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Abstract. By definition, HSC (HyperSpectral Camera) images are much richer in spectral 
data than, say, a COTS (Commercial-Off-The-Shelf) color camera. But data are not 
information. If we do the task right, useful information can be derived from the data in HSC 
images. Nature faced essentially the identical problem. The incident light is so complex 
spectrally that measuring it with high resolution would provide far more data than animals 
can handle in real time. Nature’s solution was to do irreversible POCS (Projections Onto 
Convex Sets) to achieve huge reductions in data with minimal reduction in information. Thus 
we can arrange for our manmade systems to do what nature did – project the HSC image onto 
two or more broad, overlapping curves. The task we have undertaken in the last few years is 
to develop this idea that we call Artificial Color. What we report here is the use of the 
measured HSC image data projected onto two or three convex, overlapping, broad curves in 
analogy with the sensitivity curves of human cone cells. Testing two quite different HSC 
images in that manner produced the desired result: good discrimination or segmentation that 
can be done very simply and hence are likely to be doable in real time with specialized 
computers. Using POCS on the HSC data to reduce the processing complexity produced 
excellent discrimination in those two cases. For technical reasons discussed here, the figures 
of merit for the kind of pattern recognition we use is incommensurate with the figures of 
merit of conventional pattern recognition. We used some force fitting to make a comparison 
nevertheless, because it shows what is also obvious qualitatively. In our tasks our method 
works better. 
 
Keywords: artificial color, margin setting, hyperspectral image, feature extraction,       
          classification, projection onto convex sets. 

1 INTRODUCTION 
One of the main tasks of remote sensing is to analyze the received image in terms that the 
user needs (classes of objects, moisture of the soil, pollution in rivers, and the like. The 
HyperSpectrral Image (HSI) contains such information implicitly. Analysis must make the 
desired information explicit in the final image. 

Animals have to understand scenes with almost unimaginable spectral complexity and do 
so quite quickly, especially in view of how slow neurons are. In principle, animals could have 
done some sort of spectral analysis at each pixel, but did not. Instead, it projected that spectral 
information into two or more broad, spectrally-overlapping bands. They thus replace the 
actual spectrum with measures (discriminants) that relate to the complex spectra but are not 
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invertible. That is, the discriminants measured cannot be even crudely inverted to form a 
spectrum. It is a form of lossy bandwidth. Those discriminants are used to form more 
complex discriminants that we call colors. The set of spectra that give identical projections 
are called metamers.  That set has infinitely many members. That is the price of irreversible 
loss of information. Accurate wavelength measurements are impossible this way, but that is 
not nature’s goal.  Finding food and not becoming food are more important to an animal than 
finding spectra. So nature seems quite content to use these few discriminants to make 
decisions about what to do next. So powerful is the color concept that, once it was “invented” 
perhaps 525 MYA [1], it has never been replaced. Indeed, it may well have triggered a 
predator-prey arms race that, in turn, triggered the Cambrian explosion [2]. 

The critical insights just summarized not only tell what color is but also provide a 
program technologists can emulate it – a program we have called Artificial Color [3-5]. 

HypeSpectral Imaging (HSI) too produces a vast overabundance of information: the 
reason nature adopted, spread, and maintained color as soon as it stumbled upon it [6].   

A hyperspectral image can be considered as an image cube where the third dimension is 
represented by up to hundreds of contiguous spectral bands. A hyperspectral pixel is actually 
a column vector with dimensions equal to the number of spectral bands. Many conventional 
measures proposed in signal processing and pattern recognition can be used for this purpose. 
Several approaches for classification of hyperspectral pixels have been used such as some sort 
of minimum distance, maximum likelihood classifiers [7, 8], spectral signature matching [9, 
10] and the spectral angle mapper [11]. To reduce the data volume, techniques for reducing 
the image dimensionality are often applied. Typically, the dimensionality of a hyperspectral 
image cube is reduced by applying a linear transformation [12], such as a Principal 
Components Analysis (PCA) and retaining only the significant components for further 
processing [13, 14]. The poor performance of PCA has been studied widely [15, 16]. Other 
approaches have been developed. In the orthogonal subspace projection approach, the data 
dimensionality is reduced to a user-prescribed level. Simultaneously, in the resulting images 
the presence of each signature of interest is selected [17, 18]. Various projection schemes 
have been compared [19]. These methods are developed to do spectral “unmixing” to 
decompose the spectrum in any pixel into a mixture of several known spectra. The discrete 
wavelet transform (DWT) has been utilized for dimensionality reduction of hyperspectral data 
and feature extraction [20]. They use the multiple range and low computational complexity of 
wavelets as a way to compute multistage discriminants which are shown to be quite useful in 
pattern recognition. Their analysis suggests that this approach has distinct advantages over 
other approaches such as PCA and Fourier transforms. Dutkiewicz et al have done extensive 
work on a scheme for browsing the data measured by HyperSpectral Imaging. Their vector-
quantization-based compression serves that need well [21].   

