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Abstract. The joint continuity of local times is proved for a large class of
anisotropic Gaussian random fields. Sharp local and global Hölder conditions

for the local times under an anisotropic metric are established. These results
are useful for studying sample path and fractal properties of the Gaussian
fields.

1. Introduction

Gaussian random fields have been studied extensively in probability theory and
applied in a wide range of scientific areas including physics, engineering, hydrol-
ogy, biology, economics and finance. Two of the most important Gaussian random
fields are respectively the Brownian sheet and fractional Brownian motion and
they have been under active investigation for several decades. In recent years
there has been an increased interest in using anisotropic Gaussian random fields
as stochastic models in various scientific areas such as image processing, hydrol-
ogy, geostatistics and spatial statistics, because many data sets from these areas
have different geometric and probabilistic characteristics along different directions.
See, for example, Davies and Hall (1999), Bonami and Estrade (2003), Benson, et
al. (2008). Several classes of anisotropic Gaussian random fields have been intro-
duced and studied for theoretical and application purposes. For instance, Kamont
(1996) introduced fractional Brownian sheets and studied some of their regular-
ity properties. Bonami and Estrade (2003), Biermé, Meerschaert and Scheffler
(2007), Xue and Xiao (2009) constructed several classes of anisotropic Gaussian
random fields with stationary increments and certain operator-scaling properties.
Anisotropic Gaussian random fields also arise naturally in stochastic partial dif-
ferential equations [see, e.g., Dalang (1999), Øksendal and Zhang (2000), Mueller
and Tribe (2002), Hu and Nualart (2009)], and as spatial or spatiotemporal models
in statistics [e.g., Christakos (2000), Gneiting (2002), Stein (2005)].

It is known that, compared with isotropic Gaussian fields such as fractional
Brownian motion, the probabilistic and geometric properties of anisotropic Gauss-
ian random fields are much richer [see Ayache and Xiao (2005), Wu and Xiao
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(2007, 2009a, 2009b), Xiao (2009), Xue and Xiao (2009)] and their estimation and
prediction problems are more difficult to study.

This paper is concerned with regularity properties of local times of anisotropic
Gaussian random fields. Even though the existence and joint continuity of local
times have been established by Xiao and Zhang (2002) and Ayache, Wu and Xiao
(2008) for fractional Brownian sheets, and by Xiao (2009) for a class of Gaussian
random fields with stationary increments, several interesting problems remain to
be resolved. In particular, it is of interest to provide explicit sufficient conditions
for the joint continuity of local times of general Gaussian random fields and to
determine the Hölder regularities of the local times. This paper is motivated by
these two problems and our main results (Theorems 2.1, 3.1 and 3.2) not only
improve significantly the results in Ayache, Wu and Xiao (2008) and Xiao (2009)
but also provide a unified treatment in applying different forms of strong local
nondeterminism to estimate high moments of local times. We believe that this
latter argument will find applications in studying other sample path properties of
anisotropic random fields.

Now let us specify the class of Gaussian random fields to be considered in this
paper. Let X = {X(t), t ∈ RN} be a Gaussian random field with values in Rd
defined by

X(t) = (X1(t), . . . , Xd(t)), (1.1)

where X1, . . . , Xd are independent copies of a real-valued, centered anisotropic
Gaussian random field X0 = {X0(t), t ∈ RN} with X0(0) = 0 a.s.

We call X satisfying Condition A if there exists a constant vector (H1, . . . , HN )
with all components in (0, 1) such that the random field X0 satisfies the following
Condition A1 and Condition A2:

A1. For any fixed positive number ε ∈ (0, 1) and any compact interval T ⊆
[ε,∞)N , there exist positive constants δ0, c1,1 ≥ 1 such that

c−1
1,1
ρ2(s, t) ≤ E

[(
X0(t)−X0(s)

)2] ≤ c1,1 ρ
2(s, t) (1.2)

for all s, t ∈ T with |s−t| ≤ δ0. In the above and sequel, ρ is the anisotropic
metric on RN defined by

ρ(s, t) =
N∑
j=1

|sj − tj |Hj , ∀s, t ∈ RN . (1.3)

A2. For any fixed positive number ε ∈ (0, 1) and any compact interval T ⊆
[ε,∞)N , there exists a positive constant c1,2 such that for all integers

n ≥ 1, and all u, t1, . . . , tn ∈ T , we have

Var
(
X0(u) | X0(t

1), . . . , X0(t
n)
)
≥ c1,2

N∑
j=1

min
0≤k≤n

∣∣uj − tkj
∣∣2Hj

, (1.4)

where t0 = 0.

