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Abstract. Let X = {X(t), t ∈ RN} be a Gaussian random field with values

in Rd defined by

X(t) =
(
X1(t), . . . , Xd(t)

)
, ∀ t ∈ RN ,

where X1, . . . , Xd are independent copies of a centered real-valued Gaussian
random field X0. We consider the case when X0 is anisotropic and study
the packing dimension of the range X(E), where E ⊆ RN is a Borel set. For
this purpose we extend the original notion of packing dimension profile due

to Falconer and Howroyd [11] to the anisotropic metric space (RN , ρ), where

ρ(s, t) =
∑N

j=1 |sj − tj |Hj and (H1, . . . , HN ) ∈ (0, 1)N is a given vector. The

extended notion of packing dimension profile is of independent interest.

1. Introduction

Fractal dimensions such as Hausdorff dimension, box-counting dimension and
packing dimension are useful tools in studying fractals (see, e.g., Falconer [10]),
as well as in characterizing roughness or irregularity of stochastic processes and
random fields. We refer to Taylor [24] and Xiao [30] for extensive surveys on
results and techniques for investigating fractal properties of Markov processes,
and to Adler [1], Kahane [16], Khoshnevisan [17] and Xiao [31, 32] for geometric
results for Gaussian random fields.

Let X = {X(t), t ∈ RN} be a Gaussian random field with values in Rd. For
any set E ⊆ RN , let X(E) = {X(t), t ∈ E} and GrX(E) =

{
(t,X(t)) : t ∈ E

}
be the range and graph of X respectively. It is known that if X is a fractional
Brownian motion or the Brownian sheet, the packing dimensions of X

(
[0, 1]N

)
and

GrX
(
[0, 1]N

)
coincide with their Hausdorff dimensions. However, when E ⊆ RN

is an arbitrary Borel set, significant difference between the Hausdorff and packing
dimensions of the image X(E) may appear. Talagrand and Xiao [23] proved that,
even for such “nice” Gaussian random fields as fractional Brownian motion and the
Brownian sheet, the Hausdorff and packing dimensions of X(E) can be different
because they depend on different aspects of the fractal structure of E. Xiao [29]
further showed that the packing dimension of X(E) is determined by the packing
dimension profiles introduced by Falconer and Howroyd [11] (see Section 2 for the
definition).
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On the other hand, as noted in Xiao [31, 33], the fractal dimensions of the range
X
(
[0, 1]N

)
and graph GrX

(
[0, 1]N

)
themselves become more involved when X is

a general Gaussian random field. To be more specific, let X = {X(t), t ∈ RN} be
a Gaussian random field with values in Rd defined on a probability space (Ω,F ,P)
by

X(t) =
(
X1(t), . . . , Xd(t)

)
, ∀t ∈ RN , (1.1)

where X1, . . . , Xd are independent copies of a real-valued, centered Gaussian ran-
dom field X0 = {X0(t), t ∈ RN}. When X0 is at least approximately isotropic in
the sense that

E
[
(X0(s)−X0(t))

2
]
� φ(‖t− s‖), ∀ s, t ∈ [0, 1]N , (1.2)

where φ : R+ → R+ is a nondecreasing and continuous function with φ(0) = 0 and
‖·‖ (here and throughout the paper) is the Euclidean norm, and where f(x) � g(x)
for x ∈ T means that the function f(x)/g(x) is bounded from below and above by
positive and finite constants that do not depend on x ∈ T , Xiao [31] introduced an
upper index α∗ and a lower index α∗ for φ at 0 (see Section 2 for their definitions)
and proved that

dimHX
(
[0, 1]N

)
= min

{
d,

N

α∗

}
, a.s. (1.3)

and

dimHGrX
(
[0, 1]N

)
= min

{
N

α∗ , N + (1− α∗)d

}
, a.s., (1.4)

where dimHE denotes Hausdorff dimension of E. Xiao [33] showed that the packing
dimensions of X

(
[0, 1]N

)
and GrX

(
[0, 1]N

)
are determined by the lower index α∗

of φ. Namely,

dimPX
(
[0, 1]N

)
= min

{
d,

N

α∗

}
, a.s. (1.5)

and

dimPGrX
(
[0, 1]N

)
= min

{
N

α∗
, N + (1− α∗)d

}
, a.s., (1.6)

where dimPE denotes the packing dimension of E. There are many interesting
examples of Gaussian random fields with stationary increments which satisfy (1.2)
with α∗ < α∗. Such examples can be constructed by choosing appropriate spec-
tral measures; see Section 2 for more details. The results (1.3)–(1.6) show that,
similarly to the well-known cases of Lévy processes (see Pruitt and Taylor [21]),
the Hausdorff dimensions of X

(
[0, 1]N

)
and GrX

(
[0, 1]N

)
may be different from

their packing dimensions.
In recent years, there has been a lot of interest in studying anisotropic random

fields such as fractional Brownian sheets or solution to the stochastic heat equation.
Ayache and Xiao [2], Wu and Xiao [27, 28] and Xiao [32] have shown that, whenX0

is anisotropic, the Hausdorff dimensions of the range and graph of the Gaussian
random field X defined by (1.1) can be very different from the approximately
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isotropic case. In particular, the notion of Hausdorff dimension on RN equipped
with the anisotropic metric ρ defined by

ρ(s, t) =

N∑
j=1

|sj − tj |Hj , ∀s, t ∈ RN (1.7)

is needed in order to determine the Hausdorff dimension of X(E). In the above
and in the sequel, H = (H1, . . . , HN ) ∈ (0, 1)N is a fixed vector.

The main objective of this paper is to study the packing dimension of the
range X(E) for a class of anisotropic Gaussian random fields defined as in (1.1).
In particular, we determine the packing dimension of the range X([0, 1]N ) when
(1.2) is replaced by Condition (C) below and estimate the packing dimension of
X(E) for a general Borel set E ⊂ RN . For this latter purpose, we first extend the
ideas in Falconer and Howroyd [11] and introduce packing dimension profiles in the
metric space (RN , ρ). For comparison purposes we also determine the Hausdorff
dimensions of the X([0, 1]N ) and GrX([0, 1]N ) and show that they are determined
by the upper index α∗ and (H1, . . . , HN ).

The rest of the paper is organized as follows. In Section 2 we recall some basic
facts about Gaussian random fields and construct several interesting examples of
isotropic and anisotropic Gaussian random fields, including those with different
upper and lower indices. We also recall the definition of packing dimension profile
of Falconer and Howroyd [11]. In Section 3 we provide the definition and some
basic properties of packing dimension in the metric space (RN , ρ), and extend the
packing dimension profiles of Falconer and Howroyd [11] to (RN , ρ). Results in
this section may have applications beyond the scope of the present paper. For
example, they may be useful for studying self-affine fractals. We should mention
that another extended notion of packing dimension profiles has also been devel-
oped by Khoshnevisan, Schilling and Xiao [18] for studying the packing dimension
of the range of a Lévy process. In Section 4, we determine the packing dimension
of X(E), where E can either be [0, 1]N or a general Borel set. We prove the upper
bound by using a standard covering argument. The method for proving the lower
bound for the packing dimension is potential-theoretic. It can be viewed as an
analogue of the classical and powerful “capacity argument” (based on the Frost-
man theorem) for Hausdorff dimension computation. In the Appendix, we provide
proofs for some technical results in Section 3 and determine the Hausdorff dimen-
sions of X

(
[0, 1]N

)
and GrX

(
[0, 1]N

)
. These latter results should be compared

with the packing dimension of X
(
[0, 1]N

)
given in Theorem 4.1.

We will use K to denote an unspecified positive constant which may differ in
each occurrence.

