
1

Dr. Richard Fujimoto
Georgia Institute of Technology
Designer of HLA Time Management

Dr. Kalyan Perumalla
Oak Ridge National Laboratory
Creator of time management tutorial slides

Tutorial
Handling Time Management

Under the
High Level Architecture

Kalyan Perumalla, Ph.D.

Senior Researcher, Oak Ridge National Laboratory
Adjunct Faculty Member, Georgia Inst. of Technology

perumallaks@ornl.gov
www.ornl.gov/~2ip

December 2007

3

PADS-HLA Tutorial Goals

PADS = Parallel and Distributed Simulation
HLA = High Level Architecture
TM = Time Management

Note: Here, PADS represents the
concepts, not the specific

IEEE/ACM/SCS conference on PADS!

Note: Here, PADS represents the
concepts, not the specific

IEEE/ACM/SCS conference on PADS!

4

Outline

5

1. HLA Overview

6

HLA – Architecture

• Based on a composable “system of systems” approach
– No single simulation can satisfy all user needs
– Support interoperability and reuse among DoD simulations

• Federations of simulations
– Pure software simulations
– Human-in-the-loop simulations (virtual simulators)
– Live components (e.g., instrumented weapon systems)

The HLA consists of
• Rules that simulations (federates) must follow to achieve proper interaction

during a federation execution
• Object Model Template (OMT) defines the format for specifying the set of

common objects used by a federation (federation object model), their
attributes, and relationships among them

• Interface Specification (IFSpec) provides interface to the Run-Time
Infrastructure (RTI), that ties together federates during model execution

7

Federation

IFSpec API

Interface – Integrating Individual Simulators

Individual/autonomous simulator
• Synonymous with Federate in HLA terminology
• Conforms to, and uses, HLA Interface Specification (IFSpec)
RTI implements interface services
• Federation setup and teardown
• Data exchange among federates
• Synchronization for timestamp-ordered processing

Simulator

Runtime Infrastructure (RTI)

Simulator Simulator

8

Interface – Services

Federation Management

Declaration Management

Object Management

Ownership Management

Time Management

Data Distribution Management

Category Functionality
Create and delete federation executions
join and resign federation executions
control checkpoint, pause, resume, restart

Establish intent to publish and subscribe to
object attributes and interactions

Create and delete object instances
Control attribute & interaction publication
Create and delete object reflections

Transfer ownership of object attributes

Coordinate the advance of logical time and its
relationship to real time

Supports efficient routing of data

9

Typical Usage – Federate Execution

Initialize federation
Create Federation Execution (Federation Mgt)
Join Federation Execution (Federation Mgt)

Declare objects of common interest among federates
• Publish Object Class (Declaration Mgt)
• Subscribe Object Class Attribute (Declaration Mgt)

Exchange information
• Update/Reflect Attribute Values (Object Mgt)
• Send/Receive Interaction (Object Mgt)
• Time Advance Request, Time Advance Grant (Time Mgt)
• Request Attribute Ownership Assumption (Ownership Mgt)
• Modify Region (Data Distribution Mgt)

Terminate execution
• Resign Federation Execution (Federation Mgt)
• Destroy Federation Execution (Federation Mgt)

10

Time Management in HLA

Rest of the tutorial will focus on Time Management
Services in the HLA

• Parallel and Distributed Simulation (PADS) research previously explored
issues in time synchronized simulations

• HLA TM built on insights from PADS research

• Fundamental concepts in HLA TM are common with those in PADS

11

2. PADS Fundamental Concepts

12

Notions of Time

physical system

• Physical system: the actual or imagined system being modeled
• Simulation: a system that emulates the behavior of a physical system

Physical time: time in the physical system (e.g., 0000 to 1700 hours, December 7,
1941)

Simulation time: representation of physical time within the simulation
– federation time axis (FTA): a totally ordered sequence of values representing

physical time (floating point values in interval [0.0, 17.0])
– federate time: a specific federate’s current point on FTA (e.g., 4.0)

Wallclock time: time during the execution of the simulation, usually output from a
hardware clock (e.g., 1230 to 1400 hours on December 1, 2003)

federate (a simulation)

main()
{ ...
double clock;
...

