

CS 582 Modeling and Simulation II
Spring 2013

 Interoperability / SimSmackdown

Final Report
May 1, 2013

Authors

John Bland Bill Tucker (team leader)

Justin Brown Bingyang Wei

Jonathan Patrick Tymaine Whitaker

Melissa Redmond

DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES
THIS DOCUMENT WAS PREPARED BY THE STUDENTS AS A PART OF A UAHUNTSVILLE CLASS
PROJECT. THE REPORT IS AN ACCOUNT. OF WORK PERFORMED DURING THE SIMSAMCKDOWN
PROJECT. THE CONTENT IS THE SOLE RESPONSILITY OF THE STUDENTS AND NO EXPLICIT OR
IMPLIED WARRANTY OF THE ACCURACY OR FITNESS FOR ANY USE IS PROVIDED

NEITHER UAHUNTSVILLE NOR ANY OF THE COMMERCIAL OR PRIVATE SPONSORS:

(A) MAKE ANY WARRANTY OR REPRESENTATION WHATSOEVER, EXPRESS OR IMPLIED, (I) WITH
RESPECT TO THE USE OF ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM
DISCLOSED IN THIS DOCUMENT, INCLUDING MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE, OR (II) THAT SUCH USE DOES NOT INFRINGE ON OR INTERFERE WITH PRIVATELY OWNED
RIGHTS, INCLUDING ANY PARTY'S INTELLECTUAL PROPERTY, OR (III) THAT THIS DOCUMENT IS
SUITABLE TO ANY PARTICULAR USER'S CIRCUMSTANCE; OR

(B) ASSUME RESPONSIBILITY FOR ANY DAMAGES OR OTHER LIABILITY WHATSOEVER (INCLUDING
ANY CONSEQUENTIAL DAMAGES RESULTING FROM ANY USERS SELECTION OR USE OF THIS
DOCUMENT OR ANY INFORMATION, APPARATUS, METHOD, PROCESS, OR SIMILAR ITEM DISCLOSED IN
THIS DOCUMENT.

(C) NECESSARILY ENDORSE ANY SPECIFIC COMMERCIAL PRODUCT, PROCESS, OR SERVICE BY ITS
TRADE NAME, TRADEMARK, MANUFACTURER, OR OTHERWISE, REFERENCE HEREIN. NOR DOES
SUCH MENTION TO NECESSARILY CONSTITUTE OR IMPLY ITS ENDORSEMENT, RECOMMENDATION,
OR FAVORING

iii

ACKNOWLEDGMENTS
The organization listed below in alphabetical order provided significant support to the
UAHuntsville SimSmackdown effort and their contributions are gratefully acknowledged. In
particular the tech support provided by all formed a significant part of the learning experience.
Excellent raining materiel and help files were provided by all of the vendors, but Pitch is
recognized for providing an introductory short course that got us all started.

Organization Key Contributions

AEgis Technologies Group Travel grant, ACSLx licenses, tech support.
Graphics support

Analytic Graphics Inc System Tool Kit licenses, technical support

ForwardSim HLA toolkit licenses for use during
competition and as prizes. Tech support

Johnson Space Flight Center, NASA Distributed simulation network and a great
deal of technical support

Kennedy Space Flight Center, NASA The Unity Tool (used for visualization) and
tech support. 3D visual models. Overall
project leadership.

Marshall Space Flight Center, NASA Technical Team leadership

MäK Licenses for Real Time Interface and
associated software. Tech Support

Pitch Real Time Interface licenses and Tech Support.
HLA startup kit and training materials

Simulation Interoperability Standards
Organization (SISO)

Venue, A/V support, network access, and
participant registration

Society for Modeling and Simulation,
International (SCS)

Venue, A/V support, network access, and
participant registration

V

ABSTRACT
The report describes work performed during the spring 2013 semester by the members of Dr.
Mikel Petty’s MS 582 – Modeling and Simulation II – class, working in close conjunction with
other universities and with great support from NASA and the other event co-sponsors to plan and
execute the 3013 SimSmackdown event. The actual event was held in San Francisco on 9 April,
hosted by the joint spring conference of the Simulation Interoperability Standards Organization
(SISO) and the Society for Modeling and Simulation, International (SCS).

SimSmackdown provided a unique and challenging, opportunity for the students at the various
schools from universities around the world to jointly develop a complex distributed simulation of
future missions to the moon, Lagrange point II, and Earth The achievement required a great
deal of commitment from the participating students and significant support from the co-sponsors
but resulted in a highly rewarding educational experience.

Achieving the goal required the students to learn about distributed simulation technology,
complex project planning, how to use a variety of sophisticated commercial and free software
tools, all in order to develop and integrate a set of simulations.

This report describes how the UAHuntsville team achieved that goal. Because the event was
strongly cooperative, the scope of the report necessarily includes some aspects of the work of the
other participants and the co-sponsors.

Things that went especially well, and some things that did not go so well are discussed, and and a
set of recommendations are provided about how the event can be improved in the future. They
based on data collected through a series of non-attribution interviews conducted with 15
participants, leaders and supporters.

Appendices contain the team’s project plan and group charters.

UAH Huntsville Participants

Dr. Mikel Petty CS 585 Professor and faculty sponsor

Dan Oneil team technical advisor to the team and
Smackdown technical team leader

CS 585 Students

John Bland Bill Tucker (team leader)

Justin Brown Bingyang Wei

Jonathan Patrick Tymaine Whitaker

Melissa Redmond

VI

Contents

1 APPROACH ... 1-VIII
2 IMPROVE UNDERSTANDING OF DISTRIBUTED SIMULATION 2-X
3 ESTABLISH DEVELOPMENT ENVIRONMENT AND PLAN .. 3-XI
4 DEVELOP FEDERATES ... 4-XV

4.1 LCANSat2013 federate .. 4-xv
4.1.1 Overview of LCANSat2013 federate: ... 4-xvi
4.1.2 Satellite Constellation & Lunar Visualization module ...4-xvii
4.2 Driver federate ...4-xxiii
4.3 Visualization Federate..4-xxiv
4.4 Lunar Mass Driver federate.. 4-xxx

5 INTEGRATION AND TEST ..5-XXXIII
6 DEMONSTRATE SIMULATIONS AT THE EVENT .. 6-XXXVI
7 RECOMENDATIONS .. 7-XL
8 TEAM CHARTERS & PROGRAM PLAN...8-1
9 LESSONS LEARNED INTERVIEW RESULTS..9-2