2. Preliminaries

2.1. Anisotropic Gaussian random fields. Let X = {X(t), t ∈ RN} be an
(N, d)-Gaussian random field defined by (1.1). To demonstrate the main differ-
ences in the fractal dimension properties between the isotropic and anisotropic
cases, we assume that the real-valued centered Gaussian random field X0 =
{X0(t), t ∈ RN} satisfies X0(0) = 0 and the following Condition (C):
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(C) Let φ : [0, δ0) → [0,∞) be a non-decreasing, right continuous function
with φ(0) = 0. For every compact interval T ⊂ RN , there exist positive
constants δ0 and K ≥ 1 such that

K−1 φ2(ρ(s, t)) ≤ E
[(
X0(t)−X0(s)

)2] ≤ K φ2(ρ(s, t)) (2.1)

for all s, t ∈ T with ρ(s, t) ≤ δ0, where ρ is the metric defined in (1.7).

The upper index of φ at 0 is defined by

α∗ = inf

{
β ≥ 0 : lim

r→0

φ(r)

rβ
= ∞

}
(2.2)

with the convention inf ∅ = ∞. Analogously, the lower index of φ at 0 is defined
by

α∗ = sup

{
β ≥ 0 : lim

r→0

φ(r)

rβ
= 0

}
(2.3)

with the convention sup ∅ = 0.
When X0 = {X0(t), t ∈ RN} satisfies (1.2), Condition (C) holds with H1 =

· · · = HN = 1 (or ρ is replaced by the Euclidean metric) and the above upper and
lower indices α∗ and α∗ coincide with those defined in Xiao [31, 33]. When X0

has stationary and isotropic increments, α∗ and α∗ coincide with the upper and
lower indices of σ(h) (which is a function of ‖h‖), where

σ2(h) = E
[(
X0(t+ h)−X0(t)

)2]
, ∀h ∈ RN . (2.4)

However, the class of Gaussian random fields with α∗ = α∗ in this paper is wider
than the index-α Gaussian fields in Adler [1] or Khoshnevisan [17].

As in Xiao [31, 32, 33], many interesting examples of Gaussian random fields
satisfying Condition (C) have stationary increments. Hence we collect some basic
facts about them. Suppose X0 = {X0(t), t ∈ RN} has stationary increments
and continuous covariance function R(s, t) = E

[
X(s)X(t)

]
. Then, according to

Yaglom [34], R(s, t) can be represented as

R(s, t) =

∫
RN

(
ei〈s,λ〉 − 1

)(
e−i〈t,λ〉 − 1

)
∆(dλ) + 〈s,Σt〉, (2.5)

where 〈x, y〉 is the ordinary scalar product in RN , Σ is an N × N non-negative
definite matrix and ∆(dλ) is a nonnegative symmetric measure on RN\{0} (i.e.,
∆(A) = ∆(−A) for all B(RN\{0})) which satisfies∫

RN

‖λ‖2

1 + ‖λ‖2
∆(dλ) <∞. (2.6)

If ∆(dλ) is a spherically (or radially) symmetric measure on RN\{0}, then X0 is
isotropic, this follows from (2.8) below.

The measure ∆ in (2.5) is called the spectral measure of X. It follows from
(2.5) that X has the following stochastic integral representation:

X0(t) =

∫
RN

(
ei〈t,λ〉 − 1

)
W (dλ) + 〈Y, t〉, (2.7)
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where Y is an N -dimensional Gaussian random vector with mean 0 and covariance
matrix Σ, W (dλ) is a centered complex-valued Gaussian random measure which
is independent of Y and satisfies

E
(
W (A)W (B)

)
= ∆(A ∩B) and W (−A) =W (A)

for all Borel sets A, B ⊆ RN . Since the linear term 〈Y, t〉 in (2.7) will not have any
effect on fractal dimensions of the range and graph of X, we will simply assume
Y = 0. Consequently, we have

σ2(h) = E
[(
X0(t+ h)−X0(t)

)2]
= 2

∫
RN

(
1− cos 〈h, λ〉

)
∆(dλ). (2.8)

It is important to observe that the incremental-variance function σ2(h) in (2.8) is
a negative definite function in the sense of I. J. Schoenberg and thus can be viewed
as the characteristic exponent of a symmetric infinitely divisible distribution. See
Berg and Forst [3] for more information on negative definite functions. This con-
nection makes it possible for us to construct interesting examples of Gaussian
random fields with various properties on σ2(h) (e.g. to have different upper and
lower indices) by modifying the constructions of Lévy processes with various pre-
scribed properties on their characteristic (or Laplace) exponents. See section 2.2
below.

We remark that the class of Gaussian random fields satisfying Condition (C) is
large. It not only includes fractional Brownian sheets of index H = (H1, . . . ,HN ),
the operator-scaling Gaussian fields with stationary increments in Xiao [33] and
solutions to the stochastic heat equation (in all these cases, φ(r) = r), but also the
following subclass that can be constructed from general subordinators (cf. Bertoin
[5] or Sato [22]).

Proposition 2.1. Let φ be the Laplace exponent of a subordinator T = {T (r), r ≥
0} and let σ2

1 be a negative definite function on RN . Then σ2(u) = φ(σ2
1(u)) is also

a negative definite function. In particular, there is a centered Gaussian random
field X0 with stationary increments such that X0(0) = 0 and E

[
(X0(s)−X0(t))

2
]
=

φ(σ2
1(t− s)) for all s, t ∈ RN .

Proof. For completeness, we provide a proof by using the subordination argument
for Lévy processes; see e.g. Bertoin [5] or Sato [22]. Let Y = {Y (r), r ≥ 0} be
a symmetric Lévy process with values in RN and characteristic exponent σ2

1(u)
(u ∈ RN ). We assume that Y and T are independent. Then a conditioning
argument shows that the subordinated process Z defined by Z(r) = Y (T (r)) for
r ≥ 0 is also a Lévy process with values in RN whose characteristic function is
given by

E
(
ei〈u,Z(r)〉

)
= E

(
e−T (r)σ2

1(u)
)
= e−rφ(σ2

1(u)), ∀u ∈ RN .

Thus σ2(u) = φ(σ2
1(u)) is negative definite. �

Since φ may have different upper and lower indices (see Example 2.7 below)
and σ2

1 can be chosen to be the incremental variance of any anisotropic Gaussian
field with stationary increments, Proposition 2.1 produces a quite large class of
Gaussian random fields that satisfy Condition (C) with 0 < α∗ < α∗ ≤ 1.
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Sample path continuity of Gaussian fields is well studied and there are several
ways to determine modulus of continuity of Gaussian random fields; see, e.g.,
Dudley [9] and Marcus and Rosen [20] for a review. The following lemma is a
consequence of Corollary 2.3 in Dudley [9]. It will be useful for deriving upper
bounds for the Hausdorff and packing dimensions of the range and graph.

Lemma 2.2. Assume X0 = {X0(t), t ∈ RN} is a real-valued centered Gaussian
random field that satisfies the upper bound in (2.1). If the upper and lower indices
of φ at 0 satisfy 0 < α∗ ≤ α∗ ≤ 1, then for every compact interval T ⊂ RN , there
exists a finite constant K such that

lim sup
δ→0

sups,t∈T :ρ(s,t)≤δ |X0(s)−X0(t)|
f(δ)

≤ K, a.s., (2.9)

where f(h) = φ(h)
∣∣ log φ(h)∣∣1/2.