Projections Onto Convex Sets (POCS) is a widely used lossy compression method [22, 
23]. If the convex sets are chosen carefully, the projections are often capable of giving great 
discrimination [24-26]. Artificial Color uses what we believe to be totally new kind of 
orthogonality none of the past work has used. 

In this paper, Artificial Color is first proposed for and applied to hyperspectral image 
data dimensionality reduction and feature classification. Artificial Color irreversibly reduces 
the information content of the data cube but does it in a way that facilitates good 
discrimination. Compared to traditional classification methods such as minimum distance and 
maximum likelihood classifiers, and so on, Artificial Color results in a significant increase in 
the classification accuracy. 

Too much detail not only requires too much processing, but also it distracts the pattern 
recognition by irrelevant noise inevitable at high resolution. Broad spectral bands rather than 
narrow ones help us attend to the essential information by averaging out the largely irrelevant 
variations at maximum resolution. Conversely, limiting the amount of information that the 
system uses, keeps it from remembering the nonrepeating details. 
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So it seems reasonable to apply Artificial Color to handling the same problem in 
technology. The Artificial Color program is: 

 
1. Design two or three linear discriminants in spectral space that are broad and spectrally 

overlapping 
2. Project the spectral data onto those discriminants at each pixel. 
3. Apply powerful pattern recognition means to discriminate targets on the basis of those 

two or three discriminants 
4. Attribute those discriminants to the image detected to facilitate discrimination by 

spectrum. 
 
Subsequent papers will discuss and illustrate inclusion of the spatial and (when available) 

polarization information in producing a final segregated 2D image with targets identified, 
located, and even posed. For now, however, we concentrate on the spectral information. 

We have been unable to find previous work on projection of observed hyperspectral 
data onto broad overlapping curves and the subsequent use of those projections in powerful 
statistical pattern recognizers and the use of those projections to accomplish fast image 
segmentation.  

Myron J. Block of Optix LP has done some related work in a field he calls “kromoscopy” 
[27]. Two sentences from his paper indicate that our Artificial Color and his Kromoscopy 
attack the same general problem and are both biomimetic. “Considering that almost 20 
million colors are resolved, this is an impossible feat for only three channels without spectral 
overlap. The method of kromoscopy and its improvements can be described as the simulation 
and extension of human color perception to the analysis of radiation modified by its 
interaction with substances.” One other quotation indicates similarity: “In short, kromoscopic 
analysis is the real-time simultaneous detection of radiation in different but overlapping 
spectral regions. This method analyzes radiation by an extension of the principles similar to 
human color perception. Not only does color perception operate on kromoscopic principles, 
but also olfaction. Nobel laureate Linda Buck states for olfaction, the key kromoscopic 
principle “partial sensory overlap.” Thereafter similarities become more difficult to find. 
Kromoscopy is active. Artificial Color, like animal color, is almost always passive. He says 
nothing about the centrality of the pattern recognition algorithm, but that is central to 
Artificial Color. And, we can find no application of kromoscopy to hyperspectral data. It is 
always used in looking at transmitted white light results. 

The rest of the paper is organized as follows. Section II introduces the concept of 
Artificial Color and presents the novel classification algorithm: Margin Setting in detail. The 
application of Artificial Color to two test data (from ARL and from AVIRIS) is represented in 
Section III. Section IV compares quantitatively Artificial Color with other well-known 
hyperspectral image classifiers. Section V gives concluding remarks and future research 
direction.  

2 SOME BACKGROUND ON ARTIFICIAL COLOR  
Artificial Color is derived from Biological Color. Biological Color is a discriminant 
computed in brains using stored information and currently-sensed data. In human vision, for 
example, we can say that each portion of the scene is sensed with three types of cone cells in 
daylight vision. Their spectral sensitivities overlap considerably as shown in Fig 1. Data are 
projections of the input spectrum onto multiple sensitivity curves (cone cells in animals). 
Converting raw data into discrimination information is what the brain must do in real time.  