VII

LIST OF TABLES AND FIGURES
FIGURE 1‐1 COURSE OBJECTIVES...1‐VIII
FIGURE 1‐2 REPORT ORGANIZATION .. 1‐IX
TABLE 2‐1 TRAINING OPPORTUNITIES...2‐X
FIGURE 3‐1 INTEGRATION & TEST NETWORK... 3‐XI
TABLE 3‐1 LABORATORY TEST AND INTEGRATION ENVIRONMENT CHALLENGES..3‐XII
FIGURE 4‐1 OPERATIONAL CONTEXT OF SMACKDOWN FEDERATES... 4‐XV
FIGURE 4‐2 SATELLITE CONSTELLATION 1 ...4‐XVII
FIGURE 4‐3 SATELLITE CONSTELLATION 2(WALKER CONSTELLATION) .. 4‐XVIII
FIGURE 4‐4 SATELLITE CONSTELLATION & LUNAR VISUALIZATION MODULE ARCHITECTURE 4‐XIX
FIGURE 4‐5 RADIO MESSAGE OBJECT MODEL TEMPLATE.. 4‐XX
FIGURE 4‐6 SCREENSHOT OF PHYSICAL ENTITIES DISCOVERED BY LCANSAT2013 FEDERATE 4‐XXI
FIGURE 4‐7 COMMUNICATION SERVER DELIVERING MESSAGE SEQUENCE DIAGRAM ..4‐XXII
FIGURE 4‐8 SATELLITE TO LUNAR SURFACE OBJECT LINE OF SIGHT DETERMINATION .. 4‐XXIII
FIGURE 4‐9 VISUALIZATION FEDERATE ARCHITECTURE..4‐XXV
FIGURE 4‐10 3D MODELS OF SMACKDOWN FEDERATES AVAILABLE IN TUT..4‐XXIX
FIGURE 4‐11 LUNAR MASS DRIVER AND RELATIONSHIP TO OTHER FEDERATES...4‐XXXI
FIGURE 4‐12 ORBITER 2010 SCREENSHOTS OF LUNAR MASS DRIVER...4‐XXXII
FIGURE 5‐1 LCANSAT2013’S DECODER TRYING TO DECODE “NULL” ATTRIBUTE ... 5‐XXXIV
FIGURE 6‐1 ON‐SITE INTEGRATION AND TEST... 6‐XXXVI
FIGURE 6‐2 PREPARED FOR DEMONSTRATION EVENT.. 6‐XXXVII
FIGURE 6.3 UAHUNTSVILLE TEAM INTRODUCTIONS ..6‐XXXVIII
TABLE 7‐1 RECOMMENDATIONS SUMMARY ... 7‐XL

VIII

1 APPROACH
The project began with the development of the learning objectives for the course as
listed in Figure 1-1. The team believes that we have achieved these goals as
evidenced by this report

Figure 1-1 Course Objectives

 These objectives along with other planning details were incorporated into a project
management plan. The students volunteered to participate in separate teams and each
team developed a team charter to describe their work. To accomplish the first object,
Dr Petty conducted a series of lectures to improve the student’s understanding of
distributed simulation in general, and HLA in particular. Also, invited lecturers came to
speak on key technical topics. The project development environment, including
computers, licensed commercial software products, a configuration management
system, and a web site. Program planning documents including a program
management plan and team charters were developed during this timeframe. The
federates, i.e. the individual simulations to be integrated in the HLA simulation were
developed in an iterative fashion, followed by integrated tested, and then by the conduct
of the actual event. After the event participants, sponsors, and supporting staff were
interviewed in a non-attribution process to collect lessons learned. Recommendations
were developed on how the enterprise could improve future events, and this report was
prepared. Figure 1-2 and the report outline roughly follow the life cycle of the project.

Goal: As demonstrated by successful execution of a distributed simulation and
delivery of a statement of work, project plan, and final report show that we have
learned about
1. The space domain including:
1.1. Space vehicle dynamics
1.2. Orbital dynamics
1.3. Space exploration concepts
1.4. Interplanetary logistics
2. Distributed simulation protocol and implementation
3. Working with distributed teams on integrating complex systems
4. Providing an interesting, convincing, and perhaps entertaining visualization of the
complex simulation.
5. Planning and leadership of complex projects

IX

Figure 1-2 Report Organization

X

2 IMPROVE UNDERSTANDING OF DISTRIBUTED
SIMULATION
.The Students enrolled in the class came from widely differing backgrounds. Some had
experience related to distributed simulation, but none done actual hands on
development of distributed simulations, and none had experience working with a
geographically distributed set of fellow students and collogues. To prepare the team for
tis experience, a variety of training opportunities were provided, and the students were
tested on the knowledge they gained from the lectures.

Event Type Provider
HLA Overview Lecture (multiple) Dr. Petty
Time Management Lecture Dr. Petty
Environment Federate Lecture Dr. Cruz
Coordinate Transformations Lecture Andy…
Introduction to HLA Lab Exercise Pitch
Network Operations &
Interface descriptions

Reference Documents NASA

On Line Training Videos, Briefings AGI, ForwardSim, Matlab,
Pitch, MäK

On Call Technical Support
(product)

Email and phone AGI, ForwardSim, Pitch,
MäK

On Call Technical Support
(space domain and network)

Email and phone NASA KFC

Table 2-1 Training Opportunities

The other forms of available training were less formal, and knowledge of their
availability was limited. Compared to other universities, UAHuntsville had a significant
advantage in that, since the project was organized as a class, relevant training part of
the plan. We also had the opportunity to invite special lectures on topics we found
especially difficult.
Among other things, the available training rightly led the team to focus on the ability of
the models to interact in the HLA environment. Model complexity was limited to that
necessary for the mission. Other teams focused their initial efforts on modeling, leaving
them not ready for the early and frequent testing that is so critical to success in a project
of this type.

XI

3 ESTABLISH DEVELOPMENT ENVIRONMENT AND
PLAN
The first requirement for setting up a local test environment was to establish a working
lab with the hardware and software needed for each federate along with this there was
a challenge acquiring the needed licenses required for the software. Once this was
established we were then tasked with setting up the virtual private network (VPN)
connection to the NASA provided test environment which included both MAK and Pitch
RTIs. Once all of this was complete the teams were able to test their federates using
both RTIs. Figure 3.1 describes the initial test and integration network. The network
used in the actual event was significantly
different:

Figure 3-1 Integration & Test network

. Note that the lab computers when connected to the VPN had no access to other university
computers or to the public internet, and that a separate computer and network connection was
required for the computer used to communicate with other participants. The VPN software did

XII

not work well when computers were connected to it via any wireless network since any dropout
and reconnection used up another license from their pool, eventually making it impossible for
anyone to connect to the network. It was necessary to use a VPN to control access to the NASA
computer resources and to protect the network especially since all connected computers were
required to run with their firewalls turned off. Only two wired network connections were
availble to the UAHuntsvile Smackdown lab. Table 3-1 describes some consequnces of this
architecture

Feature Challenges presented
Use of VPN for testing Very difficult to update software and data during testing

Limited number of
network drops

Constant network configuration was required to conduct
required test-fix-test operations as 7 students contended for
two drops
University wireless security rules frequently denied access to
students, making it an unreliable backup connection –
possibly due to the special security settings required by the
VPN
Network access challenges led to very frequent computing
and network changes, making software version control very
difficult

Requirement for
firewalls to be off during
VPN testing

Disconnecting from the VPN and connecting to the public
internet was risky because of the probability that people
would not turn their firewalls back on.
Computing and network challenges, especially combined
with the difficulty of shipping desktop computers led to
students using their personal laptops without firewall
protection

Table 3-1 Laboratory Test and Integration Environment Challenges

For the Pitch RTI, we only needed the trial version of the Pitch software distributed from
http://www.pitch.se for testing purposes. This was because Johnson Space Center
(JSC) provided the licensed Pitch RTI over a Virtual Private Network (VPN) which did
not have a bound on the number of federates it could run, and thus we were able to
connect to their RTI and not worry about the bounds on our trial version RTIs.
For the MAK RTI, each computer had to have a license that was tied to the machine's
MAC address. Again, JSC was running a MAK RTI on a VPN, but for the MAK software
a license was required to connect to JSC's RTI.