2.2. Examples of Gaussian fields with different upper and lower indices.
Xiao [31] showed that Gaussian random fields with stationary increments and dif-
ferent upper and lower indices can be constructed by choosing appropriately the
spectral measures ∆ in (2.5). Similar approach has been applied in the literature
to construct Lévy processes with different upper and lower Blumenthal-Getoor
indices [7]. See Pruitt and Taylor [21] and the references therein for more informa-
tion. We remark that for studying local properties of a Gaussian random field one
is interested in the behavior of σ2(h) near h = 0, while Blumenthal and Getoor’s
indices are concerned with the asymptotic behavior of σ2(h) as ‖h‖ → ∞. Nev-
ertheless one can modify the constructions of Lévy processes to obtain negative
definite functions σ2(h) with prescribed properties near h = 0.

The following proposition is useful for constructing Gaussian random field with
prescribed upper and lower indices.

Proposition 2.3. Let X0 = {X0(t), t ∈ RN} be a mean zero, real-valued Gaussian
random field with stationary increments and X(0) = 0. Assume that the spectral
measure ∆ of X0 has a density function f that satisfies the following condition:

0 < lim inf
‖λ‖→∞

βN ‖λ‖Nf(λ)
∆{ξ : ‖ξ‖ ≥ ‖λ‖}

≤ lim sup
‖λ‖→∞

βN ‖λ‖Nf(λ)
∆{ξ : ‖ξ‖ ≥ ‖λ‖}

< 2, (2.10)

where β1 = 2 and for N ≥ 2, βN = µ(SN−1) is the area (i.e., the (N − 1)-
dimensional Lebesgue measure) of SN−1. Then

0 < lim inf
‖h‖→0

σ2(h)

ψ(‖h‖)
≤ lim sup

‖h‖→0

σ2(h)

ψ(‖h‖)
<∞. (2.11)

where ψ(r) = ∆{ξ : ‖ξ‖ ≥ r−1} and ψ(0) = 0. Moreover, ψ is regularly varying at
0 with index 2α if and only if

2α = lim
r→∞

rN
∫
SN−1 f(rθ)µ(dθ)

∆{ξ : |ξ| ≥ r}
. (2.12)

Proof. This is a consequence of Remark 2.4 and Theorem 2.5 in Xiao [31]. �
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Remark 2.4. Here are some remarks about Proposition 2.3.

• When N = 1, the condition (2.10) is due to Berman [4], who showed that
the corresponding Gaussian process X0 is locally nondeterministic. Xiao
[31] extended it to N ≥ 2 and proved that it is a sufficient condition for
X0 to have the property of strong local nondeterminism.

• Proposition 2.3 implies that, under condition (2.10), X0 is approximately
isotropic and the upper and lower indices of σ at 0 are the same as those
of ψ(r), which is determined by the tail-measure of ∆. It is not difficult
to construct a measure ∆ such that the ratio in the right side of (2.12)
has different liminf and limsup behavior, which will imply that ψ(r) has
different upper and lower indices.

In the following we provide three examples of Gaussian random fields with
different upper and lower indices. Example 2.5 is similar to Example 2.10 in Xiao
[31], which does not require (2.10). Example 2.6 is more general and is due to
Clausel [8] who called it infinity scale fractional Brownian motion (ISFBM). In
her terminology, the Gaussian field X0 in Example 2.5 is essentially a lacunary
fractional Brownian motion with lower Hurst index H = α1 and lacunary index

τ = (α2(1− α1))/(α1(1− α2)).

The Gaussian random fields in both examples are isotropic with stationary incre-
ments. For an (N, d)-Gaussian random field associated with this X0, (1.3) - (1.6)
show that the range and graph have different Hausdorff and packing dimensions.

Example 2.5. For any given constants 0 < α1 < α2 < 1 and any increasing
sequence {bk, k ≥ 0} of real numbers such that b0 = 0 and bk → ∞ as k → ∞,
define the function f on RN by

f(λ) =

{
‖λ‖−(2α1+N) if ‖λ‖ ∈ (b2k, b2k+1],
‖λ‖−(2α2+N) if ‖λ‖ ∈ (b2k+1, b2k+2].

(2.13)

Using ∆(dλ) = f(λ)dλ as spectral measure, we obtain from (2.7) an isotropic
Gaussian random field X0 with stationary increments. By using (2.8) one can
verify that there exists a positive constant K ≥ 1 such that

K−1 ‖h‖2α2 ≤ σ2(h) := σ̃2(‖h‖) ≤ K ‖h‖2α1 (2.14)

for all h ∈ RN with ‖h‖ ≤ 1.
Now we choose a strictly increasing sequence {bk} such that for all k ≥ 0,

b2k+1 ≥ 2b2k and b2k+2 > b
α2(1−α1)

α1(1−α2)

2k+1 . (2.15)

This can be done inductively. We prove that α∗ = α1 and α∗ = α2, where α
∗ and

α∗ are defined by (2.2) and (2.3) with φ replace by σ̃ (see also [31]).
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Let rn = (2b2n)
−1. Then rn ↓ 0 as n → ∞. We pick tn ∈ RN such that

‖tn‖ = rn, then use (2.8), a change of variable and the isotropy of f(λ) to derive

σ̃2(rn) ≥ 2

∫
‖λ‖∈(b2n,b2n+1]

(
1− cos 〈tn, λ〉

) dλ

‖λ‖2α1+N

= K

∫ b2n+1

b2n

(
1− cos(rnx)

) dx

x2α1+1

≥ K

∫ 2b2n

b2n

r2nx
2 dx

x2α1+1

= K r2α1
n ,

(2.16)

where in the last two steps we have also used the fact that b2n+1 ≥ 2b2n and the
elementary inequality 1 − cosx ≥ x2/4 for x ∈ (−1, 1). Combining (2.14) and
(2.16) yields α∗ = α1.

Next we verify that α∗ = α2. For this purpose, we take rn = b−1
2n+1 (or any rn

which satisfies b
−α1/α2

2n+2 ≤ rn ≤ b
−(1−α1)/(1−α2)
2n+1 ). By using (2.8) and a change of

variable we get

σ̃2(rn) = K

{ ∞∑
k=0

∫ b2k+1

b2k

(
1− cos(rnx)

) dx

x2α1+1

+
∞∑
k=0

∫ b2k+2

b2k+1

(
1− cos(rnx)

) dx

x2α2+1

}
.

(2.17)

The second sum is at most Kr2α2
n . To estimate the first sum, we break it into two

parts.

n∑
k=0

∫ b2k+1

b2k

(
1− cos(rnx)

) dx

x2α1+1
≤

∫ b2n+1

0

r2nx
2 dx

x2α1+1

=
r2n

2− 2α1
b2−2α1
2n+1 ≤ K r2α2

n ,

(2.18)

thanks to our choice of rn. Similarly, by the second condition in (2.15) we have

∞∑
k=n+1

∫ b2k+1

b2k

(
1− cos(rnx)

) dx

x2α1+1
≤ 2

∫ ∞

b2n+2

dx

x2α1+1

≤ K b−2α1
2n+2 ≤ K r2α2

n .

(2.19)

Combining (2.17) - (2.19) and (2.14) yields α∗ = α2.

Example 2.6. This example is due to Clausel [8]. Let H = {Hj , j ≥ 0} be a
sequence of reals numbers such that

0 < lim inf
j→∞

Hj ≤ lim sup
j→∞

Hj < 1

and let σ = {σj , j ≥ 0} be a bounded sequence of positive real numbers. The real
valued Gaussian field {BH,σ(t), t ∈ RN} with stationary increments defined by the
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following harmonizable representation

BH,σ(t) =
∞∑
`=0

σ`

∫
D`

ei〈t,λ〉 − 1

‖λ‖H`+
N
2

W (dλ) (2.20)

is called the infinity scale fractional Brownian motion with Hurst indices H =
{Hj , j ≥ 0} and amplitudes σ = {σj , j ≥ 0} in [8]. In (2.20), D0 = {λ ∈ RN :
‖λ‖ < 1} and for D` = {λ ∈ RN : 2`−1 ≤ ‖λ‖ < 2`} for all ` ≥ 1.