We will call the vector H ∈ (0, 1)N the (generalized) Hurst index of X0. With-
out loss of generality, we assume that

0 < H1 ≤ H2 ≤ · · · ≤ HN < 1. (1.5)
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Conditions A1 and A2 are the same as Conditions (C1) and (C3) in Xiao (2009).
We note that, Condition A2 is the weakest among several forms of strong local
nondeterminism in Xiao (2009) and, using the terminology in Khoshnevisan and
Xiao (2007), is called the property of sectorial local nondeterminism. Pitt (1978)
and Wu and Xiao (2007) proved respectively that multiparameter fractional Brow-
nian motion and fractional Brownian sheets satisfy Condition A. We refer to Xiao
(2009), Xue and Xiao (2009) for more examples of anisotropic Gaussian random
fields which satisfy Condition A.

The main objective of this paper is to establish joint continuity and sharp Hölder
conditions for the local times of Gaussian random fields that satisfy Condition A.
This paper is organized as follows. In Section 2, we study joint continuity of
the local times of the anisotropic Gaussian random fields satisfying Condition A.
We prove that the necessary and sufficient condition for the existence of local
times actually implies the joint continuity. The main argument in this section is
different from that in Ayache, Wu and Xiao (2008) for fractional Brownian sheets
and leads to better moment estimates. Section 3 is devoted to establish sharp
local and global Hölder conditions for the local times of the fields. Our Theorems
3.1 and 3.2 show that the Hölder regularities of the local times of an anisotropic
Gaussian random field satisfying Condition A can be more subtle than those of the
Brownian sheet proved by Ehm (1981) and fractional Brownian motion proved by
Xiao (1997) and Baraka, et al. (2009). In Section 4, we apply the regularity results
on local times to study fractal properties of the level sets of X. Our results show
that, due to the anisotropic nature of X, it is more convenient to characterize the
regularity properties of the local times and the fractal properties of X in terms of
the metric ρ. Finally, in the Appendix we give several technical lemmas, which
are used for proving the main lemmas in Section 2.

Throughout this paper, we use 〈·, ·〉 and | · | to denote the ordinary scalar
product and the Euclidean norm in Rp respectively, no matter what the value of
the integer p is. We use λp to denote the Lebesgue measure in Rp. A “time”
index t ∈ Rp is written as (t1, . . . , tp), or as 〈c〉, if t1 = · · · = tp = c. For
any s, t ∈ Rp such that sj < tj (j = 1, . . . , p), we define the closed interval (or
rectangle) [s, t] =

∏p
j=1[sj , tj ]. We will use A to denote the class of all closed

intervals T ⊂ (0, ∞)p.
We will use c to denote an unspecified positive and finite constant which may

not be the same in each occurrence. More specific constants in Section i are
numbered as ci,1 , ci,2 , . . ..

2. Joint Continuity of the Local Times

In this section, we study the joint continuity of local times of Gaussian random
field X satisfying Condition A. We start by recalling the definition of local times
and some basic facts from Geman and Horowitz (1980).

Let Y (t) be a Borel vector field on Rp with values in Rq. For any Borel set
T ⊆ Rp, the occupation measure of Y on T is defined as the following measure on
Rq:

µT (•) = λp
{
t ∈ T : Y (t) ∈ •

}
.
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If µ
T

is absolutely continuous with respect to the Lebesgue measure λq, we say
that Y (t) has local times on T , and define its local time, L(•, T ), as the Radon–
Nikodým derivative of µ

T
with respect to λq, i.e.,

L(x, T ) =
dµ

T

dλq
(x), ∀x ∈ Rq.

