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bstract. Artificial color uses the projection of the spectrum into
wo or more broad, overlapping spectral bands to discriminate, pixel
y pixel, among user-defined classes of objects. As initially prac-
iced, it used a sequence of hyperspherical regions of the decision
pace to define class membership. Of course, a hypersphere is just
degenerate hyperellipsoid; thus, exploring the effect of loosening

hat degeneracy seemed appropriate. Initially, we use two-foci hy-
erellipsoids with a hyperellipsoidal distance metric to classify pixels
ith dramatic improvement in performance. We explore the work
ven further by allowing many foci and noting the effects of in-
reased complexity of the decision surfaces. In the example case,
hree foci gave superior performance to one or two foci, but four
dded little improvement. © 2010 SPIE and IS&T.

DOI: 10.1117/1.3377146�

Introduction
his work is part of our continuing effort to explore artifi-
ial color—the use of data from two or more broad, spec-
rally overlapping bands to discriminate pixels according to
heir membership in one or more user-defined sets.1–4 The
iscrimination method of choice has been margin
etting—a sequence of discriminants with extremely good
eneralization properties even if trained on very few fair
amples.5 Both methods have been published in numerous
ournals over the last several years.6–8

The idea of statistical pattern recognition is to regard the
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M measurements made as coordinates in an M-dimensional
Euclidean hyperspace.9 The goal becomes to erect some
sort of M-dimensional surface that reliably classifies new
inputs into their appropriate class.10–14 Good surfaces are
said to generalize well from the data on which they were
trained. But how is good generalization to be obtained? The
two factors most widely used for this purpose are margin
and simplicity. Margin is a measure of the leeway for varia-
tion of new data from the training set data.15 Simplicity
reflects the idea that trying to use a complex surface for
discrimination may wind up reflecting as much noise as
real variations. The measure of complexity is the Vapnik–
Chervonenkis �VC� dimension.16,17 We want the lowest VC
dimension that will do the job well. As one would expect,
those factors are significantly counteracting, so trade-offs
must be used to optimize any figure of merit.

Nevertheless, margin setting is a way to use discrimina-
tors. It is not itself a pattern recognition method. Figure 1
shows how this paper relates to pattern recognition.

The hyperspheres, often chosen as a tool in margin set-
ting, may not be optimal if the data in the training set are
far from hyperspherical. This paper studies hyperellipsoids
and hyperspheres in margin setting. There are many other
ways to do the pattern recognition steps, for instance, linear
discriminants.18,19 These simple classifiers can be used in
margin setting, even for very complex problems. For the
most part, only margin setting is being studied here and,
thus, it is the background knowledge with which readers
deal. Thus, most of the references are to it. Margin setting
Apr–Jun 2010/Vol. 19(2)1
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ould be used with very advanced algorithms, such as
VDs �Support Vector Machine�,20 but that would be an-
ther paper. In this paper, we want simple-to-find discrimi-
ants for use in margin setting. Complex algorithms can be
ested if we so choose, but that is not our choice right now.

The idea of margin setting is to use a simple discrimi-
ant that can classify many of the given samples correctly
ith a good margin. Then those samples not distinguished
ell would be subjected to further rounds of this procedure
ntil some stopping criterion is reached. Big margins at
very step make the corresponding decisions more likely to
e correct but require more rounds of decisions than if the
argins were smaller. Thus, again, some counterbalanced

olution must be sought.
Because a linear discriminant has the lowest possible

C dimension21,22 and because low VC dimensions can be
xpected to lead to good generalization, linear discrimi-
ants were used at every stage. This is equivalent to a hy-
erspherical decision surface in the data hyperspace.

This work explores a more complex situation in which
he decision is made according to whether distance measure
the sum of the Euclidean distances from M foci� in that
yperspace is less than a threshold value when M �2 �The

M =1 case is the hypersphere case in our previous work.2,6,7

n those cases, the distance measure is no longer quite so
imple. The results both for artificial color and margin set-
ing, in general, substantially improved when M =2. When

M �2, in principle, there is no limit on how large M can
e. But we expect the usefulness saturates quickly when M
ncreases, therefore large M is of no practical value.

By studying the segmentation of various hard-to-
egment images, we hope to arrive at some generally useful
uidelines as to the number of foci likely to be most effec-
ive.