For example, in the RGB model, each color appears in its primary spectral components 
of red, green, and blue. These components can be represented by the brightness values of the 
scene obtained through spectral sensitivities based on the following equations: 
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where SR, SG, SB are the spectral sensitivity curves on the incoming light or radiance E(λ), and 
λ is the wavelength. 
 

 
Fig. 1. Responses of the three cone types of most humans to different wavelengths of light. 

 
 

What animals perceive (the “percept”) is a story the brain computes projected in the 
percept to an experience that distinguishes among things in the story at least partially on the 
basis of the experience of color that attributed to each object in the brain’s story. 

Artificial Color also computes spectral discriminants using data taken with two or more 
spectrally overlapping sensitivity curves. Table 1 lists the comparison of Artificial Color and 
Biological Color. Clearly they are essentially identical. It should not be surprising that 
Artificial Color works extremely well. 

 
Table 1. This compares biological color (a 440 million-years-ago ‘invention” of nature with 
our attempt to translate biology into technology with Artificial Color. 

 
Mechanism Biological Color Artificial Color 

Sensing Two or more broad 
overlapping sensitivity 
curves 

Same 

Conversion to information Computed using the detected 
signals at each pixel 

Same 

Attribution of the computed 
discriminants to the object 

Done by a brain and used in 
that brain to help label 
objects 

Done by a computer and 
used in that computer to help 
label objects 

Stored information is 
combined with just-
computed information to  
compute discriminants 

Subjective experience of 
colors attached to objects in 
the percept 

Attribution of a discriminant 
pattern to each pixel in the 
image 
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In principle, any good discrimination method can be used [28]. We chose to use an 
extremely powerful approach we invented and developed. This method is called Margin 
Setting [29, 30]. We have compared Margin Setting with several other methods later in this 
paper. It seems better than any of the others, as we have come to expect. 

Here is a brief outline of the training of discriminants in Margin Setting. Start with 
numerous random points in the hyperspace of measurements (one dimension for each curve). 
Each point is viewed as a potential prototype for the class of the nearest member of the 
training set S. Find the nearest member of another class. That distance R0 is called the zero-
margin radius as shown in Fig. 2. The figure of merit F of the potential prototype is given by 
the member number of S inside the R0 around that prototype. For instance, in Fig. 2, F = 6. 
Then new potential prototypes are chosen based on the old ones. A fixed number of these 
prototypes is employed. One of the prototypes is selected from the prior generation randomly 
from a probability distribution function governed by F’s of the various prototypes. Then the 
prototype is mutated by choosing a perturbation from a normal distribution centered at the 
selected prototype. This continues until no improvement in F is achieved or some other 
stopping condition is met. The highest scoring prototype is selected. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Zero-margin radius R0. 
 

That process is repeated for each new stage. Each stage uses only those samples not 
classified in earlier stages in S. 

In classification, new data are tested on the first-stage classifiers. If those classifiers 
indicate a class, it is accepted. If not, go to the second-stage classifiers, and so forth through 
all the predefined stages.     

Margin Setting is represented in details in Fig. 3. 
 
 

 
        Sample feature vectors qq

n RxxA ⊂⊂= ]1,0[},,{ 1
G"G  taking from the target class 

and the sample vectors qq
mlll RyyB

l
⊂⊂= ]1,0[},,{ ,1,

G"G
 ( kl ,,1"= ) taking from 

the other k objects. Denote ∪
k

l
lBB

1=
= .  

 
Notation: 
 
Rand( F ): random numbers taking from distribution F . 

R0 

Class1: 

Class2: 
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Unif( D ): uniform distribution function on set D . 
Card( D ): the figure of merit of set D . 

qba ],[ : a q -dimensional cube.  
),( RzO G

: a q -dimensional ball centered at zG  with radius R . 
I : designed number of generations. 
ε : designed error tolerance. 
s : designed number of samples taken for each generation. 
δ : designed size of perturbation. 
L : designed number of mutations for each generation.  
 
Algorithm: 
 
1. Compute ≡N Card( A ), and set 0=i .       
2. 1: += ii . If Ii >  or Card( A )/ N <ε , output }1,,1:);,{( −= ijNrc jjj "G

, and 
stop! 
3. Take sii cc ,1, ,, G"G

 from Rand(Unif( q]1,0[ ) and set 0=it .  For sj ,,1"= , compute 

||min ,, jiByji cyr GG
G −=
∈

. If jiN , ≡ Card( ),( ,, jiji rcOA G∩ )=0, discard ball ),( ,, jiji rcO G
; 

otherwise,  1: += ii tt , and record );,( ,,, jijiji NrcG .  