}

13

Pacing – Simulation Clock vs. Wall Clock

There may or may not be a specific relationship
between simulation time and wallclock time.

Modes of execution
As-fast-as-possible execution (unpaced): no fixed relationship

necessarily exists between advances in simulation time and
advances in wallclock time

Real-time execution (paced): each advance in simulation time is
paced to occur in synchrony with an equivalent advance in
wallclock time

Scaled real-time execution (paced): each advance in simulation time
is paced to occur in synchrony with S * an equivalent advance in
wallclock time (e.g., 2x wallclock time)

14

Event Orderings

Typical applications training, T&E analysis

Latency
Reproduce before and after
relationships?
All federates see same ordering
of events?
Execution repeatable?

Property

low

no

no

no

Receive
Order (RO)

higher

yes

yes

yes

Time Stamp
Order (TSO)

The HLA provides two types of message ordering:
• Receive order (unordered): messages passed to federate in an

arbitrary order
• Time stamp order (TSO): sender assigns a time stamp to message;

successive messages passed to each federate have non-decreasing time
stamps

• Receive order minimizes latency, does not prevent temporal anomalies
• TSO prevents temporal anomalies, but has somewhat higher latency

15

Accurate Modeling via Timestamp-ordered Events

• “Things” happen in the real world in a certain order (e.g., cause & effect).
• It should appear that events in the simulated world happen in the same order as

the real world actions that they represent.

Correct ordering of events can be achieved by assigning a time
stamp (simulation [or logical] time) to each event, and ensuring
events are delivered in time stamp order

Time (wallclock time)

Simulator A
(tank)

Simulator B
(target)

“fire”

“target
destroyed”

Simulator C
(observer)

event
message

simulated world

The observer could “see” the target is destroyed before the tank fired upon it!
Temporal anomalies such as this may or may not be acceptable, depending on the

federation’s goals

the observer should
see the tank fire
before the target is
destroyed.

real world

16

Timestamp-Ordered Processing Services

The HLA time management services address two
fundamental issues in distributed simulation systems:

Event order
– Simulation events should be processed in the same order that

these events occur in the system being modeled

Time synchronized delivery
– A federate at simulation time T should not receive events in its

past (events with time stamp less than T)

17

Time Synchronized Event Processing

Consider interconnecting two sequential, event driven
simulations

Logical Time

Simulator A
(tank)

Simulator B
(target)

“fire”

“move”

event
message

1. A sends TSO message to B w/ time stamp 10
2. B advances to logical time 20
3. Message arrives in B’s past

10 20

Logical time advances by each simulator must be managed to ensure
no simulator receives messages in its past.

HLA Time Management (TM) services define a protocol for federates
to advance their logical time; RTI will ensure TSO messages are
not delivered in a federate’s past

18

Interoperability Challenge

Goal: Provide services to support interoperability among federates with different
local time management schemes in a single federation execution

Run Time
Infrastructure (RTI)

training federate:
real-time execution

constructive federate:
time-stepped execution

Run Time Infrastructure
(RTI)

constructive federate:
event driven execution

Run Time Infrastructure
(RTI)

live component:
real-time execution
w/ hard deadlines

Run Time
Infrastructure (RTI) multiprocessor

parallel simulation federate:
optimistic Time Warp
execution

Run Time Infrastructure (RTI)

• Time Stepped
• Event Driven
• Real-Time
• As Fast As Possible
• Sequential
• Parallel
• Conservative
• Optimistic
• …

19

HLA TM Services

federate
• local time and event management
• mechanism to pace execution with

wallclock time (if necessary)
• federate specific techniques (e.g.,

compensation for message latencies)

wallclock time
(synchronized with

other processors)

logical time

FIFO
queue
FIFO
queue

time
stamp

ordered
queue

time
stamp

ordered
queue

Runtime Infrastructure (RTI)

state updates
and interactions logical time advances

receive
order

messages

time stamp
order

messages

event
ordering

time
synchronized

delivery

20

2. Basic Time Management

21

Federate’s Timing Relative to Rest of Federation

Federates must declare their intent to utilize time management services by setting
their time regulating and/or time constrained flags