Licenses were also required for the ForwardSim HLA Toolkit for those developers that
used it – primarily the team working on the visualization federate.

The lunar communication federate used the free version of Analytic Graphics System
Tool Kit (STK), so no additional license was needed. The team developed a connection

XIII

between the STK application programmers interface (API) and the HLA standard
interface using JAVA developed in the Eclipse environment.

A full license for STK was obtained after some delay. STK was interfaced with Matlab
to evaluate the degree of coverage provided by various lunar orbits to help pick the right
orbits for the satellites in the communication federate
.
For applications written in C++, we used Microsoft Visual Studio 2010 to ensure
compatibility with the libraries for Pitch and MäK which were compiled with 2010

Since the federate used the Orbiter software (orbit.medphys.ucl.ac.uk/) we also used
Orbiter 2010 for development, along with the LMD scenario.

The NASAS provided Unity 3D game engine based executable used for the
visualization federate, was named The Unity Tool (TUT). It was developed by Kennedy
Space Center. The 2012 visualization federate was written in Matlab, primarily
developed by ForwardSim. It used Virtual Reality Modeling Language (VRML) to create
the images. This approach required access to Matlab toolkits that were not available to
the 2013 team, so a different approach was used in 2013 and the VRML code was
removed. The 2013 team developed a C++ program to stream data into the unity tool.
The interface between the streaming program and the HLA interface was written in
Matlab, using the ForwardSim HLA toolbox.

The the team utilized Google Sites for sharing general information as well as Google
Project Hosting as a code repository. The external links page form the site is shown in
figure 3-2.

XIV

Figure 3-2 Google based team website

XV

4 DEVELOP FEDERATES
Figure 4-1 provides an overview of the scenario, describing how the simulations created
by the University teams fit together into an integrated simulation of a future lunar
mission.
To support this overall scenario, the 2013 UAHuntsville team developed four federates:

1. Lunar Communication System and Satellites Constellation federate
(LCANSat2013);

2. Lunar Mass Driver federate (LMD);
3. 3D lunar surface visualization federate (fsi3DViewer-UAH);
4. Test driver federate.

Figure 4-1 Operational context of Smackdown federates

4.1 LCANSat2013 federate
The 2013 UAHuntsville team decided to develop a more compact and comprehensive
federate by integrating LCANServ, LCANSat, 3D satellite constellation visualization
federate and part of the lunar surface visualization federate. The name of the new
federate is Lunar Communication System and Satellites Constellation federate 2013.
We use the acronym name LCANSat2013 to denote our new federate.

This federate was largely based upon the four federates developed by the 2012
UAHuntsville Smackdown team: Communication network federate (LCANServ) which
handles all the interaction messages between different federates in the Smackdown

XVI

Federation, Satellite federate (LCANSat) for propagating a 4-satellite constellation, 3D
satellite constellation visualization federate and 3D lunar surface visualization federate.

This new LCANSat2013 federate provides the following functions in the lunar resupply
mission:

1. Propagation of constellations of satellites orbiting the moon so that enough
coverage of Aitken Basin is achieved.

2. Inter-communication capabilities between physical entities in the mission.
3. Visualization of satellites constellation in 3D and all the other physical entities in

2D.

In order to fulfill the challenging requirements of our LCANSat2013 federate, our
development of the federate needs to rely on robust and free software development kits.
By investigating and researching different software, we found that the software
applications and development kits offered by Analytical Graphics, Inc. (AGI) is the best
choice for modeling, simulating and analyzing the Smackdown space mission.

4.1.1 Overview of LCANSat2013 federate:

The LCANSat2013 federate is an aerospace Java application built on top of AGI’s
proven Systems Tool Kit(STK) Software Development Kits: the STK Components for
Java SDK. STK Components is a family of low-level class libraries that provide access
to specific analytical and 3D visualization capabilities for space exploration.

At the core of STK Components is the Dynamic Geometry Library (DGL). DGL provides
various specialized propagators for modeling the motion of satellites, aircraft, and
surface vehicles. Additionally, algorithms like inter-visibility between physical entities
given a number of complex, simultaneous constraining conditions in the space are also
provided so that the line-of-sight(LOS) information critical in our lunar communication
system can be obtained easily. Since DGL adopts the industry recognized time and
position which is consistent with that of NASA’s environment federate, it makes the
positioning of other physical entities in federation accurate. The Insight3D Visualization
Library which is a part of DGL allows us to build lightweight yet powerful 3D applications
for performance and visualization accuracy of the lunar mission.

Other relevant capabilities provided by DGL:

1. Accurate moon modeling;
2. Precise platform positioning and orientation modeling for orbit and waypoint

propagation;
3. Complex numerical and geometry algorithms;
4. Manipulate points, axes, vectors, and reference frames.

All the capabilities of STK Components make our LCANSat2013 federate possible. In
the following two subsections, two main modules that constitute LCANSat2013 federate:
Satellite Constellation & Lunar Visualization module and Communication Server module
are illustrated in detail.

XVII

4.1.2 Satellite Constellation & Lunar Visualization module

The Satellite Constellation & Lunar Visualization module propagates and renders two
different satellites constellations for the 2013 SISO Smackdown. The two satellites
constellations are tested against PITCH Runtime Infrastructure (RTI) and MAK Runtime
Infrastructure (RTI) respectively.

We use STK’s numerical propagator to generate orbits of satellites in LCANSat2013.
Our two constellations of satellites are achieved by STK's validated and verified High
Precision Orbit Propagator (HPOP) capability provided by the Orbit Propagation Library
(OPL). By numerically integrating the various forces affecting satellites, OPL brings high
fidelity orbit propagation into our LCANSat2013.

When the whole federation is running on PITCH RTI, a 6-satellite constellation is
designed which could provide a lot of hang time both over Aitken Basin and Hadley Rille
to maximize the time each satellite is in view of the surface entities as shown in figure 4-
2.

Figure 4-2 Satellite constellation 1

When the federation is working with MAK, we designed a 14-satellite Walker
Constellation (Figure 4.3) that provided 100% communication coverage of both the
Aitken Basin and Hadley Rille and coverage of 100% of the lunar surface at least 90%
of the time. Both constellations provide a full time relay capability to allow
communications between the Earth and the L2 outpost. Since the L2 point is on a line

XVIII

from the Earth to the moon, but on the opposite side of the moon, line of sight
communication between them is not possible without some kind of assistance.