In the above, x is the so-called space variable, and T is the time variable. Note
that if Y has local times on T then for every Borel set S ⊆ T , L(x, S) also exists.

By Theorem 6.4 of Geman and Horowitz (1980), one can choose a measurable
version of L(x, T ) such that it satisfies the following occupation density formula:
For every Borel set T ⊆ Rp, and for every measurable function f : Rq → R+,∫

T

f(Y (t)) dt =

∫
Rq

f(x)L(x, T ) dx. (2.1)

Suppose we fix a rectangle T =
∏p
i=1[ai, ai + hi] ⊂ Rp, where a ∈ Rp and h ∈

Rp+. If we can choose a version of the local time, still denoted by L(x,
∏p
i=1[ai, ai+

ti]), such that it is a continuous function of (x, t1, · · · , tp) ∈ Rq ×
∏p
i=1[0, hi], Y

is said to have a jointly continuous local time on T . When a local time is jointly
continuous, L(x, ·) can be extended to a finite Borel measure supported on the
level set

Y −1
T (x) = {t ∈ T : Y (t) = x}; (2.2)

see Adler (1981) for details. This makes local times, besides of interest on their
own right, a useful tool in studying fractal properties of Y .

Let X = {X(t), t ∈ RN} be an (N, d) Gaussian random field defined by (1.1)
with generalized Hurst index H ∈ (0, 1)N satisfying Condition A1. Xiao (2009)
proved that for all intervals T ∈ A, X has a local time {L(x, T ), x ∈ Rd} on T

and L(·, T ) ∈ L2(P×λd) if and only if
∑N
`=1

1
H`

> d. Furthermore, if it exists, the

local time of X admits the following L2-representation

L(x, T ) = (2π)−d
∫
Rd

e−i〈y,x〉
∫
T

ei〈y,X(t)〉 dtdy. (2.3)

In the following, we will prove that ifX satisfies Condition A, then the existence

condition
∑N
`=1

1
H`

> d implies that X has almost surely a jointly continuous local
time on T ∈ A.

Theorem 2.1. Let X = {X(t), t ∈ RN} be an (N, d) Gaussian random field
defined by (1.1) satisfying Condition A with generalized Hurst index H ∈ (0, 1)N .

If
∑N
`=1

1
H`

> d, then for all intervals T ∈ A, X has almost surely a jointly
continuous local time on T .

The proof of Theorem 2.1 is based on high moment estimates for the local times
and a multiparameter version of Kolmogorov’s continuity theorem. We will make
use of the following identities [cf. Geman and Horowitz (1980)]: For all x, y ∈ Rd,
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any Borel set D ⊆ RN and all integers n ≥ 1,

E
[
L(x,D)n

]
= (2π)−nd

∫
Dn

∫
Rnd

exp

(
− i

n∑
j=1

〈uj , x〉
)

×E exp

(
i

n∑
j=1

〈uj , X(tj)〉
)
du dt (2.4)

and for all even integers n ≥ 2,

E
[
(L(x,D)− L(y,D))n

]
=(2π)−nd

∫
Dn

∫
Rnd

n∏
j=1

[
e−i〈u

j ,x〉 − e−i〈u
j ,y〉
]

× E exp

(
i
n∑
j=1

〈uj , X(tj)〉
)
du dt,

(2.5)

where u = (u1, . . . , un), t = (t1, . . . , tn), and each uj ∈ Rd, tj ∈ D. In the

coordinate notation we then write uj = (uj1, . . . , u
j
d).

To estimate the integrals in (2.4) and (2.5) we will make use of several technical
lemmas. The following lemma is due to Cuzick and DuPreez (1982), and the others
are given in the Appendix.

Lemma 2.2. Let Z1, . . . , Zn be mean zero Gaussian random variables which are
linearly independent. Then for any non-negative measurable function g : R → R+∫

Rn

g(v1) exp
[
−1

2
Var
( n∑
j=1

vjZj

)]
dv1 · · · dvn

=
(2π)(n−1)/2

(detCov(Z1, · · · , Zn))1/2

∫ ∞

−∞
g
( v
σ1

)
e−v

2/2dv,

where σ2
1 = Var(Z1|Z2, . . . , Zn) is the conditional variance of Z1 given Z2, . . . , Zn.