Decision Boundaries of Margin Setting
argin setting uses supervised statistical pattern recogni-

ion algorithm. Let V denote a set of random vectors: V
�vk :1�k�K�, where vk is viewed as a potential proto-

ype for the i’th separated sample subclass S �S of the

ig. 1 Shows how this work relates to the field of statistical pattern
ecognition.
i
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training set S=� j=1
s Sj, including s many subclasses. Calcu-

late the least Euclidean distance dkj from vk to every mem-
ber of each subclass Sj �S.

dk,j = min��vk − x�:x � Sj� �1�

Find the nearest member of another class �Sj , j� i�,
Rk,0=min�dk,j , j� i�. That distance, Rk,0, is called the zero-
margin radius. Consider the problem of classifying two
types of patterns: white and black squares as shown in Fig.
2. The figure of merit F of the potential prototype is given
by the cardinality of S inside the Rk,0 around that prototype.
For instance, F=6 in Fig. 2. Then new potential prototypes
are chosen based on the old ones. A fixed number of these
prototypes is employed. To obtain the next generation of
prototypes, we stochastically selected from the previous
generation using some elitist method. The probability of
selection of any prototype is proportional to the cardinality
of data inside the hypersphere at that prototype. Those pro-
totypes are mutated �perturbed� and placed into the set of
prototypes for the next-generation distribution function
governed by F’s of the various prototypes. Then the proto-
type is mutated by choosing a perturbation from a normal
distribution centered at the selected prototype.23 This con-
tinues until no improvement in F is achieved. The highest
scoring prototype is selected.

That process is repeated for each new stage. Each stage
uses only those samples not classified in earlier stages in S.

In classification, new data are tested on the first-stage
classifiers. If those classifiers indicate a class, then it is
accepted. If not, then we go to the second-stage classifiers,
and so forth through all the predefined stages. T=1 when
the new data point can be classified in the target class, or
T=0 when the point can be classified in other classes or
unclassified.

Now we shrink the radius in Fig. 2, r=R1, and C2 is the
new decision surface, as shown in Fig. 3. The room be-
tween C1 and C2 is defined as margin. Margin is a measure
of our ability to discriminate even in the presence of such
“unfriendly” variations. New data �not in the training set�
may vary in any direction from those in the training set. It
is prudent to assume that some of those variations will
carry the discriminants closer to the decision boundary than
the training set points. Higher margin provides more room
for new points to differ from those trained on without being
misclassified. Zero margin means that some small varia-

R0

Fig. 2 Zero-margin radius R0 is the largest radius if the hypersphere
that contains only members of the target class.
Apr–Jun 2010/Vol. 19(2)2
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ions from the training set points near the decision surface
ill produce those misclassifications. The choice of margin
as one obvious effect. Larger margins make fewer mis-
lassification errors but leave more data unclassifiable. That
rade-off may have different consequences in different cir-
umstances. This method is strongly dependent on the ac-
ual distribution of training set data in the hyperspace. If
hat distribution is roughly hyperspherical, then adding foci
ccomplishes nothing. If the data occupy a very asymmetri-
al volume, then the improvement will be dramatic.

For the setting of the margin, we set a �-percent margin
y setting

x = �1 − 0.01��Rk,0. �2�

he zero-margin radius Rk,0 is not set by the user. It is
ound during the training period. It is the largest R that
ontains no members of the training set belonging to a call
ot intended for classification into the same set as all the
ther samples inside it. A 10% margin means that the deci-
ion is made at a radius that is 0.9Rk,0 and so forth.

The ability to choose our margin is one we think useful,
nd we also suspect that exploratory analysis may yield the
est results using the user’s judgment, not ours. As the
argin is increased, fewer false positives occur, but the

umber of iterations required increases.
Figures 4 and 5 present some results obtained in the

mage of a flagpole that appears to the human eye as very
lose in color to the ground. As the margin increased, the
alse alarm rate decreased until eventually, only flagpole
ixels remained.

R0

rx

C2

C1

ig. 3 Making the radius smaller than the zero margin radius cre-
tes more margin of safety in decisions made by that surface.

ig. 4 An outdoor scene photographed with an ordinary color digital
amera.
ournal of Electronic Imaging 023003-
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In this paper, we extend the previous work by using a
general hyperellipsoid with M foci. Going from a hyper-
sphere to a hyperellipsoid involves only one step. It re-
quires the distance metric to be not a single Euclidean dis-
tance, but rather the sum of the Euclidean distances of a
data point from each focus of the hyperellipse.