For simplicity we take σj ≡ 1 for all j ≥ 0. Similarly to Example 2.5 we can
verify that α∗ = lim inf

j→∞
Hj := H always holds. In order to obtain α∗ = lim sup

j→∞
Hj ,

we need an extra condition. Let H = lim sup
j→∞

Hj . For every ε ∈ (0,H), let

T1 = inf{j : Hj ≥ H − ε}, T2 = inf{j > T1 : Hj < H − ε},

and for all k ≥ 1 we define inductively

T2k+1 = inf{j > T2k : Hj ≥ H − ε}

and

T2k+2 = inf{j > T2k+1 : Hj < H − ε}.

If we assume that

T2k+2 >
(H − ε)(1−H + ε)

(H − ε)(1−H + ε)
T2k+1, (2.21)

then we can verify as in Example 2.5 that α∗ = lim sup
j→∞

Hj . We omit the details

and just remark that the condition (2.21) governs the distribution of the integers
j such that Hj > H − ε and plays a similar role as the second condition in (2.15).
Such a condition can not be eliminated in order to have α∗ < α∗. For example, if
0 < α1 < α2 and we take Hj = α1 when j is odd and Hj = α2 when j is even,
then α∗ = α∗ = α1.

Our third example constructs a subordinator whose Laplace exponent φ has
different upper and lower indices at 0. The method is a modification of the con-
struction of a subordinator due to Hawkes and Pruitt [13] who were interested in
the asymptotic properties of φ(u) as u→ ∞. Combined with Proposition 2.1, this
example provides a class of Gaussian random fields which satisfy Condition (C)
with α∗ = 1/3 and α∗ = 1/2.

Example 2.7. We define the Lévy measure ν of a subordinator T = {T (r), r ≥ 0}
to be the discrete measure ν({xk}) = pk, where

pk = 2−2k and xk = p−2
k , ∀k ≥ 1.

The corresponding Laplace exponent is

φ(u) =
∞∑
k=1

(
1− e−uxk

)
pk. (2.22)
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Notice that pk+1 = p2k for all k ≥ 1 and, if pn+1 ≤ u ≤ pn then 1 ≤ uxn ≤ p−1
n .

By splitting the sum in (2.22) over k ≤ n− 1 and k ≥ n, we derive that

φ(u) � u
n−1∑
k=1

xkpk +
∞∑

k=n

pk � up−1
n−1 + pn (2.23)

for pn+1 ≤ u ≤ pn. We claim that the upper index of φ at 0 is α∗ = 1/2 and its
lower index is α∗ = 1/3.

In order to show α∗ = 1/3, we derive from (2.23) and the fact pn = p
1/2
n+1 that

if pn+1 ≤ u ≤ p
3/2
n then

φ(u) ≤ K
(
p3/2n · p−1/2

n + pn
)
≤ Ku1/2 ≤ Ku1/3;

and if p
3/2
n ≤ u ≤ pn then

φ(u) ≤ K
(
pn · p−1/2

n + pn
)
≤ K p1/2n ≤ Ku1/3.

Thus, φ(u) ≤ Ku1/3 for all 0 ≤ u ≤ p1. Moreover, (2.23) implies

φ(p3/4n ) ≥ K−1
(
p3/4n · p−1/2

n + pn
)
≥ K−1p1/4n = K−1

(
p3/4n

)1/3
.

This proves that α∗ = 1/3.
Similarly, (2.23) and an elementary calculus argument shows that there exists

a constant K > 1 such that

φ(u) ≥ K−1(up−1/2
n + pn

)
≥ (2K)−1u1/2, ∀u ∈ [pn+1, pn].

Moreover, φ(pn+1) ≤ Kpn = K(pn+1)
1/2. Consequently, we have α∗ = 1/2. This

verifies the above claims.

2.3. Packing dimension and packing dimension profile. Packing dimen-
sion and packing measure on

(
RN , ‖ · ‖

)
were introduced in the early 1980s by

Tricot [26] and Taylor and Tricot [25] as dual concepts to Hausdorff dimension
and Hausdorff measure. The notion of packing dimension profiles was introduced
by Falconer and Howroyd [11] for computing the packing dimension of orthogonal
projections. Their definition of packing dimension profiles is based on potential-
theoretical approach. Later Howroyd [14] defined another packing dimension pro-
file from the point of view of box-counting dimension. Recently, Khoshnevisan
and Xiao [19] proved that the packing dimension profiles of Falconer and Howroyd
[11] and Howroyd [14] are the same.

For any ε > 0 and any bounded set E ⊂ RN , let N(E, ε) be the smallest number
of balls of radius ε needed to cover E. The upper box-counting dimension of E is
defined as

dimBE = lim sup
ε→0

logN(E, ε)

− log ε

and the packing dimension of E is defined as

dimPE = inf

{
sup
n

dimBEn : E ⊂
∞⋃

n=1

En

}
, (2.24)

see Tricot [26] or Falconer ([10], p.45). It is well known that 0 ≤ dimHE ≤
dimPE ≤ dimBE ≤ N for every set E ⊂ RN .
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For a finite Borel measure µ on RN , its packing dimension is defined by

dimPµ = inf
{
dimPE : µ(E) > 0 and E ⊂ RN is a Borel set

}
. (2.25)

Falconer and Howroyd [11] defined the s-dimensional packing dimension profile of
µ as

Dimsµ = sup
{
β ≥ 0 : lim inf

r→0

Fµ
s (x, r)

rβ
= 0 for µ-a.a. x ∈ RN

}
, (2.26)

where, for any s > 0, Fµ
s (x, r) is the s-dimensional potential of µ defined by

Fµ
s (x, r) =

∫
RN

min
{
1, rs ‖y − x‖−s

}
dµ(y). (2.27)

Falconer and Howroyd [11] showed that

0 ≤ Dimsµ ≤ s and Dimsµ = dimPµ if s ≥ N. (2.28)

Note that the identity in (2.28) provides the following equivalent characterization
of dimPµ in terms of the potential Fµ

N (x, r):

dimPµ = sup

{
β ≥ 0 : lim inf

r→0

Fµ
N (x, r)

rβ
= 0 for µ-a.a. x ∈ RN

}
. (2.29)

For any Borel set E ⊆ RN , the s-dimensional packing dimension profile of E is
defined by

DimsE = sup
{
Dimsµ : µ ∈ M+

c (E)
}
, (2.30)

where M+
c (E) denotes the family of finite Borel measures with compact support in

E. It follows from (2.28) that 0 ≤ DimsE ≤ s and DimsE = dimPE if s ≥ N . This
last fact gives a measure-theoretic characterization of dimPE in terms of packing
dimension profiles.

3. Packing Dimension and Packing Dimension Profile
on Anisotropic Metric Spaces

Ordinary Hausdorff and packing dimension (i.e. those in the Euclidean metric)
may not be able to characterize the Hausdorff and packing dimensions of the
images of anisotropic random fields, and the notion of Hausdorff dimension on
the metric space (RN , ρ) is needed; see Wu and Xiao [27, 28] and Xiao [32]. In
this section, we define packing measure, packing dimension and packing dimension
profiles on the metric space (RN , ρ). The latter is an extension of the notion of
packing dimension profiles of Falconer and Howroyd [11] to (RN , ρ). We believe it
will have applications beyond scope of this paper.

Throughout this paper, let

Bρ(x, r) :=
{
y ∈ RN : ρ(y, x) < r

}
.