The determinant detCov(Z1, · · · , Zn) can be evaluated by using the following
well known expansion: For any Gaussian random vector (Z1, . . . , Zn),

detCov(Z1, . . . , Zn) = Var(Z1)

n∏
k=2

Var(Zk|Z1, . . . , Zk−1). (2.6)

Combined with the property of sectional local nondeterminism, (2.6) gives a lower
bound for detCov(X0(t

1), . . . , X0(t
n)).

To state Lemma 2.3 and Lemma 2.4, we fix some notation. When
∑N
`=1

1
H`

> d,

there exists τ ∈ {1, 2, . . . , N} such that

τ−1∑
`=1

1

H`
≤ d <

τ∑
`=1

1

H`
, (2.7)

with the convention that
∑0

1(·) ≡ 0. Throughout, we denote

α :=
N∑
`=1

1

H`
− d, ητ := τ +Hτd−

τ∑
`=1

Hτ

H`
(2.8)



20 DONGSHENG WU AND YIMIN XIAO

and we will distinguish three cases:

Case 1.
τ−1∑̀
=1

1
H`

< d <
τ∑̀
=1

1
H`

.

Case 2.
τ−1∑̀
=1

1
H`

= d <
τ∑̀
=1

1
H`

and Hτ−1 = Hτ .

Case 3.
τ−1∑̀
=1

1
H`

= d <
τ∑̀
=1

1
H`

and Hτ−1 < Hτ .

From now on, for any u ∈ RN and r > 0, the open and closed ρ-balls (in RN )
center at u with radius R are defined by

Bρ(u,R) := {t ∈ RN : ρ(t, u) < R}, Bρ(u,R) := {t ∈ RN : ρ(t, u) ≤ R}.

Lemma 2.3. Suppose the assumptions of Theorem 2.1 hold. Then, for every
T ∈ A, there exists a positive and finite constant c2,1 , which depends on N, d, H

and T only, such that for all r ∈ (0, 1/e), D := Bρ(a, r) ⊆ T , all x ∈ Rd and all
integers n ≥ 1, we have

E [L(x,D)n] ≤
{
cn
2,1

(n!)ητ rnα in Cases 1 and 2,

cn
2,1

(n!)ητ
(
log(e+ n)

)n
rnα in Case 3.

(2.9)

Proof. Even though the proof of Lemma 2.3 follows the same spirit of the proofs
of Lemma 2.5 in Xiao (1997) and Lemma 3.4 in Wu and Xiao (2009a), there are
some subtle differences. Hence we give a complete proof. In particular, we provide
a direct way to estimate the integrals in (2.12) below.

It follows from Eq. (2.4) and the fact that X1, . . . , Xd are independent copies
of X0 that for all integers n ≥ 1,

E
[
L(x,D)n

]
≤ (2π)−nd

∫
Dn

d∏
k=1

{∫
Rn

exp

[
− 1

2
Var

( n∑
j=1

ujkX0(t
j)

)]
duk

}
dt

= (2π)−nd/2
∫
Dn

[
detCov

(
X0(t

1), . . . , X0(t
n)
) ]− d

2

dt,

(2.10)

where uk = (u1k, . . . , u
n
k ) ∈ Rn, t = (t1, . . . , tn) and the equality follows from the

fact that for any positive definite n× n matrix Γ,∫
Rn

[det(Γ)]1/2

(2π)n/2
exp

(
− 1

2
x′Γx

)
dx = 1. (2.11)

By using Condition A2, (2.6) and (2.7), we derive from (2.10) that

E
[
L(x,D)n

]
≤ cn

2,2

∫
Dn

n∏
j=1

[ N∑
`=1

min
0≤s≤j−1

|tj` − ts` |2H`

]− d
2

dt

≤ cn
2,2

∫
Dn

n∏
j=1

[ τ∑
`=1

min
0≤s≤j−1

|tj` − ts` |2H`

]− d
2

dt.