Figure 4-3 Satellite constellation 2(Walker Constellation)

The architecture of the Satellite Constellation & Lunar Visualization Module is shown in,
Figure 4-4, a UML class diagram.

An instance of TheFederate class that inherits NullFederateAmbassador builds up the
LCANSat2013 federate and connects it to the RTI host in Johnson Space Center (JSC)
by instantiating a Connection object. Objects crucial for using HLA services like RTI
ambassador, encoder factory are created and the whole federate is time constrained
during the construction of federate. The TheFederate instance is then assigned to
Satellite objects so that they can invoke the services provided by HLA RTI. TheFederate
class also contains all the definitions of HLA callback methods:
timeConstrainedEnabled, timeAdvanceGrant, removeObjectInstance,
provideAttributeValueUpdate, discoverObjectInstance, reflectAttributeValues and
receiveInteraction
In the Satellite module, satellites are modeled as a member of the PhysicalEntity object
class defined in the SISO_Smackdown_2013_entity FOM. Once LCASat2013 federate
was granted time advance by Environment federate, each satellite published its logical

XIX

time, entity name, reference frame and most up-to-date Cartesian coordinate position.
Other federates which were interested in obtaining the attributes of satellites could
subscribe to and receive the updates sent by the LCANSat2013 federate.

Figure 4-4 Satellite Constellation & Lunar Visualization Module Architecture

Regarding the propagation of orbits, each satellite uses a numerical propagator
provided by STK to propagate its orbit. STK Components increases the fidelity and
accuracy of its simulation of orbits by providing a variety of environment and force
models. In our case, spherical harmonic gravity of the moon and solar radiation force
are considered during the propagation of a satellite’s orbit. The gravity model of the
moon is read in from LunarGravityField_LP100K.grv file. It is then used to construct the
immutable field by selecting to the desired fidelity in the degree and order of the
represented field, as well as configuring other options such as the inclusion of tidal data.
This field is then used to define the force at a given position. In the end, those force
models together with six orbital elements which are the parameters required to uniquely
identify a specific orbit: semi major axis, eccentricity, inclination, argument of perigee, right
ascension of the ascending node (RAAN) and true anomaly are used to propagate the
position, orientation, and other attributes of the satellite over time using the numerical
propagator which results very good and accurate orbits.
In our effort to visualize satellites and their orbits in STK’s Insight3D viewer, we adopted
STK Components' Platform type which can be used to model satellites, facilities,
aircraft, and other "real-world" objects. Simply put, an AGISatellitePlatform object is
created for each Satellite object which stores: the name of the satellite, a time-varying
position and orientation calculated by numerical propagator. By adding the
AGISatellitePlatform into the Insight3D viewer, the visualization of satellites is
accomplished.

XX

The second important module in LCANSat2013 makes communication in the mission
possible.

4.1.3 Communication Server module

The communication server module is used to facilitate lunar communications among
different federates. Here are some potential scenarios where our communication server
might be used:

The scouting hopper developed by MIT team detects some valuable regolith in one
place on the moon surface and needs to send a message regarding the position of the
regolith to the mobile resource utilization plant; Genoa’s space guard system which
tracks the approaching asteroid near the moon broadcasts the warning message to all
the federates in the Smackdown federation. Penn State University team’s lunar shuttle
needs to send messages to the landing site on the moon surface reporting its position.

Messages in the communication system are defined as HLA interactions with transmit
(TX) and receive (RX) interactions (Figure 4-
5).

Figure 4-5 Radio message object model template

 Federates using our communication service should publish the TX interaction and
subscribe to RX interaction. Our LCANSat2013 communication server does the reverse
order: it publishes RX interaction and subscribes to all the TX interactions.

In order to calculate line-of-sight information between two physical entities in the
mission, our LCANSat2013 federate subscribes to the name, reference frame and
position attributes of the PhysicalEntity object class and maintains tables of each
entity’s latest position in the mission during the SISO Smackdown event. Figure 4-6 is a
screenshot of a display listing the discovered entities.

XXI

Figure 4-6 Screenshot of Physical entities discovered by LCANSat2013 federate

The basic work flow of communication server can be explained in the sequence
diagram (Figure 4-7):
• The communication server receives a TX interaction through the HLA callback

method receiveInteraction().
• It extracts the source and destination information from the interaction and

determines if both the sender and receiver have access to a certain satellite in the
satellite constellation.

• If so, the communication server builds a RX message and uses the HLA service
sendInteraction() to send the RX message, federates which subscribes to the RX
message will receive the message.

• If not, that TX interaction message will be discarded.

XXII

Figure 4-7 Communication Server delivering message sequence diagram

The LOSEvaluate() method invoked by the communication server in the above UML
sequence diagram is used to determine the inter-visibility between entities in the lunar
scenario. In STK Components, access relation issue between two entities is resolved by
specifying access constraint it must satisfy. The simplest and most commonly used
access constraint is the Central Body Obstruction Constraint, which requires that the
view from one entity to another not be obstructed by a central body such as the moon.
Further constraints can be imposed on a single access relation. In our case, we
assumed communication capability between a surface entity and satellite is poor near
the horizon, so we set an Elevation Angle Constraint with minimum 5 degrees angle on
the access relation. This constraint requires that the angle between the link (yellow line
in the Figure) and the plane tangent to the surface of the moon at the location of the
entity be between 5 degrees to 175 degrees.

XXIII

Figure 4-8 Satellite to Lunar surface object Line of Sight determination

4.2 Driver federate
The Driver federate is a testing tool that will be bequeathed to future Smackdown
teams. It was built for several reasons.
 First, it was built to circumvent wasting time developing testing tools. Future teams
will not need to spend time developing a way to test federates against others. The
Driver federate publishes attributes of all entities across the network. Therefore, testing
interoperability between federates is achieved by running the Driver alone.
 Second, it was built to encourage testing to begin sooner. With the Driver, testing
can begin immediately. When testing is done early, problems are discovered sooner,
there is more time for solutions to be implemented, and a more thought out product is
produced. All of which, benefit future teams.
 Third, it was built to ease the development process for future teams. Teams will have
one more tool in place to utilize and one less challenge to face. The motivation for this
is to continue growing upon older federates, creating newer ones, and help guide
improvement.

XXIV

The Driver federate was built in Matlab using ForwardSim’s HLA Toolbox. The HLA
Toolbox is the MATLAB interface to the High Level Architecture distributed simulation
standards: HLA 1.3 and IEEE 1516. The HLA Toolbox automatically generates Matlab
code based on specifications selected by the user.
 4.3 Visualization Federate
The objectives established for the visualization federate team included:

1. Provide graphics and visualization to display all Federation objects, lunar surface
and stellar background.

2. Develop a C++ interface between the existing Matlab federate and the Unity 3D
MPC_Client.

Tools used by the team to accomplish these objectives included:

1. Matlab Rs2012
2. Microsoft Visual Studio 2010
3. FowardSim HLA Toolbox
4. The Unity Tool (TUT)

MATLAB is a numerical computing environment and fourth-generation programming
language. Developed by MathWorks, Matlab allows matrix manipulations, plotting of
functions and data, implementation of algorithms, creation of user interfaces, and
interfacing with programs written in other languages, including C, C++, Java, and
Fortran.
 Although MATLAB is intended primarily for numerical computing, the optional toolbox
HLA Toolbox interfaces to the U.S. DoD High Level Architecture (HLA 1.3) simulation
standard, to the IEEE 1516 standard, as well a the Distributed Interoperable Simulation
(DIS) standard IEEE 1278.