Let V= �Vk :1�k�K� be the foci set of class Si, where
Vk= �vm,k :1�m�M� represents the k’th foci �of Si� in V,
and where vm,k is a random vector. Instead of Eq. �1�, cal-
culate the least Euclidean distance dk,j from Vk to every
member of each subclass Sj �S by

dk,j = min��
m=1

M

�vm,k − x�:x � Sj� . �3�

The hyperellipse can have as many as M �the dimension of
the hyperspace� and as few as one focus. The single-focus
hyperellipsoid �M =1� is, of course, simply a hypersphere.

The improved multifoci margin setting is represented as
follows:

Target class S1= �x�11, . . . ,x�1n1
�

Sample set Sj = �x� j1 , . . . ,x� jnj
�, where j=1, . . . ,s. Denote

S=� j=1
s Sj and n=� j=1

s nj.
Notation:
#�A�: the number of elements in set A
�: foci triplet set
K: designed number of foci in �
N�: designed maximal number of steps to find K foci in

�
N�: designed maximal number of elements in �
Algorithm:

1. �=� �the empty set�.
2. Initialization: i=1, t=1, �=� �the empty set�, F

=0.
3. Generate an M-foci candidate randomly, that is, V

= �v� , . . . ,v� �.

Fig. 5 Segmented results with different margins. The discrimination
improves with margin size as all theories suggest. Note that the
segmentation becomes more and more perfect as the margin
increases.
1 M

Apr–Jun 2010/Vol. 19(2)3
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4. Compute the sum of the distances from the foci to
every member of S and find

dk = min
1�l�nk

�
j=1

M

�x�kl − v� j�, k = 1, . . . ,s .

5. If d1=min1�k�s dk, Vt=V, and define modulus: Rt
=mink�1 dk and figure of merit Ft: #�S1� in the region
�y� :� j=1

M �y� −v� tj��Rt�, �=�� ��Vt ,Rt ,Ft��, t= t+1; else, i
= i+1.

6. If i�N�, stop. Else if #����K, go to step 2.
7. If F�Ft0

ªmax1�t�K Ft, W=Vt0
, R=Rt0

, F=Ft0
;

else, go to step 9.
8. Calculate f t=Ft / ��l=1

K Fl�. Choose a random number
Y�0�Y �1�. Pick �Vm ,Rm ,Fm��� if

�
l=1

m−1

f l � Y � �
l=1

m

fl.

9. Randomly perturb Vm K times to generate K many
new foci triplets ��Vm1 ,Rm1 ,Fm1� , . . . , �VmK ,RmK ,FmK��,
and mutate �: Vt=Vmt Rt=Rmt Ft=Fmt for t=1, . . . ,K, go to
step 6.

10. For the triplet �W ,R ,F�, assign a modulus r= �1
−��R. If �=0, it is the zero-margin modulus. Fix � at some
value, remove from S all the points in T= �y� :� j=1

M �y� −w� j�
�r��S1, update S1=S1 \T and S=S \T, and store the triplet
�W ,r ,T� in �.

11. If S1=� �the empty set� or #����N�, output � and
stop; else, go to step 1.

In 2-D hyperspace, the boundaries of different margin
for single focus �M =1� are a series of concentric circles.
Figure 6 shows the boundaries of different margin for two,
three, and four foci. When M �2, the foci do not have to be
inside of the enclosed boundary.

The sum of radii in 2-D generalizes to the sum of dis-
tance in 3-D. No claim is made that there is an optimum
metric for distance. We chose the Euclidean norm because
it is, by far, the most commonly used for any particular
norm, and because the choice of norms may not impact the

Fig. 7 Clearly, the ellipse can enclose the target pixels while leaving
significantly less room for a member of another class to appear
inside it in comparison to the circle. The tighter fit is thus likely to be
less susceptible to false positives. The yellow pixels correspond to a
different class. They show why the ellipse is better in this case.
�Color online only.�
(a)

(b)

(c)

ig. 6 Two-dimensional decision boundaries of multifoci margin set-
ing. F1, F2, F3, and F4 are foci: �a� Two foci �The boundaries are
llipsoids.� �b� three foci, and �c� four foci. The three- and four-foci
ases yield hyperellipsoids. Of course, the prior work was done with
single focus and produced hyperspheres.
Apr–Jun 2010/Vol. 19(2)4
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eneral effect we are seeking. It may be true that extreme
ases, such as the infinity norm or the Manhattan norm,
ay give significantly improved or degraded performance,

ut still the reasoning put forth here will still apply.
The spectral classifier is drawn from a search procedure

hat seeks to enclose a large set of samples of one class
ithout including any samples of the other set�s�. If the

raining set data are not essentially hyperspherically dis-
osed, then a hyperellipsoid will give a better fit.24,25 This
s illustrated crudely in Fig. 7.