Time regulating federates: can send TSO messages
– Can prevent other federates from advancing their logical time
– Enable Time Regulation … Time Regulation Enabled †

– Disable Time Regulation

Time constrained federates: can receive TSO messages
– Time advances are constrained by other federates
– Enable Time Constrained … Time Constrained Enabled †
– Disable Time Constrained

Each federate in a federation execution can be
– Time regulating only (e.g., message source)
– Time constrained only (e.g., Stealth)
– Both time constrained and regulating (common case for analytic simulations)
– Neither time constrained nor regulating (e.g., training simulations)

† indicates callback to federate

22

HLA TM – Time Advancement Protocol

HLA TM services define a protocol for federates to advance logical time; logical
time only advances when that federate explicitly requests an advance

Time Advance Request: time stepped federates
Next Event Request: event driven federates
Time Advance Grant: RTI invokes to acknowledge logical time advances

• If the logical time of a federate is T, the RTI guarantees no more TSO
messages will be passed to the federate with time stamp < T

• Federates responsible for pacing logical time advances with wallclock time in
real-time executions

federate

RTI

Time Advance Request
or

Next Event Request
Time Advance Grant

23

Time Advance Request (TAR)

• Typically used by time stepped federates
• Federate invokes Time Advance Request (T) to request its logical time (LT) be advanced

to T
• RTI delivers all TSO messages with time stamp ≤ T
• RTI advances federate’s time to T, invokes Time Advance Grant (T) when it can

guarantee all TSO messages with time stamp ≤ T have been delivered
• Grant time always matches the requested time

Typical execution sequence

Wall clock
time

Federate RTI
TAR(20)

RAV (14)

RAV (18)

TAR: Time Advance Request
RAV: Reflect Attribute Values
TAG: Time Advance Grant

Federate calls in black
RTI callbacks in red
T’ ≤ T’’ ≤ T

LT=10

TAG(20)LT=20

24

TAR Example – Time Stepped Federate

Sequential simulator
T = current simulation time

While (simulation not complete)

update local simulation state

T = T + ∆T;

End-While

Federated simulator
While (simulation not complete)

update local simulation state
UpdateAttributeValues (…)
PendingTAR = TRUE;
TimeAdvanceRequest(T+ ∆T)
while (PendingTAR) Tick*(…);
T = T + ∆T;

End-While

/* the following federate-defined
procedures are called by the RTI */

Procedure ReflectAttributeValues (…)
update local state

Procedure TimeAdvanceGrant (…)
PendingTAR = False;

* Tick is only used in single threaded RTI implementations

25

Next Event Request (NER)

Typically used by event stepped federates
Goal: process all events (local and incoming TSO messages) in time

stamp order

RTI

federate

TSO
messages

TSO
messages

local
events
local

events

Federate’s View: Next local event has time stamp T; Two cases:

logical
timecurrent

time

next
local
event

T

next
TSO

message

T’

Case 2: If there is a TSO message w/ time stamp T’ ≤ T, advance to
T’ and process TSO message

Case 1: If no TSO messages w/ time stamp < T are forthcoming,
advance to T, process local event

26

NER (Continued)

Federate invokes Next Event Request (T) to request its logical time be advanced to
time stamp of next TSO message, or T, which ever is smaller

If next TSO message has time stamp T’ ≤ T
– RTI delivers next TSO message, and all others with time stamp T’
– RTI issues Time Advance Grant (T’)

Else
– RTI advances federate’s time to T, invokes Time Advance Grant (T)

Typical execution sequences
RTI

NER(T)

RAV (T’)

RAV (T’)

TAG(T’)

NER: Next Event Request
TAG: Time Advance Grant
RAV: Reflect Attribute Values

Federate calls in black
RTI callbacks in red

Wall clock
timeRTI delivers events

Federate RTI
NER(T)

