Pulse Compression Gain T0:T1

T0=dc/PRF pulsewidth

Pulse coded with Signal Bandwidth (SBW) information

Pulse #1 Pulse #N Pulse #N+1

T1 = 1/SBW  compressed pulsewidth
SBW = c/(2*range resolution)

Doppler Processing Gain  N

Pulse Compression
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Signal Bandwidth (SBW)   =   c/(2.0*range resolution) 

Compressed Pulsewidth   =   1/SBW

Pulse Compression (PC)   =   Pulse Compression Gain 
=   Pulse Compression Ratio 
=   Pulsewidth * SBW 

Number of Pulses (NP)   =   Integration Gain 
=   integer(dwell*PRF)

Processing Gain   =  10.0*log(PC*NP)

Gain Calculation Through Pulse CompressionGain Calculation Through Pulse Compression
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Gpc = Pulse compression Gain
Npulses = Number of pulses or integration gain
τcomp =  Compressed pulse width

Radar Equation with Pulse CompressionRadar Equation with Pulse Compression
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h

RRES = C τ /2GRAZING ANGLE ψ

RADAR

½ C τ SEC ψ

RADAR

CLUTTER PATCH

θB

RθB

PLAN VIEW SHOWING THE ILLUMINATED CLUTTER PATCH (OR RESOLUTION CELL)
CONSISTING OF INDIVIDUAL, INDEPENDENT SCATTERERS.

ELEVATION VIEW SHOWING THE EXTENT OF THE SURFACE ILLUMINATED BY THE RADAR PULSE

θB = Azimuth Beamwidth

GEOMETRY OF RADAR SURFACE CLUTTER
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Time

Moving Targets

(a)

(b)

(c)

Detecting a Moving Target by MTI RadarDetecting a Moving Target by MTI Radar

Two successive sweeps, (a) and (b), of MTI radar.   When (b) is subtracted 
from (a), the result is (c) and echoes  from stationary targets are canceled, 
leaving only moving targets (Image from “Introduction to Radar Systems” by 
Merrill I. Skolnik).
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Moving Target Indicator ( MTI )  

COMPUTE MAGNITUDE OF 
RAM'S DOPPLER VELOCITY 

RELATIVE TO RADAR 

EXIT

MTI

COMPUTE TOTAL CLUTTER 
SPECTRAL SPREAD VARIANCE

SELECT MTI FILTER TYPE

SINGLE-LOOP 
MTI CLUTTER 
CANCELLER

DOUBLE-LOOP 
MTI CLUTTER 
CANCELLER

N-POINT 
FFT WITHOUT 
CANCELLER 

LOOP(S)

SINGLE 
CANCELLER 

LOOP + N-POINT 
FFT

DOUBLE 
CANCELLER 

LOOP + N-POINT 
FFT

COMPUTE SIR AT OUTPUT OF MTI FILTER
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GINT =     Integration Gain
Ps =     Target Signal Power 
Pn =     Radar System noise Power
Pc =     Clutter Signal Power

Signal to Interference Ratio
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RCS Fluctuation and Probability of DetectionRCS Fluctuation and Probability of Detection

Small change in viewing aspect of a radar target 
such as aircraft or ship can result in a major 
change in RCS. 

The popular method for representing the fluctuation 
of targets are the four statistical models described by 
Peter Swerling.
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For example, Swerling III model is used for 
calculating probability of detection. Swerling III APPLICABLE TO

- SMALL, RIGID, STREAMLINED AIRCRAFT

- TARGETS CONSISTING OF ONE DOMINANT 
SCATTERER WITH MANY SMALLER 
SCATTERERS

WHERE:   T DETECTION THRESHOLD AND  SIR SIGNAL TO INTERFERENCE RATIO
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Measurement of Error, ΔR, ΔEL and ΔAZ

N
S

c
R

22

τδ =

N
S

dB

2

3Θ
=θδ

C = speed of light 

τ = (compressed) pulse width
S/N = signal to noise ratio 

Θ3dB = beam width at 3dB half power  
S/N = signal to noise ratio
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N
SD2

λ

π
δθ = λ = Wavelength 

D = Distance between antennas 
S/N = signal to noise ratio

Measurement of Error ΔEL and ΔAZ 
Interferometer Base Radar

D

D
Transmitter

Receiver Receiver

Receiver
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Random Sample in Modeling Radar Detection