Noise, if it has uniform expected value everywhere in
he discrimination space, will be expected to be propor-
ional to the volume of the discrimination surfaces �ellipse
nd circle in this 2-D space�. The ellipse has the circle as a
pecial case; thus, it will never give worse results than the
ircle. And, if the ellipse can be significantly smaller in
olume than the circle, the ellipse will offer greater protec-
ion against noise.26

There is no algorithm for finding the maximum number
f useful foci because that number is data dependent. Data-
ependent algorithms are used often—iterations, optimiza-
ion, iterative improvement—and they have the same prob-
em and the same difficulty of finding a general theory. This
s the subject of a wonderful book by J. Tukey entitled
xploratory Data Analysis.27 Sometimes we must be con-

ent with a nonalgorithmic explanation.
When we do these calculations with a variable number

f foci, we must start the algorithm from the beginning.
he initial centers are computed in such a manner that there

s a great variation between the centers at each stage. It
hould not be surprising if the results show variability and
ven an occasional situation in which a really good classi-
er using N foci gives results that are better than the ones
btained using N+1 foci. The results we show are raw and
onestly gotten and shown. Sometimes we get unlucky. In
he long term, the trends are as shown and explained.

Experiments and Experimental Setup

.1 Test Problem
e chose a test problem that is very difficult, so we can see

he improvements, if any, produced by increasing the num-
er of foci of the hyperellipsoids systematically. Figure 8

ig. 8 This is the original image we used to test segmentation as a
unction of number of foci of the discriminating hyperellipsoids.
ournal of Electronic Imaging 023003-
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shows the test image.
The frog’s camouflage in the visible is so good that we

expect to fail to separate the frog from its surround per-
fectly, because color is simply inadequate for that task. To
make it possible to quantify our effects, we segmented the
image by eye as best we could, see Fig. 9. This became our
standard, allowing us to ask how many pixels classified as
frog were truly frog pixels and, conversely, how many truly
frog pixels were not identified as such.

3.2 Training Procedure
We took 15 pixels each from the frog, the dark green
leaves, the light green leaves, the dark sticks, and shadow/
sticks as the training set. The task was to separate frog
pixels from pixels belonging to one of the other three
classes on the basis of their RGB content. At each stage in
the training, we found the foci of and what we call the
largest modulus hyperellipsoids that contained as many
frog pixels �volume elements in the 3D RGB hyperspace�
as possible without containing any pixels from another
class. The ellipsoid is defined as the locus of points such
that the sum of their Euclidean distances from the foci is
equal to the modulus. For example, a hypersphere has a
single focus �center� and a modulus r, where r is its radius.
In fact, it is a hypersphere. A two-focus hyperellipsoid uses

Fig. 9 This hand-segmented frog image was used as the ideal with
which all of the automatically color-segmented images were
compared.

Fig. 10 Increasing the number of foci of the classifying hyperellip-
soids had a quite noticeable effect on the frog segmentation as can
be seen clearly here. But there is little subjective improvement in
going from three to four foci.
Apr–Jun 2010/Vol. 19(2)5
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s its modulus the sum of the distances from the two foci,
nd so forth. That maximum modulus is called the zero-
argin modulus, because even a minutely larger one would

ake in at least one pixel from a nonfrog data point. Then
e set a margin by allowing for a more conservative modu-

us than the zero-margin �R0� by setting the modulus to a
alue less than the zero-margin value. In our experiments,
e arbitrarily chose a margin of R0. All pixels within the
yperellipsoid at any stage were removed from the training
et �because they were already recognized�. Then the pro-
edure was applied again to the now-reduced training set.
his continued until some stopping condition was met—in

his case, we fixed the number of rounds at 4. The result
as a set of hyperellipsoids such that any RGB values fall-

ng within any one of them was declared to be from a frog
ixel. For display, we left the putative frog pixels un-
hanged and set all other pixels to 0.

.3 Test Results
he subjective effect of increasing the number of foci can
e viewed in Fig. 10. Using the comparison standard of
ig. 10 allowed us to assess these effects quantitatively as
ell. Table 1 shows the fate of image pixels for various
umbers of foci. Some are correctly classified as belonging

able 1 The ratios of image pixels suffering the three possible fates
s a function of number of foci. The number of pixels in each fate is
ormalized to the baseline for better understanding.