(2.12)

To estimate the last integral in (2.12), we will integrate in the order of dtn1 , . . . ,
dtnN , . . . , dt

1
1, . . . , dt

1
N . In Case 1, if τ = 1, which implies that H1d < 1, we apply
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Part (i) of Lemma 5.3 to derive

∫
D

dtn1 · · · dtnN(
min

0≤s≤n−1
|tn1 − ts1|2H1

)d/2 = (2r)
∑N

`=2
1

H`

∫ a1+r
1

H1

a1−r
1

H1

dtn1
min

0≤s≤n−1
|tn1 − ts1|H1d

≤ c2,3n
H1d r

∑N
`=1

1
H`

−d

= c2,3n
η1 rα.

(2.13)

If τ > 1, since H1d > 1, we apply Part (i) of Lemma 5.2 with p = 1 and

A =
τ∑̀
=2

min
0≤s≤n−1

|tn` − ts` |2H` at first to derive

∫ a1+r
1

H1

a1−r
1

H1

dtn1(
min

0≤s≤n−1
|tn1 − ts1|2H1 +

τ∑̀
=2

min
0≤s≤n−1

|tn` − ts` |2H`

)d/2
≤

c2,4 n( τ∑̀
=2

min
0≤s≤n−1

|tn` − ts` |H`

)d− 1
H1

.

(2.14)

Actually, since Hτ−1

(
d −

∑τ−2
`=1

1
H`

)
> 1, we can apply Part (i) of Lemma 5.2

repeatedly for τ − 1 many times to get∫
D

dtn1 · · · dtnN( τ∑̀
=1

min
0≤s≤n−1

|tn` − ts` |2H`

)d/2
≤ c2,5 n

τ−1r
∑N

`=τ+1
1

H`

∫ aτ+r
1

Hτ

aτ−r
1

Hτ

dtnτ(
min

0≤s≤n−1
|tnτ − tsτ |Hτ

)d−∑τ−1
`=1

1
H`

.

(2.15)

Notice that Hτ

(
d−

∑τ−1
`=1

1
H`

)
< 1, by applying Part (i) of Lemma 5.3 to the last

integral, we derive∫
D

dtn1 · · · dtnN( τ∑̀
=1

min
0≤s≤n−1

|tn` − ts` |2H`

)d/2 ≤ c2,6 n
τ−1+Hτ

(
d−

∑τ−1
`=1

1
H`

)
r
∑N

`=1
1

H`
−d

= c2,6n
ητ rα.

(2.16)

By iterating the above procedure for integrating dtn−1
1 , . . . , dtn−1

N and so on, we
obtain (2.9) for Case 1.

Now we consider Cases 2 and 3. Exactly like what we did for Case 1, we
will integrate in the order of dtn1 , . . . , dt

n
N , . . . , dt

1
1, . . . , dt

1
N . This time we can

repeatedly apply Part (i) of Lemma 5.2 for τ − 2 times (notice that τ > 1 in this
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case) to have∫
T

dtn1 · · · dtnN( τ∑̀
=1

min
0≤s≤n−1

|tn` − ts` |2H`

)d/2
≤
∫ aτ+r

1
Hτ

aτ−r
1

Hτ

∫ aτ−1+r
1

Hτ−1

aτ−1−r
1

Hτ−1

c2,7 n
τ−2r

∑N
`=τ+1

1
H` dtnτ−1 dt

n
τ(∑τ

`=τ−1 min
0≤s≤n−1

|tn` − ts` |H`

)d−∑τ−2
`=1

1
H`

.