The MatLab element of the visualization federate receives all current positions,
translates coordinates to a common reference frame, and translates the 3D models
based on those coordinates. The Matlab element consists of several files such as
fsi3DViewer.m, fedAmbassador.m and telStreamFunc.m:

XXV

Figure 4-9 Visualization Federate Architecture

The fsi3DViewer.m file services include:
hlaConnect() - establishes a RTI connection and calls the fedAmbassador
createFederationExecution() - creates a Federation Execution
joinFederationExecution() - joins a federation execution
enableAsynchronousDelivery () - enables asynchronous delivery
hlaAutoPublishSubscribe() - subscribes to federates
evokeMultipleCallbacks() - tells the RTI that the federate is ready to process one
or many callbacks
ResignandQuit() – disconnects and resigns the federate

The fedAmbassador.m file services include:

System.Net.Sockets.TcpClient ()- Provides client connections for TCP network
services to the Unity 3D viewer.
reflectAttributeValues() – gets federate attributes such as position, orientation,
name, etc.
telStreamFunc() – gets xml formatted string.
telStreamFunc.m

XXVI

 The telStreamFunc.m file reads XML data and streams it to an IP address &
port.
System.IO.StreamReader() - Implements a TextWriter for writing characters to a
stream
Write() - Writes a string to the stream
fprintf() – Writes string to a log file

Microsoft Visual Studio is an integrated development environment (IDE) from Microsoft.
It is used to develop console and graphical user interface applications along with
Windows Forms or WPF applications, web sites, web applications, and web services in
both native code together with managed code for all platforms supported by Microsoft
Windows, Windows Mobile, Windows CE, .NET Framework, .NET Compact Framework
and Microsoft Silverlight. The visualization federate developed in Visual Studio is
streamer.cpp.

The streamer.cpp creates a server that receives XML data from the Matlab federate and
streams the XML data to The Unity Tool (TUT), providing the following services:

TcpListener() - Listens for connections from TCP network clients, TUT and
Matlab.
Start() - Starts listening for incoming connection requests from TUT and Matlab.
AcceptTcpClient() - Accepts a pending connection request.
GetStream() - Gets a stream object for reading and writing.
Read() – Reads XML data sent by the Matlab client.
Write() – Writes XML data to the TUT client.
Close() – Shutdowns and ends connection.

The ForwardSim HLA Toolbox consists of a set of functions designed to implement HLA
federates within the MATLAB environment. The function set encompasses of the entire
HLA standard library and additional functionality which useful to simplify the
implementation of the HLA federates. It has a streaming capability which might be able
to replace streamer.cpp

The HLA Toolbox also includes a complete set of callback templates ready to be used
and customized by the user. These m-files are called by the RTI in response of a Tick or
EvokeCallback call as specified in the federate implementation.

ForwardSim has developed an RTI Ambassador running in the MATLAB environment
and allowing the creation of m-files using the HLA functions described in the HLA
standards. All the code required to create and execute an HLA federate is written in m-
code (MATLAB programming language) by the user and is fully compatible with any
existing MATLAB program or toolbox. Like any other MATLAB program, C/C++ code
can be called from the m-files. MATLAB connects directly with the RTI without any other
tool when the HLA Toolbox is installed.
The HLA toolbox functions have the same prototypes as the C++ HLA standard
interface (API) in order to minimize the learning process and to be fully compliant with
the HLA standards.

XXVII

The HLA Toolbox is capable of encoding and decoding information from/to the RTI
allowing information exchange with any HLA compliant federate on the same federation
(independent of the OS or language used by the other federate).
It is possible to run more than one federate on one computer. Each federate requires
one MATLAB instance.

The HLA Toolbox allows the use of any other MATLAB Toolboxes to create a federate.
The code can even be compiled with the MATLAB Compiler in order to generate a
standalone application running on a computer without a MATLAB license.

The toolbox also provide a Graphical User Interface (GUI) used to quickly generate the
m-code required to create an HLA federate simply by filling a form and selecting the
information to be publish/subscribed from a tree view. This tool allows the user to create
their first HLA federate in just a few minutes. The generated code will be customized by
the user to define the behavior of its federate.

The Unity Tool (TUT) is a 3D visualization tool developed by NASA at Kennedy Space
Center. TUT is based on Unity 3D Game Engine and it displays all federation objects,
lunar surface, and stellar background and provides the following services:

Game based shared, distributed visualization
Student Simulations and Models
NASA based telemetry interface (MPC2)
Distributed and Preserved Simulation, replay without simulators

3D Model Team Name Image
Astronaut Tim MIT

Scouting Hopper MIT

Mobile Resource
Plant

MIT

XXVIII

3D Model Team Name Image
Lunar ISAC

Lunar Mass Driver UAH

Comm Sat Control
Center

UAH

Cargo Rover Nebraska

Earth Moon Transfer
Vehicle

NASA

L2 Outpost Munich

L2 Tower Array Munich

Regolith Hauler

XXIX

3D Model Team Name Image
Lunar Supply Depot

Deep Space RADAR Genoa

Lunar Cargo Lander Penn State

Lunar Fabrication
Facility (Oxygen
Factory)

Brunel / Exeter

Figure 4-10 3D models of Smackdown federates available in TUT

Other schools who were not able to get their simulations integrated in time participated
as observers, including

XXX

4.4 Lunar Mass Driver federate
The LMD federate included the freely available program Orbiter 2010 which was
connected to the rest of the distributed simulation through an interface that developed in
Microsoft Visual Studio 2010 C++. We had to use the full version of VS 2010 rather
than to be compatible with the RTI libraries. The full version of visual studio provided
the capability to debug DLLs (Dynamic Linked Libraries) by attaching to the process.
 This allows the programmer to use breakpoints and step through the code as if it were
a standalone program. In the Express edition, this capability was not available. This
would have slowed development time significantly since all custom modules (or
specifically ours) in orbiter are DLLs.

Orbiter provides very limited debug capability. We were able to write a string to the
Orbiter screen. We used this to display of the LMD in X,Y,Z coordinate system in order
to compare it to the LMD Payload when we needed to correct reference frameworks.

We used Visual Studio 2010 because the libraries for Pitch and MäK were compiled
with 2010. They would not work with 2012. At the time of the Smackdown, Pitch had
not released a set of libraries compiled with 2010.