Target
Detectable

SIR > 1

Target
Detectable

SIR > 1

DETECTIONDETECTION

Compute
Probability of

Detection
(P0)

Compute
Probability of

Detection
(P0)

μ > P0μ > P0
Random

number(μ )

NO DETECTIONNO DETECTION

No

Yes

Yes

No

Swerling III
with 10-6 False 

Alarm Rate

Swerling III
with 10-6 False 

Alarm Rate

DETECTIONDETECTION

Normal Random 
Number where 

σθ = δθ
σR = δR 

Compute Perceived
Target Location 

by the Radar

Perceived Target Location 
(Range, Azimuth, Elevation )

Compute
Signal to Interference

Ratio (SIR)

Compute
Signal to Interference

Ratio (SIR)

REJECTION METHOD*

*The rejection method of generating random numbers drawn from particular distribution 
by rejecting those that fall outside the geometrical limits of the specific distribution.

σ

SIMULATED DETECTION BASED ON SIR

SIMULATED PERCEIVED LOCATION 
AS SEEN BY RADAR
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- Kalman filter is an estimation technique that utilizes measurement 
information to predict the best estimate of the true state at each measurement point. 

- It is a recursive procedure which processes one measurement at a time until all 
measurements have been processed. 

- This “best” estimate is a mix of predicted state estimate and a measured state 
estimate.

Extended Kalman Filter

- Generally Kalman Filter estimation techniques require that there is a 
mathematically linear relationship between the system states and measurement.      

- When Kalman filter is applied to a nonlinear estimation problem, such as the 
calculation for IPP and LPP, as applied to radar tracking of ballistic projectiles, it is 
called Extended Kalman Filter.

Kalman Filter for Impact and Launch Point Prediction
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Continuous-Discrete, Extended Kalman Filter Computation Sequence 
that is used for IPP and LPP can be summarized in the next page where:

xo Initial condition, or the initial location estimate and the initial velocity 
estimate obtained from the radar tracking algorithm

[P]o Initial value of state error covariance
ƒ(x) System equation which is nonlinear system differential equations for ballistic 

projectiles motion (speed and acceleration in x, y and z direction)
[F]k [∂f/∂x] =  System differential equations System Matrix
[Φ]k [I]k + Δt[F]k = Transition Matrix
h(x) Measurement equation which is measurement position of ballistic projectiles.  
[H]k [∂h/∂x] = Measurement matrix
[Q]k   Uncertainty in the predicted state estimate (the same for all measurement 

intervals)
[R]k Measurement error covariance in spherical coordinates which needs to be 

transformed  into equivalent covariance in rectangular coordinates for use in 
the Kalman filter

[P]k Predict error covariance
[K]k Kalman Gains

Extended Kalman Filter
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Radar Flow Chart in IDEEASRadar Flow Chart in IDEEAS

Radar ModelRadar Model
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Radar ModelRadar Model

Conceptual software design document for our radar 
model.

Description:

CR Created: <this single CR that lead to the creation of the model >

CRs Related: <this is a list, to be constantly amended, for all CRs after the 

initial creation that touched this particular model in any way>
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Class DiagramClass Diagram

Sensor
<<interface>>

HiFidelityRadar

SensorType

<<interface>>

HiFidelityRadarType

<<interface>>

Antenna
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Class Diagram(more detailed)Class Diagram(more detailed)

Sensor

<<interface>>

HiFidelityRadar

EapsCmcbSensor

SensorType

<<interface>>

HiFidelityRadarType

EapsCmcbSensorType<<interface>>

Antenna

PhasedArrayAntenna
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Sequence DiagramSequence Diagram

EapsCmcbSensor : Sensor Antenna

boolean scanTarget()

detect()

double getAntennaGain()

updateTrackFile()
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Conclusion Conclusion 

DMSO - RPG
Simone Youngblood’s Brief

DoDAF
Our team uses three “types” of Conceptual 

Models to communicate in a iterative, 
recursive manner from the “developer to 
user”.

In preparing for this brief, I found few people 
with a common definition of conceptual 
modeling; however, everyone possessed a 
common understanding of tailoring products 
and processes in order to achieve effective 
communication. 
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