TAG(T)

no TSO events

27

NER Example – Event-Driven Federate

Sequential simulator
T = current simulation time
PES = pending event set

While (simulation not complete)
T = time of next event in PES
process next event in PES

End-While

Federated simulator
While (simulation not complete)

T = time of next event in PES
PendingNER = TRUE;
NextEventRequest(T)
while (PendingNER) Tick(…);
process next event in PES

End-While

/* the following federate-defined
procedures are called by the RTI */

Procedure ReflectAttributeValues (…)
place event in PES

Procedure TimeAdvanceGrant (…)
PendingNER = False;

28

Lookahead

Fed A

Fed B

Fed C

Fed D

Logical Time

Problem: Limited concurrency in event driven federates
Each federate must process events in time stamp order

TA

possible message
OK to process

event

not OK to process yet

without lookahead

TA+LA

possible message
OK to process

with lookahead

Fed A declares a lookahead value LA; the time stamp of any event generated by
the Fed A must be ≥ TA+ LA

• Used in virtually all conservative synchronization protocols
• Relies on model properties (e.g., minimum interaction delay)
Lookahead is necessary to allow concurrent processing of events with different

time stamps (unless optimistic event processing is used)

29

Lookahead

Each federate must declare a non-negative lookahead value
Any TSO sent by a federate must have time stamp at least the federate’s current

time plus its lookahead
Lookahead can change during the execution (Modify Lookahead)

– increases take effect immediately
– decreased do not take effect until the federate advances its logical time

Logical timeT+LT
1. Current time is T, lookahead L
2. Request lookahead decrease by ∆L to L’

Logical timeT+LT+ ∆T

L- ∆T∆T

3. Advance ∆T, lookahead, decreases ∆T

Logical timeT+L

L’∆L

T+∆L
4. After advancing ∆L, lookahead is L’

30

4. Implementing TM – Inside the RTI

31

Terminology Difference: IEEE 1516 vs. RTI 1.3NG

IEEE 1516

•GALT: Greatest Available Logical Time
•Denotes the time to which a federate
can safely advance its logical time
•No incoming (externally generated)
events will have timestamps less than
GALT

RTI 1.3NG

•LBTS: Lower Bound on Time Stamp
•Denotes the earliest time stamp of any
event that a federate can receive from
now to anytime in future
•Implies the federate can safely
advance its local logical time to LBTS

•We will use LBTS in rest of the tutorial
•Can safely substitute LBTS with GALT

32

TM Implementation Requirements

• Deliver messages to federate in time stamp order
• Ensure federate does not receive an event in its past

Federatei

RTIi

. . .

network

. . .
TSO queue

13
11
8

LBTS=10

LBTSi: Lower Bound on Time Stamp of TSO messages that could later be placed
into the TSO queue for federate i

TSO messages w/ TS ≤ LBTSi eligible for delivery
RTI ensures logical time of federate i never exceeds min(LBTSi, TSO min-i) where

TSOmin-i= minimum time stamp of messages in local TSO queue

33

Centralized vs. Distributed

TM services can be implemented in two ways:
• Centralized approach
• Fully distributed approach

Centralized Approach:
• A single computer acts as RTI’s “time management gateway”
• All time-synchronized operations are routed through this gateway

– Time advance requests, grants, etc. are coordinated by gateway

• Advantages: Simplicity of design; easier to debug and test
• Disadvantages: Single point of failure; potentially high runtime overhead

Distributed Approach:
• All federates’ nodes directly undertake synchronization roles
• Local time-synchronized
• Advantages: Faster execution; more uniform synchronization load
• Disadvantages: Greater implementation complexity

Here, we will focus on the distributed approach

34

Computing LBTS

Given a snapshot of the computation, LBTS is minimum among
• Time stamp of any transient messages (sent, but not yet received)
• Unblocked LPs: Current simulation time + lookahead
• Blocked LPs:

– TAR: Time of parameter in TAR call + lookahead
– NER: Time of parameter in NER call + lookahead