Center

Correct
ratio

�inside�
Incorrect ratio

�outside�
Unclassified

ratio

1 1 1 1

2 1.11 0.41 0.89

3 1.23 0.70 0.77

4 1.24 1.08 0.76

ig. 11 This chart allows easy comparison of various pixels classi-
cation abilities as a function of the number of foci.
ournal of Electronic Imaging 023003-

Downloaded from SPIE Digital Library on 28 Apr 2010 to 6
to the frog; some pixels outside the frog are attributed to
the frog; and other pixels are simply not classified.

We can now plot these three ratios as functions of the
number of foci to obtain Fig. 11. The data points used are
not totally predictable because the evolution process used
to calculate the parameters of a hypersphere involve sto-
chastic effects that, by definition, are not repeatable. It is
dangerous to infer minutiae in the data represented in these
curves. What can be inferred is the general trends.

As expected, the number of correctly classified pixels
increases with the number of foci but it appears to saturate
at 3. The price of obtaining more correct classifications,
however, appears to be obtaining more incorrect ones �pix-
els outside the frog identified as due to the frog�. Increasing
the number of foci appears to decrease the unclassified
pixel rate monotonically, but again saturation appears to
take place at 	3.

Another way to view these results is in terms of ratios.
For example, Fig. 12�a� shows how the ratio of correct to
erroneous frog pixel assignments varied with M. Figure 11
helps understand this result. The two-focus hyperellipsoid
accomplished the indicated peak at the price of leaving sub-

(a)

(b)

Fig. 12 �a� The ratio of pixels inside �Correct� over outside �Incor-
rect� of the frog body versus the number of foci and �b� The ratio of
pixels inside �Correct� over unclassified inside �Missed� of the frog
body versus the number of foci.
Apr–Jun 2010/Vol. 19(2)6

6.165.46.178. Terms of Use:  http://spiedl.org/terms



s
t
h

m

i
p
s

d
w
“
p
c
f
b
a
c
T
l
i
0

w
c
f
a
a
t
n

s
s

o
h

Fu et al.: Effects of hyperellipsoidal decision surfaces on image segmentation…

J

tantial numbers of pixels unclassified. Figure 12�b� shows
hat after M =3, the ratio of correct to unclassified is much
igher than for M =2 and appears to saturate at M =3–4.

Readers should recognize that the efficacy of this
ethod is strongly dependent on the following:

1. The actual distribution of training set data in the hy-
perspace. If that distribution is roughly hyperspheri-
cal, then adding foci accomplishes nothing. If the
data occupy a very asymmetrical volume, then the
improvement will be dramatic.

2. The results we obtain are not necessarily repeatable
in detail. There are random choices at every stage,
and the results are therefore not expected to be the
same every time or to show simple monotonic behav-
ior as a function of number of foci.

The data shown in Table 2 reflect the expected variabil-
ty associated with this approach but also show the ex-
ected improvements over other methods of attacking the
ame problem.

We ran three completely different analyses of the frog
ata and the results are shown in Table 3. The frog image
as selected by hand, and all other pixels were called

background.” The absolute value for the number of frog
ixels is 22,194, as shown under the frog heading. We then
alculated the number of frog pixels found and what the
raction of that total was. The fractional numbers in each
ox are important in control theory; this would be viewed
s adaptive convergence. Whatever is not correct in this
ycle remains present for possible correction in the next.
hus, in the end, roughly the same value is reached regard-

ess of what starting conditions prevailed. Column 2, for
nstance, has a mean of 75.9 with a standard deviation of
.2974.

The results from the three independent runs are exactly
hat one would expect. The results are very stable but, of

ourse, slightly variable. The true frog and true background
ractions are very stable. The error numbers look quite vari-
ble, but they are not. The number of errors itself is small
nd thus subject to what appear to be large variations. But
hat is exactly what is predicted. Large variations in small
umbers are still small.

It is dangerous to draw general conclusions from a
ingle example; therefore, we repeated this process for
ome other hard-to-discriminate problems.

Figure 13 shows an image of peppers. We seek to find
ne particular pepper using only a few samples from the
uge number present.

Table 2 Despite the built-in stochastic elements
seem to indicate that the method of multiple foc

Margin
setting
�4 foci�

Mahalanobis
distance

Correct 1 0.99

Incorrect 1 2.49

Unclassified 1 0.69
ournal of Electronic Imaging 023003-
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Figure 14 shows the results with 1, 2, 3, and 4 foci.
Once again, improvement is easy to see from the first three
images and hard to find in the fourth. And, once again,
saturation of improvement appears around the three-foci
case.