4. If 0=it , record )0;0,0();,(
GG =iii Nrc ,  go to step 2; otherwise, for 

},,1:);,{( ,,, ijijiji tjNrc "G = , compute 

.,,2,1,

1
,

,
, it

j
ji

ji
ji tj

N

N
w

i
"=

∑
=

=

 

5. Take iv  from Rand(Unif( ]1,0[ )), if  ],[ 1
1 1 ,,
0, 0,∑ ∑∈ −

= =
i i

j j jijii wwv A A  for some 

},,2,1{0, ii t"A ∈ , Set 
0,, iii NN A=  and the corresponding ball as ),( ii rcO G

; and discard 

all the other balls . Set 1=l .  
6. Take lsG  from Rand(Unif( q],[ δδ− )), mutate icG  to lii scc GGG +=1 , and compute 

||min 11
iByi cyr GG

G −=
∈

. If Card( ),( 11
ii rcOA G∩ ) iN≤ , record  );,( iii NrcG  and set 

),(\: ii rcOAA G= , go to step 2; otherwise, =:iN Card( ),( 11
ii rcOA G∩ ), 1: ii cc GG = , 

1: ii rr =  and 1: += ll . If Ll > , record  );,( iii NrcG  and set ),(\: ii rcOAA G= , go to 
step 2; otherwise, go to step 6. 
 

 
 

Fig. 3. Margin Setting. 

3 INITIAL TESTS 
The process starts by picking sensitivity curves. It’s assumed that there should be three 
Gaussian curves, Gi (σi, mi), i = 1, 2, 3, so there are six parameters to be set – three means and 
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three standard deviations.  The parameters chosen were almost random but for the for a few 
constraints: substantial breadth and overlap among them along with the requirement that each 
wavelength be registered in more than one curve. 

Later the curves will be optimized for a specific discrimination problem. The choice here 
is one that seems appropriate if there is no a priori information. Fig. 4 shows the three 
sensitivity curves used. 

 
 

 
 

Fig. 4. If there is no a priori knowledge of what will be in the scene and the associated spectra, 
it is best to choose rather neutral curves such as the ones shown here. Those sensitivity curves 
were used in our experiments. 

 
 

The next step is to project the spectral data at each pixel onto each of the three sensitivity 
curves. In an image at a specific wavelength λi, the illumination intensity of a pixel at P(x, y) 
is Ii(x, y, λi). We will obtain measurements in three bands for λi – call it a measurement vector 
C(x, y).     

 
                                                       C(x, y) = (r, g, b)                                                               (4) 

Where                   )(),,(),( 1

max

min

iii GyxIyxr λλ
λ

λ
∑= ,                                           (5) 

                                             )(),,(),( 2

max

min

iii GyxIyxg λλ
λ

λ
∑= , and                                   (6) 

                                              )(),,(),( 3

max

min

iii GyxIyxb λλ
λ

λ
∑=                                            (7) 

The resulting irreversible three data at each pixel are then used to discriminate among 
targets.  

3. 1 Using ARL (U. S. Army Research Laboratory) data 
We obtained the spectral-spatial-polarization maps of a quite ordinary scene provided by the 
U. S. Army Research Laboratory. The data used here are hyperspectral enhanced as well by 
polarization images of a quite ordinary outdoor scene. The spectral sampling is done with an 
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AOTF (Acousto Optic Tunable Filters) every 10 nm between 540 nm and 810 nm using both 
vertical and horizontal polarization analyzers. Figure 5 shows an ordinary RGB digital 
camera image of the scene. 
 

 
 

Fig. 5. This figure shows an ordinary RGB camera image of the scene for reference. 
 
 

At any wavelength, two gray scale images are observed – one for each polarization state. 
Examples are shown in Fig. 6. 
 

        
 

Fig. 6. At any wavelength, there are gray scale images such as these for wavelength 540 nm. 
The leftmost (rightmost) scene is imaged through a vertically (horizontally) oriented polarizer. 

 
Only one polarization is employed here for simplicity. The polarization information is 

also useful as shown in [31]. The polarization alone provided reasonably good discrimination. 
Those two types of discriminants have not been merged yet. 

Applying the Artificial Color method used before to this reduced data set, we trained 
filters that should recognize the red and the blue squares very efficiently. 