Network

Federate0

TSO queue
13
11
8

LBTS0=10

Federate1

Current Time =8
Lookahead = 5

Federate2

Blocked on NER(8)
Lookahead = 2

Not blocked Blocked

TS=18

35

Consistent Cuts

cut point: an instant dividing computation into past and future
cut: set of cut points, one per processor
consistent cut: a cut where all messages crossing the cut were

sent in the past and received in the future [Mattern]

LBTS = minimum time value along a consistent cut:
• a local minimum of each processor at its cut point
• time stamp of transient messages (cross cut past to future)
• LBTS algorithm: (1) global minimum (2) transient messages

transient
message

FederateD

wallclock time

Past

Future

FederateC

FederateB

FederateA

36

Computing Global Minimum – Distributed Reduction

Step i, processor k executes (log N steps for N processors):
• Pairwise minimum with processor j, j = (k w/ bit position i inverted)
• After log N steps each processor has a copy of the global minimum
• Can generalize to any number of processors, configurable fan-out

0 1 2 3 4 5 6 7

10 11 12 13 14 15 16 17

0 1 2 3 4 5 6 7
step 1

0 1 2 3 4 5 6 7
step 2

10 14

1610 1412w
al

lc
lo

ck
 ti

m
e

processors

0 1 2 3 4 5 6 7
step 3

10

37

Transient Messages

• Basic idea: check there are no transient messages (all messages
sent prior to the cut have been received)

• Color messages
– federate colored red before cut point, green after cut point
– message color is the color of the federate when it sent the message
– transient message: red message received by green federate

• Detect receipt of all transient message
– Si = number of red messages sent by federate i
– Ri = number of red messages received by federate i
– when Σ Si = Σ Ri, all red messages have been received (no transients)

One implementation
• Maintains one counter (Si-Ri) for each federate i
• Piggyback summation of counters with global reduction

computation
• If counters sum to zero, done; else, retry

38

5. Advanced Time Management

39

Retractions

Previously sent events can be “unsent” via the Retract service
– Update Attribute Values and Send Interaction return a “handle” to the

scheduled event
– Handle can be used to Retract (unschedule) the event
– Can only retract event if its time stamp > current time + lookahead
– Retracted event never delivered to destination (unless Flush Queue used)

1. Vehicle schedules position update at time 100, ready to advance to time 100
2. receives interaction (break down event) invalidating position update at time 100
3. Vehicle retracts update scheduled for time 100

Wallclock time

Vehicle

Observer

1. NER (100)
2. Receive Interaction (90)

2. TAG (90)

1. Handle=UAV (100)

Sample execution sequence: NER: Next Event Request
UAV: Update Attribute Values)
TAG: Time Advance Grant (callback)

3. Retract(Handle)

40

TM Services for Optimistic Federates

Time Management algorithms are often categorized as
conservative or optimistic

• Conservative
– Avoid synchronization errors (message in federate’s past)
– Use blocking to avoid errors

• Optimistic
– Do not block; process messages without worrying about

messages that might arrive later
– Detect synchronization errors during the execution
– Recover using a rollback mechanism

• Optimistic processing offers better concurrency, less
reliance on lookahead

41

Time Warp

41

Input Queue
(event list)

18

straggler message arrives in the past, causing rollback

12 21 35

processed event

unprocessed event

Adding rollback:
• a message arriving in the federate’s past initiates rollback
• to roll back an event computation we must undo:

– changes to state variables performed by the event;

– message sends

Federate: process events in time stamp order, like a sequential simulator, except: (1) do
NOT discard processed events and (2) add a rollback mechanism

State Queue

solution: checkpoint state or use incremental state saving (state queue)

snapshot of LP state

1212
Output Queue
(anti-messages) 19 42

solution: anti-messages and message annihilation (output queue)

anti-message

42

Anti-Messages In Optimistic Federates

Used to cancel a previously sent message
Each positive message sent by a federate has a corresponding anti-message
Anti-message is identical to positive message, except for a sign bit
When an anti-message and its matching positive message meet in the same

queue, the two annihilate each other (analogous to matter and anti-matter)
To undo the effects of a previously sent (positive) message, the federate need

only send the corresponding anti-message
Message send: in addition to sending the message, leave a copy of the

corresponding anti-message in a data structure in the sending federate
called the output queue.