The Orbiter 2012 LMD that we reused is a scenario developed in the orbiter community.
It is designed to launch a payload into low lunar orbit. This scenario will run and publish
its position updates for the LMD station and for the LMD payload to the LCANSat2013
federate for visualization of the location of the federate in their 3D viewer. The LMD
Federate also publishes the location of the station and payload as the scenario ran to
the 3D lunar surface visualization federate. The need to ensure insuring that the
coordinates published by federate were in a reference frame that could be use an
available transformation matrix to convert to the reference frame used by each of each
visualization federates. Orbiter used Moon center Inertial but the visualization tools r
used the moon centered fixed reference frame. When converting from Moon center
Inertial or any other reference frame it is important that to use the same date and time
for the reference frame. This problem was further complicated by discrepancies about
how reference frames were labeled in different applications.
Because Orbiter was programed using C++ and the source code was made available
the API used to allow the Orbiter program to talk to the MAK and Pitch RTIs was
programmed in Visual Studio 2010 using C++.

XXXI

Figure 4-11 Lunar Mass Driver and relationship to other federates

The Goals for the LMD were:
Modeling

To apply the principle of LMD to launch a payload into a low lunar orbit
Simulation/Reuse

Use a scenario developed by Yuri Kulchitsky from the Orbiter 2010
community

Programing
Use the developed environment of Orbiter 2010 to account for the lunar
environment variables.
Correctly connect to both RTIs
Publish positions of both the LMD station and the LMD payload.
Ensure the multiple reference frames in use are correctly coordinated

Our LMD federate used only a portion of the capability of Orbiter 2010 and the LMD
scenario. Several opportunities for future work were seen. The scenario in Orbiter
2010, there are four delta gliders that can be programed to do a variety of different
missions, interact with different federates, and even preform an ownership transfer such
as docking with an orbiting space ship, placing an additional satellite into orbit, retrieving
a satellite for maintenance then returning it to orbit, or just to return to earth. Due to our
Due to our limited time and our need to focus on the coordinate transforms and RTI
connections, we were unable to implement these additional missions. Thus, our
federate was limited to the launch of a payload into low lunar orbit.
Lessons Learned

During the SISO Smackdown event the LMD successfully connected to the Federation
and simulated the launch of a payload into low lunar orbit using the Orbiter 2010

XXXII

program. Position and Health/Status where published for the federate. The LMD
federate subscribed to the environment federate for reference frame, and time advance
grants.

Figure 4-12 Orbiter 2010 screenshots of Lunar Mass Driver

XXXIII

5 INTEGRATION AND TEST
Six full up integration tests were conducted between March 29th and April 5th just prior to
the Smackdown Event. All the integration tests were supported by communication with
the remote sites via by teleconference and VSee video teleconferencing. During each
integration test, each teams’ federates joined in the federation in turn based on a roll
call.

In the integration test, teams worked together to verify the correctness of interactions
between different federates. People from JSC monitored all the joined federates to
make sure each of them properly advanced time and published data. As LCANSat2013
is supposed to represent all the physical entities in the federation in the Insight3D
viewer, our federate actually verified all the location and motion information of different
entities either in the orbit of the moon or on the surface.

In the same time, several problems about our LCANSat2013 federate were found during
the six integration test:

Problem 1: LCANSat2013 could not join the federation after LMD federate joined.
Solution: UAHuntsville team made sure that LMD federate joined the federation after
LCANSat2013. This problem was later completely solved by JSC assigning more IP
addresses to the team.

Problem 2: It took too much time to propagate six satellites.
Solution: This problem is understandable, since in order to achieve high fidelity, STK
numerical propagator calculates a lot of data for one satellite. By using background
calculation capability, we paralleled the six propagations instead of propagating six
satellites one by one. This greatly reduced the six satellites propagation time.

Problem 3: LCANSat2013 worked well with PITCH RTI but failed to run on MAK RTI.
Solution: By working with Shagoto Nandi from MAK and after a lot of debugging and
comparing programming environments, we found that java application developed using
Java Development Kit 1.7 on Windows could cause the federate to throw
UnsatisfiedLinkError exception every time it tried to connect to MAK RTI. We solved this
problem by completely uninstalling JDK 1.7 and installing JDK 1.6.

Problem 4: LCANSat2013 federate kept throwing NullPointer exceptions due to other
teams failing to provide the latest Attribute Handle Value Map or providing Attribute
Handle Value Map which missed certain attribute values.

XXXIV

Figure 5-1 LCANSat2013’s decoder trying to decode “null” attribute

Solution: It is good software engineering principle to not expect federate behaves
exactly as what you want. Proper and robust exception handling mechanism was added
to help solve this problem.

Problem 5: For our Insight3D viewer, we used makers and texts to represent entities on
the moon surface and orbiting the moon. Since there are so many of them, the texts and
markers could easily bloat the viewer and thus hindered its readability.
Solution: We add a distance constraint on the visibility of the marker so that a marker
would only become visible when the distance between camera and the entity is less
than 1000km. If we look at the moon at a rather far away distance, we could only see
the text representing the name of the entity. This makes the viewer much cleaner.

Problem 6: During the testing, we found that some HLA callbacks never get called when
they were supposed to be called.
Solution: HLA provides more than one different versions of the same callback, for
instance, there are three reflectAttributeValues callbacks:
public void reflectAttributeValues(ObjectInstanceHandle theObject,
 AttributeHandleValueMap theAttributes, byte[]
userSuppliedTag,
 OrderType sentOrdering, TransportationTypeHandle
theTransport,
 LogicalTime theTime, OrderType receivedOrdering,
 SupplementalReflectInfo reflectInfo) throws
FederateInternalError
public void reflectAttributeValues(ObjectInstanceHandle theObject,

XXXV

 AttributeHandleValueMap theAttributes, byte[]
userSuppliedTag,
 OrderType sentOrdering, TransportationTypeHandle
theTransport,
 SupplementalReflectInfo reflectInfo)
public void reflectAttributeValues(ObjectInstanceHandle theObject,
 AttributeHandleValueMap theAttributes, byte[]
userSuppliedTag,
 OrderType sentOrdering, TransportationTypeHandle
theTransport,
 LogicalTime theTime, OrderType receivedOrdering,
 MessageRetractionHandle retractionHandle,
 SupplementalReflectInfo reflectInfo)
We never know which version the RTI will invoke, so instead of just writing one version,
it is better to write all the above three in TheFederate class and put the same
implementation code in the three reflectAttributeValues().

Problem 7: When a federate resigned from the federation, the insight3D viewer still kept
the marker and text representing the physical entity of that resigned federate.
Solution: Clear marker and text when the callback method removeObjectInstance gets
called.

Problem 8: There is a synchronization exception during the demonstration in
insight3DTimeChanged() method of class LCANSatManager due to different threads
competing otherEntitiesToBeDrawn list. This would cause the Insight3D viewer to crash!
Solution: Our current solution is not good since we only surround the trouble code with
try-catch block in order to prevent the entire Insight3D viewer from crashing during the
event. Future teams may wish to add a mutual exclusion lock on this resource to
resolve this. The future team should be aware that this problem has not been solved
properly.