Applying those filters to the reduced images led to the images shown in Fig. 7. 
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                                (a)                                                                                            (b) 

 
Fig. 7.  (a) The resulting Artificial Color image to recognize the blue flag components is 
interesting because it also allows some of the information on the unidentified object (limb) to 
survive the operation to some extent. (b) shows the result of applying Artificial Color to 
recognize the red flag components. It does not pass the information on the unidentified object 
at all. 
 

3.2 Using AVIRIS data  
AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) standard data products were 
downloaded from Jet Propulsion Laboratory Web site. The AVIRIS data were acquired over 
Moffett Field and were converted to apparent surface reflectances with proper calibration and 
correction for atmospheric effects. In the reflected visible and near infrared spectrum, 
AVIRIS samples between 380 and 2500 nm in 224 spectral wavelengths (bands) of 10 nm 
width. Some of AVRIS wavelengths (bands) had zero/negative signal values due to poor 
sensor response or other collection issues. In our experiment, these negative values are set to 
0s.  

Figure 8 shows one of AVIRIS hyperspectral images over the Moffett Field, CA, an area 
with water, vegetation, and urban structures. Ten training samples (pixels) are randomly 
selected from every class (water, vegetation, and urban structures). The three Gaussian 
sensitivity curves used in AVIRIS data are same in Fig. 3 in the range of 380-2500 nm. 
Figure 9 shows the segmentation of Artificial Color. 
 

 

Fig. 8. One of the AVIRIS Hyperspectral Images representing a narrow spectral band 
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                                         (a)                                                                    (b)    

 

(c) 

Fig. 9. The segmentation results of Artificial Color: (a) water (b) vegetation (c) urban 
structures. 

Clearly, a great deal of information relevant to scene analysis can be obtained by 
projecting the hyperspectral data onto a few broad overlapping spectral sensitivity curves. 
This simplifies data analysis considerably and may even give results better than those we 
would obtain using all of the information. 

4 COMPARISONS WITH POPULAR OTHER PATTERN RECOGNITION 
METHODS 
Since the task is so easily described in the case of the red and blue squares, we use the ARL 
dataset. To make it possible to quantify our effects, we segmented the images in Fig. 6 by eye 
as best we could, see Fig. 10. This became our standard allowing us to compare quantitatively 
Artificial Color with other well-known hyperspectral image classifiers. 
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Fig. 10. These hand-segmented images were used as the ideal with which the quantification 
evaluation of some well-known algorithms was done. 

 
 

But comparisons between conventional pattern recognition (that deals with two bad 
things – false positives and false negatives that can be traded off against each other. Margin 
setting produces a third bad thing – unclassifiable pixels. In our comparison we somewhat 
mutilated Margin Setting by testing only the zero-margin case and simply ignored the 
unclassified pixels. The number of pixels in the red and blue squares is easy to determine.  
That allows us to see what fraction of those that were labeled correctly. False negatives for 
this purpose are simply the complement (in percentages) of the number of positives 
recognized in the squares. Tables 2 and 3 summarize the results. 

The performance of Artificial Color discrimination depends strongly on the margin that 
is chosen [24]. In this work we used zero margin, for no particular reason. It is not necessarily 
the best choice. That is true in all cases, because we have no numerical figure of merit for 
comparison. A simple, crude means to compare this particular Artificial Color system with 
conventional approaches can be done as follows. Use a Bayesian weighting of the percent 
errors of both types equally weighted. To that, add ½ of the Unclassified percent on the 
theory that not classifying is better than classifying incorrectly. 

The columns in the next two tables have nonobvious meanings. In the blue square of the 
original image there were 13113 pixels. The column labeled true positives shows how many 
of these were found for each method in percent of pixels in the squares correctly identified. 
The number of pixels labeled blue that were outside the square is given in the column labeled 
False Positives and shown in the second column. This may be somewhat misleading as some 
of the points outside the square could actually be about the same color as the pixels in the 
square. Again, we give use relative values, that is, we took the number of those so-called false 
positives and divided them by the number of true positives. The third column gives the 
percent of false negatives. Because the percent of false positives is so low, this column is 
essentially the complement of the first column. The fourth column is a crude Bayesian costing 
with costs of both false positives and false negatives being set to 1 and the cost of an 
unclassified pixel being set to ½. That is, we add the number of false positives to the number 
of false negatives, and half the number of unclassified pixels to obtain a cost.  

These numbers will allow us to compare the results from all of the methods. With tuning 
of the Margin Setting parameters, it might very well perform much better. But even here, 
Artificial Color classifies 74% of the pixels correctly. The SVM (Support Vector Machine) 
comes in second with 65%. 