42
positive message

anti-message 42

43

HLA Support for Optimistic TM

• Optimistic event processing
– Deliver (and process) events without time stamp order delivery guarantee
– HLA: Flush Queue Request

• Rollback
– HLA: (local) rollback mechanism must be implemented within the federate

• Anti-messages & secondary rollbacks
– Anti-message: message sent to cancel (undo) a previously sent message
– HLA: Retract service; deliver retract request if cancelled message already delivered

• Federate time used to compute lower bound on time stamp of
future rollbacks (Global Virtual Time)

HLA Federations
• federations may include conservative and/or optimistic federates
• federates not aware of local time management mechanism of other federates

(optimistic or conservative)
• optimistic events (events that may be later canceled) will not be delivered to

conservative federates that cannot roll back
• optimistic events can be delivered to other optimistic federates

44

Flush Queue Request

Flush Queue Request: similar to NER except
(1) deliver all messages in RTI’s local message queues,
(2) need not wait for other federates before issuing a Time Advance

Grant

Typical execution sequences
Federate RTI

FQR(T)

RAV (T’)

RAV (T’)

TAG(T'')

FQR: Flush Queue Request
TAG: Time Advance Grant
RAV: Reflect Attribute Values
T'' = min(LBTS,T,T')

Federate calls in black
RTI callbacks in redWall clock

time

Federate RTI
FQR(T)

TAG(T'')

RTI delivers events no TSO events

45

Simultaneity of Events and Zero Lookahead

Simultaneous Events: Events containing the same timestamps
– Ordering of simultaneous events often important
– RTI does not have sufficient information to intelligently order simultaneous

events

HLA Policy: Ordering simultaneous events left to the federate
– Grant to time T (after TAR/NER): all events with time stamp T delivered to

federate
– Simultaneous events delivered to federate in an arbitrary order (may vary

from one execution to the next)

A Source of Simultaneity: Equal timestamps can be generated due to
chain of events sent, each sent with zero lookahead

Problem: Zero lookahead incompatible with NER & TAR definitions…

46

Zero Lookahead

Zero Lookahead: A federate at time T can send TSO events with
timestamp T.

With zero lookahead, a Time Advance Grant to time T cannot
guarantee delivery of all events with time stamp equal to T

Federate
A

RTI

1. RTI issues Time
Advance Grant
to time T

2. Federate A sends a zero lookahead
message (time stamp T) requesting
information from another federate

3. Federate B sends reply message
with time stamp T (zero lookahead)
to Federate A.

Example

Federate
B

HLA Solution: Two new services: NERA & TARA

47

NERA and TARA

Next Event Request Available (NERA)
• Federate can send zero lookahead messages after receiving grant
• Grant to time T does not guarantee all messages with time stamp

T have been delivered, only those available at the time of the call
• Order that TSO messages are delivered to the federate is arbitrary

Time Advance Request Available (TARA)
• TARA is the zero-lookahead counterpart for TAR
• Analogous to NERA for NER

48

Example – NERA and Zero Lookahead

Two federate types: vehicle, commander
Vehicle federate

– When sensors indicate position of another vehicle has changed, notify
commander via a zero lookahead interaction

1. Vehicle 1 ready to advance to logical time 100 to process next local event
2. Detects vehicle 2 has moved
3. Sends zero lookahead interaction to commander federate
4. Ready again to advance to 100; additional reflects at time 90 still possible

Wallclock time

Vehicle 1

Vehicle 2

Commander

1. NERA (100)
2. RAV (90)

2. TAG (90)

3. Send Interaction (90)

4. NERA (100)

Sample execution sequence: NERA: Next Event Request Available
RAV: Reflect Attribute Values (callback)
TAG: Time Advance Grant (callback)

49

Summary
HLA Time Management Functionality:

Allows federates with different local time management mechanisms to be
combined within a single federation execution
– Event-driven or Time-stepped simulations, Optimistic parallel simulations, …

HLA Time Management services:
• Event order

– Receive order delivery (lesser runtime overhead)
– Timestamp order delivery (better modeling accuracy)

• Logical time advance mechanisms
– Time Advance Request: time stepped federates
– Next Event Request: event driven federates
– Flush Queue Request: optimistic federates
– Variants for zero lookahead processing

• Lookahead to increase concurrency
Implementation of HLA Time Management services:
• Compute LBTS on future messages a federate might later receive
• Several algorithms exist, e.g., distributed snapshots

50

References

Books

Richard Fujimoto, “Parallel and Distributed Simulation Systems,” Wiley
Interscience, ISBN 0471183830 (2000).

Frederick Kuhl, Richard Weatherly and Judith Dahmann, “Creating Computer
Simulation Systems: An Introduction to the High Level Architecture,” ISBN
0130225118 (1999).

Books

Richard Fujimoto, “Parallel and Distributed Simulation Systems,” Wiley
Interscience, ISBN 0471183830 (2000).

Frederick Kuhl, Richard Weatherly and Judith Dahmann, “Creating Computer
Simulation Systems: An Introduction to the High Level Architecture,” ISBN
0130225118 (1999).

Overview Papers (see www.ornl.gov/~2ip)

Kalyan Perumalla, “Parallel and Distributed Simulation Systems and the High Level
Architecture,” I/ITSEC (2005).

Kalyan Perumalla, “Parallel and Distributed Simulation: Traditional Techniques and
Recent Advances,” Winter Simulation Conference (2006).

Overview Papers (see www.ornl.gov/~2ip)

Kalyan Perumalla, “Parallel and Distributed Simulation Systems and the High Level
Architecture,” I/ITSEC (2005).

Kalyan Perumalla, “Parallel and Distributed Simulation: Traditional Techniques and
Recent Advances,” Winter Simulation Conference (2006).

51

Acknowledgements

Majority of the slides here are based on the tutorial in 2003 by Dr.
Richard Fujimoto (Georgia Tech). Dr. Fujimoto was a lead architect
in the design of the HLA TM.

Guidance, critique and helpful suggestions for improvement from
Andreas Tolk (Old Dominion University) are gratefully
acknowledged. Andreas Tolk has been the “bird dog” for this
tutorial.

	Tutorial�Handling Time Management�Under the�High Level Architecture
	PADS-HLA Tutorial Goals
	Outline
	1. HLA Overview
	HLA – Architecture
	Interface – Integrating Individual Simulators
	Interface – Services
	Typical Usage – Federate Execution
	Time Management in HLA
	2. PADS Fundamental Concepts
	Notions of Time
	Pacing – Simulation Clock vs. Wall Clock
	Event Orderings
	Accurate Modeling via Timestamp-ordered Events
	Timestamp-Ordered Processing Services
	Time Synchronized Event Processing
	Interoperability Challenge
	HLA TM Services
	2. Basic Time Management
	Federate’s Timing Relative to Rest of Federation
	HLA TM – Time Advancement Protocol
	Time Advance Request (TAR)
	TAR Example – Time Stepped Federate
	Next Event Request (NER)
	NER (Continued)
	NER Example – Event-Driven Federate
	Lookahead
	Lookahead
	4. Implementing TM – Inside the RTI
	Terminology Difference: IEEE 1516 vs. RTI 1.3NG
	TM Implementation Requirements
	Centralized vs. Distributed
	Computing LBTS
	Consistent Cuts
	Computing Global Minimum – Distributed Reduction
	Transient Messages
	5. Advanced Time Management
	Retractions
	TM Services for Optimistic Federates
	Time Warp
	Anti-Messages In Optimistic Federates
	HLA Support for Optimistic TM
	Flush Queue Request
	Simultaneity of Events and Zero Lookahead
	Zero Lookahead
	NERA and TARA
	Example – NERA and Zero Lookahead
	Summary
	References
	Acknowledgements