Different classes in the same image may require differ-
ent numbers of foci. Consider the target image of Fig. 15.
The long green okra produced the results shown on Fig. 16.

For most purposes, such as identification, the single fo-
cus �hypersphere� is sufficient. But in the case of the
orange-colored apricot, the results shown in Fig. 17 suggest
easily noticeable improvement with number of foci, up to
	3, where saturation seems evident.

Seeking to be honest and avoiding the choice of images
suitable for the hyperellipsoid cells, we showed some were
situations where the result was not much of an improve-
ment. We went on to say that the usefulness of going from
hypersphere to hyperellipse depends on the distribution of
the training set data in the decision hyperspace. If the data
are essentially spherically disposed, then hyperellipsoids
are no better than a hypersphere. But, if the distribution of
training set data is quite aspherical, then hyperellipsoids
were ideal.28 Going from a hypersphere to a hyperellipsoid
is probably not substantial.29 Furthermore, it may require
fewer hyperellipsoids than hyperspheres, and there are no
general remarks to be made because of the previously noted
problem dependence of the results.

4 Conclusions
Segmentation by artificial color methods can be very diffi-
cult as in this case, where there is little if any color distinc-

e problem-dependence, the results shown here
ave the expected superiority to other methods.

ort
tor
ine

Maximum
likelihood

Neural
net

Minimum
distance

2 0.83 0.72 0.72

9 0.34 0.01 2.52

6 1.18 1.58 1.54

Table 3 Tabulation of results from three totally independent runs
made on the frog image using two-foci hyperellipsoid voxels in the
three-dimensional decision space as decision boundaries with zero
margin.

Run no.
Frog

�22,194 pixels�
Background

�59,280 pixels� Error

1 16895
�76.13%�

58649
�98.74%�

5930

2 16888
�76.09%�

57923
�97.01%�

6663

3 16751
�75.48%�

58572
�98.81%�
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ion between classes and the number of samples from each
lass is very limited. The use of hyperellipsoidal classifiers
ith various numbers of foci offers a useful free variable.
e can draw no universal conclusions from the limited

umber of experiments we did, but the general trends ob-
ained and presented in Fig. 11 conform with our general
xpectation. For very hard problems, increasing the number
f foci of the classifying hyperellipsoids may allow more
orrect classification but may do so at the price of produc-
ng more misclassifications as well. The reservoir of unclas-
ified pixels is diminished to accommodate those effects,

ig. 13 Three different kinds of peppers. We used only 15 samples
f each to try to segment out only one kind.

ig. 14 Improvement with number of foci is most noticeable with the
lmost saturated top of the pepper. Improvements are not uniformly
istributed across the image. The circles show the same region with
ifferent numbers of foci. The arrow points from the single-focus

mage to the four-foci image. They can now bee seen to have pro-
uced noticeable improvement.
ournal of Electronic Imaging 023003-
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and of course, we do not expect ever-increasing improve-
ments. In this case, little change was made in going from
three foci to four.

More generally, it appears that increasing the number of
foci in the hyperellipse can sometimes be quite helpful, but
there also appear to be prices in terms of other errors if we
go to too many foci. Thus, each problem needs to be ex-
plored to determine which approach is optimal for a given
data set and a given figure of merit.

This technique has been applied to and is being em-
ployed in many tasks, such as recognizing an object by its
shape,30 RGB values,2,6 texture, and polarization.31 It is
also used for recognition in many different settings, e.g.,
iris �the colored part of the eye�,4 hyperspectral images,30

easy-to-manipulate artificial problems, pills and capsules,
passport covers, and Eurodollars. In all cases, a small num-
ber of samples is capable of achieving excellent discrimi-
nation.

There are many directions one might go from here, such
as the following:

1. Explore different figures of merit. A reader suggested
one very interesting approach, called “the normalized
probabilistic rand,”32 which was totally new to us but
seems to have been rather widely used for evaluating
image differences.

2. Study the effects of normalization, so all the hyperel-
lipsoids become hyperspheres can be compared to

Fig. 16 This target class shows small but noticeable improvement
with each increase in number of foci.

Fig. 15 In this simple image, there are three classes of vegetables
that require different treatment for optimization.
Apr–Jun 2010/Vol. 19(2)8
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treating the same problem with the unnormalized data
used in this paper.

3. Look at the various distance metrics to find out if one
works better than the other.

4. Compare a complex classifier �e.g., the support vec-
tor machines �SVM�� and a simple discriminant �e.g.,
a linear discriminant� for the same problem.
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