XXXVI

6 DEMONSTRATE SIMULATIONS AT THE EVENT
The team made the final selection of computers to be used at the event, and used them
at the last two test events to make sure that the software was correctly loaded and that
the machines were capable of executing the software with acceptable speed. A “battle
box” containing tools, spare cables, etc. was packed and shipped along with the
computers to San Diego. The computers used in the lab for testing were not used in
San Diego because of the difficulty of shipping large desktop machines. The simulations
wound up running on individual student laptops.
On Sunday afternoon, before the event on Tuesday evening, the UAHuntsville team
began setting up their computers, networking, and power at the same time as the NASA
representatives began to set up their computers, power and networking in order to
provide the maximum amount of time for addressing the problems that would inevitably
arise. Figure 6-1 was taken during this period and shows some of the intensity and
complexity of the event.

Figure 6-1 On-site Integration and Test

XXXVII

The schools teams worked closely together, with an impressive level of support from
NASA and the tool vendors, to get the integrated simulation to reliably perform the
demonstration scenario. This process was complicated by low network bandwidth,
spotty wireless connectivity, and unreliable power. Since it was extremely difficult to
download software form the internet, the team and vendors worked closely together to
make sure everyone had the right software versions. The long days of continuous
testing exposed a large number of problems that had been missed in the previous hour
long, relatively simple test events.
Figure 6-2 shows a considerably neater set up, and significantly reduced stress as the
team completes its preparations for the formal event. The monitor on the left shows the
lunar mass driver federate. The monitor on the right shows the combined Matlab/STK
tool used to analyze the communication coverage of alternate lunar satellite
constellation orbits.

Figure 6-2 prepared for demonstration event.

Because so many teams were involved, the intense period of integration and testing
was followed by a repetitious process of rehearsal and practice. The practice period
was complicated by the fact that the audio visual equipment was not set up in time to
support rehearsals, and when it was set up, it did not match that which was anticipated
during the rehearsal, which in turn created some amount of confusion. This confusion
was compounded by the fact that the person primarily responsible for planning the
event was, at the last minute, not able to attend. This caused changes in the plan, and
additional confusion.

XXXVIII

None-the-less, the program began on time, and the team leaders introduced their teams
and described their simulations as shown in figure 6-3. The introduction process did not
go as well as hoped because the audience was not able to hear all of the teams,
especially those who were operating their simulations remotely.

Figure 6.3 UAHuntsville Team introductions

When the introductions were complete, the actual demonstration of the integrated
simulation began. The simulations themselves performed flawlessly. Figure 6.4 depicts
a team’s simulation joining into the federation. The image on the left is of their federate,
displayed by the UAHuntsville Communication Satellite program. The person in the
center is operating the UAHuntsville 3D visualization tool, preparing to display the
operation of the simulation.
In figure 6.4, the image on the right is a traditional HLA “lollipop” diagram. Each white
box represents a particular federate as a member of the federation.

XXXIX

XL

7 RECOMENDATIONS
A representative sample of participating schools and sponsoring organizations were
interviewed to obtain observations of the event, and suggestions about how it might be
improved. The comments collected during the interviews are paraphrased in Appendix
C. The following synthesizes the comments and organizes them by theme, creating an
actionable set of recommendations. The interviewees’ names are withheld because the
data was collected on a non-attribution basis. We do appreciate the insight they
provided.
Table 7-1 Recommendations Summary

Summary of Recommendations
Training &
Education

Develop Syllabus…

Event Planning and
Execution

Clear roles & responsibilities

…
Establish
Environment

Establish computers and network to be used in
demonstration at beginning, and do not change them.

XLI

I

8 TEAM CHARTERS & PROGRAM PLAN

II

III

IV

V

9-2

9 LESSONS LEARNED INTERVIEW RESULTS

Things I think would be useful to know:

1) HLAToolbox might be a nice option for those who have never worked with HLA.

2) When using Matlab, one can forcefully resign your federate by typing
resignFederationExecution('DELETE_OBJECTS_THEN_DIVEST') into the Command
Window. Likewise, one can destroy forcefully destroy a federate by typing
destroyFederationExecution(“federationName”) into the Command Window.

3) Matlab has a problem ending a thread instance without terminating the program entirely. To
prevent shutting down Matlab each time you want to end a run, type hlaDisconnect into the
Command Window.

4) Federates should be designed to avoid hard dependencies on uncontrollable things like
message ordering.

The Smackdown technical committee worked well. Issues were openly identified and
responsively addressed leading to a technically successful event. They did the right thing with
FOM modules. It would have been better if the technical team had been clear about what they
students should expect from the committee, and what the committee expected from the students,
including a description of the process. Their planning should have started with the operational
scenario, recognizing it would like change. Perhaps a swim lane diagram of the planned entity
interactions would be helpful. It should map to and from activities, assignments, and agents.

Participant presentations provided very little detail about what the team had actually
accomplished.

Due to no fault of their own, the NASA representatives encountered last minute travel
restrictions, placing the fundamental computing and networking basis for the event at risk. Plans
should be developed to avoid this risk, as well as any other single point of failure – any
dependencies that would lead total failure of the event.

Not all teams were aware of all educational opportunities. For example, last year Pitch offered to
the teams a class on time management. Some universities were late in discovering the
availability of training materials (and the need to use them!) A list of available training
opportunities and materials as well as other support resources would have been helpful. A
significant body of knowledge regarding prior year technical lessons learned was available to the
students, but they did not seem to take advantage of it. At least two teams were not aware that
their primary challenges were in the area of interoperability (vice model development) at the
beginning of the process. Perhaps better guidelines are needed for schools thinking about
participating. The federation agreement needs to be better and more publically documented.
Better support for early off-line interoperability testing would be helpful, such as data driver
federates. Test early and often.

9-3

The vendors were extremely supportive and responsive, including provision and support of
licenses. However each vendors’ process is a bit different, the students are not familiar and the
computing environment was changing until the last minute. All of this combined to create
confusion among the students, and an excessive version on the vendors. In the future it would be
better if the computers to be used in the demonstration were selected very early in the process
and did not change. Also, an integrated technical team coordinated single license request process
would simplify the process. Obviously this integrated process would need to gather the
signatures and other data required by each of the vendors, and need not require the active
intervention of the technical committee. We do need to make the steps clear.

Planning for awards was ineffective. Requirements for things like type and number of awards
and criteria by which teams would be selected were changing until right before the event. The
quality of the awards (just paper) was not high. (Think about letting SCS or SISO do the
awards). The judges had no opportunity to interact with the students before they were asked to
make their decisions. As a result the judges had no way to assess the technical quality of the
simulations, or the understanding level of the students. Consequently, the awards did not seem
to emphasize the technical contributions and capabilities of the competing teams. The award
process was conducted twice in order to accommodate last minute changes. We should provide
an opportunity for the judges to meet with the teams

A full dress rehearsal complete with A/V and remote participants would have been very helpful.