For any β > 0 and E ⊆ RN , the β-dimensional packing measure of E in the metric
ρ is defined by

Pβ
ρ (E) = inf

{∑
n

Pβ

ρ (En) : E ⊆
⋃
n

En

}
, (3.1)
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where the infimum is taken over all countable coverings {En} of E and where

Pβ

ρ (E) = lim
δ→0

sup

{ ∞∑
n=1

(2rn)
β : {Bρ(xn, rn)} are disjoint, xn ∈ E, rn ≤ δ

}
.

(3.2)
The packing dimension of E is defined by

dimρ
P
E = inf

{
β > 0 : Pβ

ρ (E) = 0
}
. (3.3)

It can be verified directly that dimρ
P
is σ-stable: for any sequence of sets En ⊆ RN ,

we have

dimρ
P

( ∞⋃
n=1

En

)
= sup

n
dimρ

P
En. (3.4)

Similarly to the Euclidean case studied by Tricot [26] (see also Falconer [10]), the
packing dimension in (RN , ρ) can also be defined through the upper box-counting
dimension. For any ε > 0 and any bounded set E ⊆ RN , let Nρ(E, ε) be the
smallest number of balls of radius ε (in the metric ρ) needed to cover E. The
upper box-counting dimension (in the metric ρ) of E is defined as

dim
ρ

B
E = lim sup

ε→0

logNρ(E, ε)

− log ε
.

The following proposition is an extension of a result of Tricot [26].

Proposition 3.1. For any set E ⊆ RN , we have

dimρ
P
E = inf

{
sup
n

dim
ρ

B
En : E ⊆

∞⋃
n=1

En

}
. (3.5)

Proof. The proof is a slight modification of the proof of that in Tricot (1982) for
the Euclidean metric, see also Falconer (1990, p.45). For completeness we give it
in the Appendix. �

Throughout this paper, let Q :=
∑N

j=1H
−1
j . It follows from the definition of

dimρ
H
(cf. Xiao [32]), (3.2) and Proposition 3.1 that for every set E ⊆ RN ,

0 ≤ dimρ
H
E ≤ dimρ

P
E ≤ dim

ρ

B
E ≤ Q. (3.6)

Moreover, if E has non-empty interior, then dimρ
H
E = dimρ

P
E = Q.

For a finite Borel measure µ on RN , similarly to (2.25) we define its packing
dimension in metric ρ as

dimρ
P
µ = inf

{
dimρ

P
E : µ(E) > 0 and E ⊆ RN is a Borel set

}
. (3.7)

The following proposition gives a characterization of dimρ
P
µ in terms of the local

dimension of µ. It is obtained by applying Lemma 4.1 (cf. (4.7)) of Hu and Taylor
[15] to dimρ

P
.

Proposition 3.2. Let µ be a finite Borel measure on RN . Then

dimρ
P
µ = sup

{
β > 0 : lim inf

r→0

µ
(
Bρ(x, r)

)
rβ

= 0 for µ-a.a. x ∈ RN

}
. (3.8)
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Extending the definition of Falconer and Howroyd [11], we define the following
s-dimensional packing dimension profile of µ in metric ρ as

Dimρ
s
µ = sup

{
β ≥ 0 : lim inf

r→0

Fµ
s,ρ(x, r)

rβ
= 0 for µ-a.a. x ∈ RN

}
, (3.9)

where, for any s > 0, Fµ
s,ρ(x, r) is the s-dimensional potential of µ in metric ρ

defined by

Fµ
s,ρ(x, r) =

∫
RN

min

{
1,

rs

ρ(x, y)s

}
dµ(y). (3.10)

The following proposition is analogous to Proposition 2 in Falconer and Howroyd
[11] and we provide a proof in the Appendix.

Proposition 3.3. Let µ be a finite Borel measure on RN and let s ∈ (0, Q]. Then
for µ-almost all x ∈ RN the following holds: If

lim inf
r→0

r−sµ
(
Bρ(x, r)

)
<∞, (3.11)

then for all 0 ≤ t < s,

lim inf
r→0

r−tFµ
Q,ρ(x, r) = 0. (3.12)

To prove a similar result as Proposition 18 in Falconer and Howroyd [11], we
define a local variant of Dimρ

s
by

px,ρ(s) = sup{t ≥ 0 : lim inf
r→0

r−tFµ
s,ρ(x, r) = 0}, ∀x ∈ RN .

Note that, by writing µ
(
Bρ(x, r)

)
as bx,ρ(r),

Fµ
s,ρ(x, r) = bx,ρ(r) + rs

∫ ∞

r

h−sdbx,ρ(h) = srs
∫ ∞

r

h−s−1bx,ρ(h)dh. (3.13)

For 0 ≤ s ≤ t, we have µ
(
RN

)
≥ Fµ

s,ρ(x, r) ≥ Fµ
t,ρ(x, r), which gives us that

0 ≤ px,ρ(s) ≤ px,ρ(t). (3.14)

Since we also have

µ
(
RN

)
≥ Fµ

s,ρ(x, r) ≥ rs
∫ ∞

r

h−sdbx,ρ(h)

and
∫∞
r
h−sdbx,ρ(h) increases as r decreases and is positive for sufficiently small

r, we obtain that

px,ρ(s) ≤ s. (3.15)

By noting that Fµ
s,ρ(x, r) ≥ bx,ρ(r) = µ

(
Bρ(x, r)

)
, we prove

px,ρ(s) ≤ sup{t ≥ 0 : lim inf
r→0

r−tµ
(
Bρ(x, r)

)
= 0}. (3.16)

By the same token as that of the proof of Proposition 16 in Falconer and
Howroyd [11], we also can derive that for 0 < s ≤ t <∞,

px,ρ(s) ≥
px,ρ(t)

1 +
(
1/s− 1/t

)
px,ρ(t)

. (3.17)
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Clearly, (3.17) and (3.15) are equivalent to the following: px,ρ(0) = 0 and for all
0 < s ≤ t <∞,

0 ≤ 1

px,ρ(s)
− 1

s
≤ 1

px,ρ(t)
− 1

t
. (3.18)

By Proposition 3.3, we have that for µ-almost all x ∈ RN ,

px,ρ(Q) ≥ sup{t ≥ 0 : lim inf
r→0

r−tµ
(
Bρ(x, r)

)
= 0}. (3.19)

Combining (3.19) with (3.16), (3.14) and (3.15), we have that for µ-almost all
x ∈ RN and for all t ≥ Q,

px,ρ(t) = px,ρ(Q) ≤ Q. (3.20)

Proposition 3.4. For any finite Borel measure µ on RN ,

0 ≤ Dimρ
s
µ ≤ s and Dimρ

s
µ = dimρ

P
µ if s ≥ Q. (3.21)

Furthermore, Dimρ
s
µ is continuous in s.

Proof. This follows immediately from (3.18), the definitions of Dimρ
s
µ (cf. (3.9))

and Proposition 3.2. �

Note that the identity in (3.21) provides the following equivalent characteriza-

tion of dimρ
P
µ in terms of the potential Fµ

Q,ρ(x, r), where Q =
∑N

j=1H
−1
j :

dimρ
P
µ = sup

{
β ≥ 0 : lim inf

r→0

Fµ
Q,ρ(x, r)

rβ
= 0 for µ-a.a. x ∈ RN

}
.

For any Borel set E ⊆ RN , the s-dimensional packing dimension profile of E in
the metric ρ is defined by

Dimρ
s
E = sup

{
Dimρ

s
µ : µ ∈ M+

c (E)
}
, (3.22)

where M+
c (E) denotes the family of finite Borel measures with compact support

in E. It follows from (3.21) that

0 ≤ Dimρ
s
E ≤ s and Dimρ

s
E = dimρ

P
E if s ≥ Q. (3.23)

4. Packing Dimension Results

Now we consider the packing dimensions of the range of an (N, d)-Gaussian
random field. We will assume throughout the rest of this paper that

0 < H1 ≤ . . . ≤ HN < 1. (4.1)

Recall that Q =
∑N

j=1
1
Hj

.
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4.1. Packing dimension of X
(
[0, 1]N

)
. First we consider the packing dimension

of X
(
[0, 1]N

)
. The following result shows that it is determined by the lower index

of φ and (H1, . . . , HN ).