Averaged over both red and blue squares, Artificial Color identified 76% of the cells 
properly, while SVM identified 70% right. And Minimum Distance also identified 70% 
correctly. 
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Table 2. The other methods are compared with our Artificial Color results here for the blue 
squares. 

 
 

Name True 
Positive 
Rate α  

(%) 

False 
Positive 
Rate β 

(%) 

False 
Negative 

Rate γ 
(%) 

Unclassified 
Rate δ 

(%) 

Bayesian 
Cost = 

(β + γ) + 
δ/2 

Artificial Color 74 67 26 1.9 93.8 

Support Vector 
Machine 

65 72 35 0 107 

Neural Net 63 90 37 0 127 
Parallelepiped 14 0 86 30 101 

Minimum 
Distance 

61 151 39 0 190 

Maximum 
Likelihood 

24 0 76 0 76 

Mahalanobis 60 30 40 0 70 
 
 
 

Table 3. The other methods are compared with our Artificial Color results here for the red 
squares. 

 
Name True 

Positive 
Rate α  

(%) 

False 
Positive 
Rate β 

(%) 

False 
Negative 

Rate γ 
(%) 

Unclassified 
Rate δ 

(%) 

Bayesian 
Cost = 

(β + γ) + 
δ/2 

Artificial Color 78 79 22 2.1 102 

Support Vector 
Machine 

74 91 26 0 117 

Neural Net 73 0.9  27 0 28 
Parallelepiped 10 0 90 52 116 

Minimum 
Distance 

78 121 22 0 143 

Maximum 
Likelihood 

3 0 97 0 97 

Mahalanobis 66 37 34 0 71 
 

5 CONCLUSIONS  
Remote sensing needs high discrimination analysis and flexibility. The methods described 
above show how to convert a HSI data cube quickly and efficiently into a simple gray scale 

Journal of Applied Remote Sensing, Vol. 4, 043514 (2010)                                                                                                                                    Page 12

Downloaded from SPIE Digital Library on 05 Apr 2010 to 66.165.46.178. Terms of Use:  http://spiedl.org/terms



  

image that represents the probability of any given pixel belongs to the class of interest. In 
addition the simplicity of the scheme allows the possibility of doing these operations in real 
time – also an important goal. The objective of this study was to show that Artificial Color  

 
1. Is based firmly in biology. Animal spectral processing of images is almost exclusively 

through such projections onto broad, spectrally-overlapping curves (cone cell sensitivity. 
of course, at night only the rods produce substantial signals, so “color” can not be 
computed by the brain.  

2. Can be used to simplify the discrimination among targets quite dramatically and still 
offer excellent discrimination. It does this just as Biological Color does: projecting the 
complex spectrum onto two or more broad, spectrally overlapping curves to produce 
discriminants not descriptions. In Biological Color, the spectra arise from the contents of 
the field but are much too complex to analyze in brains that must act in “real time” (real 
time should have been called biological reaction time) using very slow components 
(neurons). 

3. As we do it, uses a set of predetermined inner products of reference and live projections. 
It can be very fast, as DSPs (Digital Signal Processors) all do this operation. 

4. Capable of doing even better if we have significant a priori information about the targets 
and interferants.  

5. Should be able to do even better by designing sensitivity curves for the specific task [26, 
32]. 

6. Can be used to segment by polarization data. That should allow us transcription of 
polarization into analog polarization as we showed using only polarization to recognize 
the vertical pole in Fig. 5. 

 
More importantly, Artificial Color can be used to reduce the many measured spectral 

data to a single number at each pixel. That number would be the probability that the observed 
hyperspectral values indicated the target or not. This turns the target identification and 
location measurement indicted by a data cube into merely a spatial analysis problem. The 2D 
image analyzed spatially has as its amplitude values likely to belong to the target. That task is 
greatly simplified from the task of directly analyzing the data cube. So it can be done quite 
rapidly relative to processing means working in the incommensurate dimensions of the data 
cube. 

Figure 11 shows that the main difference between the way you analyze signals from your 
eyes and the way we propose to analyze data cubes from HyperSpectral Imaging cameras is 
the ways the separate spectral and spatial analysis. Nature does those tasks in parallel then 
merges them. We propose to do them sequentially, where there is no merging to do, nor is 
there any necessary speed loss. The sequential analyses can be pipelined to achieve roughly 
the same concurrency and we do not have to solve the merging problem. 
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Fig. 11. Biology and this paper follow almost the same routes to image understanding. The 
primary difference is the type of concurrency used. Animals use parallelism, while we prefer 
pipelining. 
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