A discussion of the scenario – mission to the moon, etc. – prior to the beginning of the
demonstration would have been extremely helpful: Introduce the players and the simulations,
and describe what is about to happen. The overview should address both pedagogical and
scenario (mission) goals. An OV-1 describing the scenario would have been helpful. Perhaps a
handout could be provided to give the judges (and attendees?) more background.

Simulation visualization was significantly improved compared to last year, but it could have
been better used. For example the visualization of the asteroid mission was not available on the
main screens.

Coordination between the Smackdown planners and the societies was not effective. The A/V
requirements were not complete, and the requirements that were provided were not clearly
configuration managed. Because the individuals involved in planning did not appear to have
access to prior year information, prior years’ experience seemed to have gotten lost.
Requirements for venues need to be established months ahead of time. The names of the teams
and student participants were not provided until after the conference had started.

Need to acquire A/V equipment, or include the requirement in the requirements used by the
responsible society.

The allocation of responsibilities between and among the Societies and the Event planners was
not clear. For example, SCS was responsible to manage the hotel contract, but they were not
included in all discussions about the venue.

Although the vendors were extremely responsive, students had a hard time understanding the
different vendor’s needs, creating a great of extra work for the both.

9-4

The schools participating in the event did not have a common understanding of the educational
resources available, creating unnecessary challenges. A list of suggested on line courses and
references would be helpful, perhaps in the form of a syllabus.

A timeline with gates would help insure more compliance with the philosophy of testing early
and often. Perhaps training materials could be identified to demonstrate ways to do testing very
early in the software development process, such as test stubs and recorded data streams. Teams
should record their data streams and send them to teams in other time zones to support their
testing.

The venue was not suitable for the event. It was too big, cold and noisy. Audience members in
the rear could barely see the two screens and hear the teams. For next year, we might want to
consider a better venue and provide better audio/visual equipment.

The event should have a coordinator who understands every aspect of the program and of each
team and who introduces the basic idea of the whole Smackdown event. Distribution of several-
page handouts introducing HLA to them to the audience before the event might help. We need
the audience to know we are doing something significant and worthwhile. Since graphics-wise,
most of the simulation work does not appear very interesting and was not shown by the
visualization federates, the event would require exposing more of the internal workings of the
simulations to the audience. The audience might feel confused about the whole federation. So we
definitely need to get the audience more involved in the event.

Now that the Smackdown event has grown to more than ten teams participating, we definitely
need a better way to present our work to the audience. Here are my thoughts:

• Opening (Introduce teams, basic concepts of HLA and the two RTIs we are using:
PITCH and MAK.)

• Start federates team by team (Let the audiences see how we populate the lollipop diagram
by starting different federates from different teams so that they could get a big picture of the
federation.)

• The coordinator provides a short description of the relationship and interactions between
federates of different teams (UML diagrams are useful).

• Once their federation is executing and stable, each team in turn introduces its federate.
This will help the audience can understand their work.(In the meantime, one projector shows the
lollipop and the other one shows current team’s the work)

• Wrap up by the coordinate by a brief summary.

• Break.

• Demonstrate on MäK (Maybe we need a different scenario on MäK so that the audiences
don’t feel bored.)

9-5

During the planning and preparation phase of the event, the tech committee should develop a
detailed requirements specification for each candidate federate to be built. (The specification
may be written in terms of a use case story so that each team can better understand what should
be developed and what should not.)

The Simulation Smackdown Wiki site is really good but it could be better, I recommend the tech
committee add a few more gadgets in it:

1. Set up a discussion forum where students from different teams can post their questions
and exchange information. By publishing questions on the site, all the students can benefit from
questions answered by experts from NASA, PITCH and MAK.

2. Each team should have a blog on the site where they can describe their federates, FOM
and update their progress.

3. All the related materials (Time Management slides, HLA tutorials, PITCH installation
manual and sample codes) should be uploaded and maintained in this wiki site. By doing so
make all of the team members tightly connected by this Simulation Smackdown wiki site.
Google Site service is really helpful in this perspective.

Last but not the least, simple but comprehensive sample code should be provided to each team at
the beginning of the project and walked through by instructors or experts from NASA. For
example, the environment federate code is really excellent. However the size of this program
might intimidate new comers, so perhaps a simpler but still comprehensive example should be
written for educational purposes. It should illustrate how to connect to RTI, how to advance
time, how to separate HLA stuff and business logic, etc.)

We have used the Google site for several courses; one important thing about this is make sure
students subscribe to the site using their frequently used email, so they can get all the
notifications, updates, questions and answers from the site. (Students are not willing to check the
site often, so directing all the changes on the site to their email and then follows the link to the
site is better approach.)

The bar opened late and closed early.

Having waiters distribute the food was nice, but was distracting.

Consider having hosting Society manage creation of award certificates.

The decision making process for the executive team appeared to be opaque. It was not at all
clear how decisions were made, or how one might present an issue for resolution. This
combined with the lack of a clear definition of the relative responsibilities of the executive team
and the technical team created unnecessary confusion. Further, communication from the
executive team was not as effective as one would hope. People did not always seem to get the
information they needed to accomplish their mission, particularly regarding changes in direction
that affected their planning.

7.3 Lessons learned during the development of LCANSat2013 federate.

9-6

Needed improvements and recommendations for future development:
1. The development of LCANSat2013 benefits a lot from 2012 UAHuntsville team’s legacy

code. Building on top of those nicely written and documented code greatly reduced our
developing effort.

2. The starting time of the animation of Insight3D should be obtained from the JSC’s
environment federate as soon as our federate joins the federation, however in this year’s
event, we fixed it at 7:00pm PT, April 10, 2013. This makes the positioning of moon
centered inertial(MCI) physical entities inaccurate, since the translation of a Cartesian
coordinate from MCI to MCF relies on the accurate federation time in Terrestrial Time.

3. Walker constellation is good enough to provide communication support over the entire
moon. Next year’s team could explore if STK provides the capability to find the right path
among the 14 Walker constellation satellites in order to deliver a message from a source to
destination.(Maybe the source is at Aitken Basin and destination is at Hadley Rille). If they
do not provide, we could use a graph-related algorithm to implement this feature.

4. LCANSat2013 federate propagates the satellites over a period between 7:00pm PT, April 10,
2013 and 7:00pm PT, April 11, 2013 before joining the federation. Besides propagating over
intervals in advance, it's also possible to manually step the propagator one integration step at
a time by calling takeStep method every time the time advance permit is granted.

5. Next year’s team could also explore if STK provide the terrain information of Aitken Basin,
if so, we our LCANSat2013 could not only model each entity as a 2D marker, but use real
3D model to simulate the surface of the moon at Aitken Basin. In this year’s Smackdown
event, we assumed the moon to be an idealized, spheroidal model; actually it might also
consider terrain features such as mountains or ditches.

6. If next year’s team plans to use STK to model the physical entities in 3D model. The
orientation of the entities must be considered, so besides the three attributes of
PhysicalEntity, our federate also needs to subscribe to the orientation attribute.

7. Do integration test as early as possible. Both on PITCH and MAK. I really recommend
MAK setting up a web viewer like PITCH does.