Theorem 4.1. Let X = {X(t), t ∈ RN} be the Gaussian random field in Rd de-
fined by (1.1). We assume that the associated random field X0 satisfies Condition
(C). Suppose φ is such that 0 < α∗ ≤ α∗ < 1 and satisfies one of the following two
conditions: For all sufficiently small ε > 0, there exists a constant K such that∫ N

0

(
1

φ(x)

)d−ε

xQ−1 dx ≤ K (4.2)

or ∫ N/a

1

(
φ(a)

φ(ax)

)d−ε

xQ−1 dx ≤ K a−ε for all a ∈ (0, 1]. (4.3)

Then with probability 1,

dimPX
(
[0, 1]N

)
= min

{
d;

N∑
j=1

1

α∗Hj

}
. (4.4)

We will prove that with probability 1, min
{
d;

∑N
j=1

1
α∗ Hj

}
is an upper bound

and a lower bound for dimPX
(
[0, 1]N

)
separately. The upper bound is proved by

using the modulus of continuity of X and a covering argument, and the proof of
the lower bound is based on the potential-theoretic approach to packing dimension
(see (2.29)) of finite Borel measures.

For any Borel measure µ on RN , the image measure of µ under the mapping
t 7→ f(t) is defined by(

µ ◦ f−1
)
(B) := µ

({
t ∈ RN : f(t) ∈ B

})
for all Borel sets B ⊂ Rd.

The following lemma was proved in Xiao [29], which relates dimPf(E) with the
packing dimensions of the image measures.

Lemma 4.2. Let E ⊂ RN be an analytic set. Then for any continuous function
f : RN → Rd

dimPf(E) = sup
{
dimP

(
µ ◦ f−1

)
: µ ∈ M+

c (E)
}
. (4.5)

We are now ready to prove Theorem 4.1.

Proof. We first prove the upper bound in (4.4). Since dimPX([0, 1]N ) ≤ d a.s., it
is sufficient to show that dimPX([0, 1]N ) ≤ Q/α∗ a.s. For any ε ∈ (0, α∗), Lemma
2.2 implies that X(t) satisfies almost surely the following uniform Hölder condition

‖X(s)−X(t)‖ ≤ K(ω)ρ(s, t)α∗−ε, ∀ s, t ∈ [0, 1]N .

Hence a standard covering argument (e.g., Xiao [32]) shows that

dimBX([0, 1]N ) ≤ Q/(α∗ − ε) a.s.

This implies dimPX([0, 1]N ) ≤ Q/(α∗ − ε) a.s. Letting ε ↓ 0 along the sequence
of rational numbers yields the desired upper bound.
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Now we proceed to prove the lower bound in (4.4). By Lemma 4.2, we have
dimPX([0, 1]N ) ≥ dimP

(
mN ◦X−1

)
a. s. Hence it is sufficient to show that

dimP

(
mN ◦X−1

)
≥ min

{
d,

Q

α∗

}
, a.s. (4.6)

For simplicity of notation, we will, from now on, denote the image measure mN ◦
X−1 by µX .

Note that, for every fixed s ∈ RN , Fubini’s theorem implies

EFµ
X

d

(
X(s), r

)
= E

∫
Rd

min
{
1, rd‖v −X(s)‖−d

}
dµ

X
(v)

=

∫
[0,1]N

Emin
{
1, rd‖X(t)−X(s)‖−d

}
dt.

(4.7)

The last integrand in (4.7) can be written as

Emin
{
1, rd‖X(t)−X(s)‖−d

}
= P

{
‖X(t)−X(s)‖ ≤ r

}
+ E

{
rd‖X(t)−X(s)‖−d · 1l{‖X(t)−X(s)‖≥r}

}
.

(4.8)

By Condition (C), we obtain that for all s, t ∈ [0, 1]N and r > 0,

P
{
‖X(t)−X(s)‖ ≤ r

}
≤ K min

{
1,

rd

φ(ρ(t, s))d

}
. (4.9)

Denote the distribution of X(t)−X(s) by Γs,t(·). Let ν be the image measure of
Γs,t(·) under the mapping T : z 7→ ‖z‖ from Rd to R+. Then the second term in
(4.8) can be written as∫

Rd

rd

‖z‖d
1l{‖z‖≥r} Γs,t(dz) =

∫ ∞

r

rd

ud
ν(du)

≤ d

∫ ∞

r

rd

ud+1
P
{
‖X(t)−X(s)‖ ≤ u

}
d u,

(4.10)

where the last inequality follows from an integration-by-parts formula.
Hence, by (4.9) and (4.10) we see that, to within a constant, the second term

in (4.8) is bounded by

rd
∫ ∞

r

1

ud+1
min

{
1,

(
u

φ(ρ(t, s)

)d}
du

≤ K

{
1 if r ≥ φ(ρ(t, s)),(

r
φ(ρ(t,s))

)d

log
(

φ(ρ(t,s))
r

)
if r < φ(ρ(t, s)).

(4.11)

It follows from (4.8), (4.9), (4.10) and (4.11) that for any 0 < ε < 1 and s, t ∈
[0, 1]N ,

Emin
{
1, rd‖X(t)−X(s)‖−d

}
≤ K min

{
1,

(
r

φ(ρ(t, s))

)d−ε}
. (4.12)

Combining (4.7) and (4.12) we derive

EFµ
X

d

(
X(s), r

)
≤ K

∫
[0,1]N

min

{
1,

(
r

φ(ρ(0, t− s))

)d−ε}
dt. (4.13)
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Let us consider the diagonal matrix D = diag (1/H1, . . . , 1/HN ). Then, t 7→
ρ(0, t) is D-homogeneous function in the sense of Definition 2.6 of Biermé, et al.
[6], that is ρ

(
0, rDt

)
= rρ (0, t) for all r > 0, where rD := exp (log(r)D) . By a

variable substitution to the integral in (4.13) (see Proposition 2.3 in Biermé, et al.
[6]), we obtain

EFµ
X

d

(
X(s), r

)
≤ K

∫ N

0

min

{
1,

(
r

φ(x)

)d−ε}
xQ−1 dx

= K

{∫ φ−1(r)

0

xQ−1 dx+

∫ N

φ−1(r)

(
r

φ(x)

)d−ε

xQ−1 dx

}
:= I1 + I2.

(4.14)

In the above, φ−1(x) = inf{y : φ(y) > x} is the right-continuous inverse function
of φ. It can be seen that φ−1 is non-decreasing and satisfies φ

(
φ−1(x)

)
= x and

limx→0 φ
−1(x) = 0.

Let us estimate I1 and I2. Clearly, we have

I1 = K
[
φ−1(r)

]Q
. (4.15)

To estimate I2, we distinguish two cases. If φ satisfies (4.2), then for all r > 0
small enough, we derive

I2 ≤ K rd−ε

∫ N

0

(
1

φ(x)

)d−ε

xQ−1 dx ≤ K rd−ε. (4.16)

On the other hand, if φ satisfies (4.3), then we make a change of variable x =
φ−1(r)y to derive that for all r > 0 small enough,

I2 ≤ K
[
φ−1(r)

]Q ∫ N/φ−1(r)

1

rd−ε

φ
(
φ−1(r)y

)d−ε
yQ−1 dy

≤ K
[
φ−1(r)

]Q−ε
.

(4.17)

It follows from (4.14), (4.15), (4.16) and (4.17) that for all r > 0 small enough,

EFµ
X

d

(
X(s), r

)
≤ K

{[
φ−1(r)

]Q−ε
+ rd−ε

}
. (4.18)

Now for any 0 < γ < min
{
d, Q/α∗

}
, we choose ε > 0 small so that

γ <
Q− 2ε

α∗
and γ < d− ε. (4.19)

By the first inequality in (4.19), we see that there exists a sequence ρn → 0 such
that

φ(ρn) ≥ ρ(Q−2ε)/γ
n for all integers n ≥ 1. (4.20)

We choose a sequence {rn, n ≥ 1} of positive numbers such that φ−1(rn) = ρn.
Then φ(ρn) = rn and limn→∞ rn = 0.
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By Fatou’s lemma and (4.18) we obtain that for every s ∈ [0, 1]N ,

E
(
lim inf
r→0

F
µ
X

d

(
X(s), r

)
rγ

)
≤ K lim inf

n→∞

[
φ−1(rn)

]Q−ε
+ rd−ε

n

rγn

≤ K lim inf
n→∞

{
ρQ−ε
n

φ(ρn)γ
+ φ(ρn)

d−γ−ε

}
= 0.

In deriving the last equality, we have made use of (4.19) and (4.20).
By using Fubini’s theorem again, we see that almost surely,

lim inf
r→0

F
µ
X

d

(
X(s), r

)
rγ

= 0 for mN -a.a. s ∈ RN .

This and (2.29) together imply dimPµX
≥ γ almost surely. Since γ can be arbi-

trarily close to min
{
d, Q/α∗

}
, we have proved (4.6). This finishes the proof of

Theorem 4.1. �

4.2. Packing dimension of X(E). To determine the packing dimension of
X(E), we will make use of the following lemma, which is a generalization of Lemma
2.2 in Xiao [29].

Lemma 4.3. Let T be any compact interval in RN and let g : T → Rd be a
continuous function satisfying the following condition: For some constant α ∈
(0, 1] and any ε ∈ (0, α), there exists a constant K > 0 such that

|g(x)− g(y)| ≤ K ρ(x, y)α−ε, ∀x, y ∈ T. (4.21)

Then for any finite Borel measure µ on RN with support contained in T , we have

dimPµg ≤ 1

α
Dimρ

αd
µ, (4.22)

where µg = µ ◦ g−1 is the image measure of µ.

Proof. We first prove that for any ε ∈ (0, α), we have

dimPµg ≤ 1

α− ε
Dimρ

(α−ε)d
µ. (4.23)

Take any γ < dimPµg, by (2.29) we have

lim inf
r→0

r−γ

∫
Rd

min
{
1, rd‖v − u‖−d

}
µg(dv) = 0 µg-a.a.u ∈ Rd,

that is, for µ-almost all x ∈ RN ,

lim inf
r→0

r−γ

∫
T

min
{
1, rd‖g(y)− g(x)‖−d

}
µ(dy) = 0. (4.24)

By (4.21) we have

min
{
1, rd‖g(y)− g(x)‖−d

}
≥ Kmin

{
1, rdρ(x, y)−(α−ε)d

}
. (4.25)

It follows from (4.24) and (4.25) that for µ-almost all x ∈ RN ,

lim inf
r→0

r−(α−ε)γ

∫
RN

min
{
1, r(α−ε)dρ(x, y)−(α−ε)d

}
µ(dy) = 0, (4.26)



PACKING DIMENSION RESULTS FOR ANISOTROPIC GAUSSIAN FIELDS 59

which implies, by the definition (3.9), that Dimρ
(α−ε)d

µ ≥ (α − ε)γ. Since γ <

dimPµg is arbitrary, we have proved (4.23). Letting ε ↓ 0 and applying Proposition
3.4, we have proved (4.22). �

Theorem 4.4. Let X = {X(t), t ∈ RN} be the Gaussian random field in Rd de-
fined by (1.1). We assume that the associated random field X0 satisfies Condition
(C) and 0 < α∗ ≤ α∗ < 1. Let µ be any finite Borel measure on RN . Then with
probability 1,

1

α∗Dimρ
α∗d

µ ≤ dimPµX ≤ 1

α∗
Dimρ

α∗d
µ. (4.27)

Proof. By following the first half of the proof of Theorem 3.1 in Xiao [29], and by
Lemmas 2.2 and 4.3, we derive that

dimPµX ≤ 1

α∗
Dimρ

α∗d
µ a.s. (4.28)

To prove the reverse inequality, by Fubini’s Theorem, for any s ∈ RN ,

E
[
FµX

d

(
X(s), r

)]
=

∫
RN

E
[
min

{
1, rd‖X(t)−X(s)‖−d

}]
µ(dt)

≤ K

∫
RN

min
{
1, rd−ερ(s, t)−α∗(d−ε)

}
µ(dt)

(4.29)

where the last inequality follows from (4.12).
For any γ < Dimρ

α∗d
µ, by Proposition 3.4, there exists ε > 0 such that γ ≤

Dimρ
α∗(d−ε)

µ. It follows from (3.9) that

lim inf
r→0

r−
γ
α∗

∫
RN

min
{
1, rd−ερ(s, t)−α∗(d−ε)

}
µ(dt) = 0 for µ-a.a. s ∈ RN .

(4.30)
By (4.29) and (4.30), we have that for µ-almost all s ∈ RN

E
[
lim inf
r→0

r−
γ
α∗ FµX

d

(
X(s), r

)]
≤ K lim inf

r→0
r−

γ
α∗

∫
RN

min
{
1, rd−ερ(s, t)−α∗(d−ε)

}
µ(dt) = 0.

By applying Fubini’s Theorem, we see that with probability 1

lim inf
r→0

r−
γ
α∗ FµX

d

(
X(s), r

)
= 0 for µ-a.a. s ∈ RN ,

which implies dimPµX ≥ γ
α∗ a.s. Since γ can be arbitrarily close to Dimρ

α∗d
µ, we

have

dimPµX ≥ 1

α∗Dimρ
α∗d

µ a.s. (4.31)

Combining (4.28) and (4.31), we prove Theorem 4.4. �

The following theorem determines the packing dimension of the image X(E)
for an arbitrary analytic set E ⊆ [0, 1]N when α∗ = α∗.
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Theorem 4.5. If, in additions to the assumptions in Theorem 4.4, 0 < α∗ =
α∗ < 1, then for every analytic set E ⊆ [0, 1]N , we have that

dimPX(E) =
1

α
Dimρ

αd
E a.s.,

where α := α∗ = α∗.

Proof. By Theorem 4.4, we have that for any finite Borel measure µ on RN ,

dim
P
µX =

1

α
Dimρ

αd
µ a.s. (4.32)

The rest of the proof of Theorem 4.5 is reminiscent to the proof of Theorem 4.1
in Xiao [29], with the help of (4.32). We omit it here. �

Remark 4.6. When α∗ 6= α∗, the problem of determining the packing dimension
of X(E), where E ⊆ RN is a Borel set, remains open. In order to solve this prob-
lem, a more general form of packing dimension profile needs to be introduced. A
promising approach is to combine the method in Section 3 with that in Khosh-
nevisan, Schilling and Xiao [18]. Since this more general approach does not rely
on upper or lower indices of φ and may not provide an explicit formula as obtained
in Theorem 4.1, we will develop it elsewhere.

5. Appendix

In this Appendix, we provide proofs for Propositions 3.1 and 3.3. Also for
comparison purpose and completeness, we determine the Hausdorff dimensions of
the range X([0, 1]N ) and graph GrX([0, 1]N ).

5.1. Proofs of Propositions 3.1 and 3.3. The proof of Proposition 3.1 is a
slight modification of the proof of that in Tricot (1982) for the Euclidean metric,
see also Falconer (1990, p.45). It is included for completeness.

Proof of Proposition 3.1 First, we prove that for E ⊆ RN ,

dimρ
P
E ≤ dim

ρ

B
E. (5.1)

In fact, for any fixed γ < β < dimρ
P
E, we have Pβ

ρ (E) = ∞ and thus Pβ

ρ (E) = ∞.
Therefore, for a given 0 < δ ≤ 1, there exists a family of disjoint {Bρ(xi, ri)}, where
xi ∈ E and ri ≤ δ, such that 1 ≤

∑∞
i=1(2ri)

β . Suppose, for every nonnegative inte-
ger k, there are nk ρ-balls satisfying 2−k−2 < ri ≤ 2−k−1, then 1 ≤

∑∞
k=0 nk2

−kβ ,

which implies that there exists an k0 such that nk0 > 2k0γ
(
1−2γ−β

)
. Furthermore,

each of these nk0 ρ-balls contains a ρ-ball centered in E with radius 2−k0−2 ≤ δ.
Let Nρ(E, ε) be the largest number of disjoint ρ-balls centered in E with radius
ε, then

Nρ

(
E, 2−k0−2

)(
2−k0−2

)γ ≥ nk0

(
2−k0−2

)γ
> 2−2γ

(
1− 2γ−β

)
, (5.2)

where 2−k0−2 ≤ δ. Therefore, lim supδ↓0Nρ(E, δ)δ
γ > 0, which implies that for

every γ < dimρ
P
E we have dim

ρ

B
E ≥ γ. This proves (5.1).

Now we are ready to prove (3.5). If E ⊆
⋃

nEn, by (3.4) and (5.1), we have

dimρ
P
E ≤ sup

n
dimρ

P
En ≤ sup

n
dim

ρ

B
En, (5.3)
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which proves

dimρ
P
E ≤ inf

{
sup
n

dim
ρ

B
En : E ⊆

∞⋃
n=1

En

}
. (5.4)

Conversely, if β > dimρ
P
E, then sβ-pρ(E) = 0. Hence there exists a sequence {En}

such that E ⊆
⋃
En and

∑∞
n=1 P

β

ρ (En) <∞. By (3.2), we have that Nρ(En, δ)δ
β

is bounded when δ is sufficiently small. Therefore, for each n, dim
ρ

B
En ≤ β, which

implies

dimρ
P
E ≥ inf

{
sup
n

dim
ρ

B
En : E ⊆

∞⋃
n=1

En

}
. (5.5)

Combining (5.4) and (5.5) yields (3.5). �
In order to prove Proposition 3.3, we will make use of the following lemma, which

is an extension of Corollary 2.3 of Falconer and Mattila [12] (see also Lemma 1 of
Falconer and Howroyd [11]) to the metric space (RN , ρ). Since the proof essentially
follows the same idea as the proofs of Lemma 2.1 and Lemma 2.2 of Falconer and
Mattila [12], we omit it.

Lemma 5.1. Let 0 < a < 1 and ε > 0. For every finite Borel measure µ on RN

the following holds for µ-almost all x: If r > 0 is sufficiently small, then for all h
with ra ≤ h ≤ 1 we have

µ
(
Bρ(x, h)

)
≤

(
4h

r

)Q(1+ε)

µ
(
Bρ(x, r)

)
. (5.6)

Proof of Proposition 3.3 We fix 0 ≤ t < s. Choose ε > 0 and 0 < a < 1 such
that

Qε < s− t and Q(1 + ε)(1− a) < s− t. (5.7)

Suppose x ∈ RN is such that the conclusion of Lemma 5.1 and (3.11) hold. Again,
write µ

(
Bρ(x, r)

)
as bx,ρ(r), then by (3.13), Lemma 5.1 and (3.11) we derive

Fµ
Q,ρ(x, r) = QrQ

∫ ∞

r

h−Q−1bx,ρ(h)dh

≤ QrQ
∫ ra

r

h−Q−1bx,ρ(r
a)dh+QrQ

∫ 1

ra
h−Q−1

(
bx,ρ(r)

(
4h/r

)Q(1+ε)
)
dh

+QrQ
∫ ∞

1

h−Q−1µ
(
RN

)
dh

≤
(
4ra−1

)Q(1+ε)
bx,ρ(r) + 4Q(1+ε)(Qε)−1r−Qεbx,ρ(r) + rQµ

(
RN

)
.

By (3.11), there exists a finite constant K > 0 such that

lim inf
r→0

r−sµ
(
Bρ(x, r)

)
≤ K.

Hence for some finite constant K and arbitrary small r > 0,

Fµ
Q,ρ(x, r) ≤ K

(
rs−Q(1+ε)(1−a) + rs−Qε + rQ

)
.

Therefore, by (5.7) and by noting that t < s ≤ Q, we have (3.12) as required. �
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5.2. Hausdorff Dimension Results. The following is an extension of Theorem
6.1 in Xiao [32], which shows that the Hausdorff dimensions of X

(
[0, 1]N

)
and

GrX
(
[0, 1]N

)
are determined by the upper index of φ and (H1, . . . , HN ).

Theorem 5.2. Let X = {X(t), t ∈ RN} be an (N, d)-Gaussian field satisfying
Condition (C) on I = [0, 1]N and let 0 < α∗ ≤ α∗ ≤ 1 be the lower and upper
indices of φ. Then, with probability 1,

dimHX
(
[0, 1]N

)
= min

{
d;

N∑
j=1

1

α∗Hj

}
(5.8)

and

dimHGrX
(
[0, 1]N

)
= min

{ k∑
j=1

Hk

Hj
+N − k + (1− α∗Hk)d, 1 ≤ k ≤ N ;

N∑
j=1

1

α∗Hj

}

=

{ ∑N
j=1

1
α∗ Hj

, if
∑N

j=1
1

α∗ Hj
≤ d,∑k

j=1
Hk

Hj
+N − k + (1− α∗Hk)d, if

∑k−1
j=1

1
α∗Hj

≤ d <
∑k

j=1
1

α∗ Hj
,

(5.9)

where
∑0

j=1
1
Hj

:= 0.

Proof. Since the proofs of the lower bounds in (5.8) and (5.9) are based on the
standard capacity argument and are similar to the proof of Theorem 6.1 in Xiao
[32], we will not give the details. Instead, we only provide a sketch of the proof of
upper bounds in (5.8) and (5.9).

For any γ′ < γ < α∗, it follows from (2.2) that there exists a sequence rn → 0
such that φ(rn) ≤ rγn. By Lemma 2.2, we derive that almost surely for all n large
enough

sup
s,t∈[0,1]N :ρ(s,t)≤rn

‖X(s)−X(t)‖ ≤ rγ
′

n . (5.10)

For each fixed n large enough, we divide [0, 1]N into r−Q
n cubes Cn,i (i = 1, . . . , r−Q

n )

in the metric ρ. (Note that Cn,i is a rectangle with side-length r
H−1

j
n (j =

1, . . . , N).) It follows from (5.10) that each X(Cn,i) can be covered by a ball

of radius rγ
′

n in Rd. This implies that dimHX([0, 1]N ) ≤ 1
γ′

∑N
j=1

1
Hj

a.s. Since

γ′ < α∗ is arbitrary, we have

dimHX([0, 1]N ) ≤ min

d,
N∑
j=1

1

α∗Hj

 a.s.

This proves (5.8). The proof of the upper bound in (5.9) is similar and hence
omitted. Finally the last equality in (5.9) follows from Lemma 6.2 in Xiao [32], or
can be verified directly. This finishes the proof of Theorem 5.2. �
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