(2.17)

Let κ ∈ (0, 1) be a constant. Notice that Hτ−1

(
d−

∑τ−2
`=1

1
H`

)
= 1, applying Part

(ii) of Lemma 5.2 with A = min
0≤s≤n−1

|tnτ − tsτ |2Hτ and then applying Part (ii) of

Lemma 5.3, we obtain∫ aτ+r
1

Hτ

aτ−r
1

Hτ

∫ aτ−1+r
1

Hτ−1

aτ−1−r
1

Hτ−1

c2,7 n
τ−2r

∑N
`=τ+1

1
H` dtnτ−1 dt

n
τ(∑τ

`=τ−1 min
0≤s≤n−1

|tn` − ts` |H`

)d−∑τ−2
`=1

1
H`

≤ c2,8 n
τ−1r

∑N
`=τ+1

1
H`

×
∫ aτ+r

1
Hτ

aτ−r
1

Hτ

log

[
e+

((
min

0≤s≤n−1
|tnτ − tsτ |2Hτ

)− 1
2Hτ−1

r
1

Hτ−1

n

)κ]
dtnτ

≤ c2,9 n
τ−1r

∑N
`=τ

1
H` log

(
e+ nHτ−Hτ−1

)
,

(2.18)

where we have used the fact that Hτ ≥ Hτ−1 and κ ∈ (0, 1).
By iterating the procedure and integrating dtn−1

1 , . . . , dtn−1
N , . . . , dt11, . . . , dt

1
N ,

we obtain that

E
[
L(x,D)n

]
≤ cn

2,1
(n!)τ−1 r

n
∑N

`=τ
1

H`

n∏
j=1

log
(
e+ jHτ−Hτ−1

)
= cn

2,1
(n!)ητ rnα

n∏
j=1

log
(
e+ jHτ−Hτ−1

)
,

(2.19)

where we have used the fact that ητ = τ − 1 and α =
∑N
`=τ

1
H`

in Cases 2 and 3.

If Hτ = Hτ−1 then (2.19) yields (2.9) for Case 2. Finally, we note that in Case 3
(where Hτ−1 < Hτ ),

n∏
j=1

log
(
e+ jHτ−Hτ−1

)
≤

n∏
j=1

log(e+ j) ≤
(
log(e+ n)

)n
. (2.20)

Hence, in Case 3, (2.9) follows from (2.19) and (2.20). This finishes the proof of
Lemma 2.3. �

The following lemma estimates the higher moments of the increments of the
local times of X. Combined with a multiparameter version of Kolmogorov’s con-
tinuity theorem, it immediately implies the existence of a continuous version of
x 7→ L(x,D).
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Lemma 2.4. Suppose the assumptions of Theorem 2.1 hold. Then, there exists
a positive constant c2,10 , depending on N, d, H and T only, such that for all r ∈
(0, 1) small, D := Bρ(a, r) ⊆ T , all x, y ∈ Rd with |x − y| ≤ 1, all even integers
n ≥ 1 and all γ ∈ (0, 1) small enough, we have

E
[(
L(x,D)− L(y,D)

)n]
≤

{
cn
2,10

(n!)ητ+(2Hτ+1)γ rn(α−γ) in Cases 1 and 2,

cn
2,10

(n!)ητ+(2Hτ+1)γ
(
log(e+ n)

)n
rn(α−γ) in Case 3.

(2.21)

where α and ητ are the same as that defined in Eq (2.8).

Proof. Let γ ∈ (0, 1) be a small constant whose value will be determined later.
Note that by the elementary inequalities |eiu − 1| ≤ 21−γ |u|γ for all u ∈ R and
|u+ v|γ ≤ |u|γ + |v|γ , we see that for all u1, . . . , un, x, y ∈ Rd,

n∏
j=1

∣∣∣e−i〈uj ,x〉 − e−i〈u
j ,y〉
∣∣∣ ≤ 2(1−γ)n |x− y|nγ

∑′ n∏
j=1

|ujkj |
γ , (2.22)

where the summation
∑

´ is taken over all the sequences (k1, . . . , kn) ∈ {1, . . . , d}n.
It follows from (2.5) and (2.22) that for every even integer n ≥ 2,

E
[
(L(x, D)− L(y,D))n

]
≤ (2π)−nd2(1−γ)n |x− y|nγ

×
∑′ ∫

Dn

∫
Rnd

n∏
m=1

|umkm |γ E exp

(
− i

n∑
j=1

〈uj , X(tj)〉
)
du dt

≤ cn
2,11

|x− y|nγ
∑′ ∫

Dn

dt

×
n∏

m=1

{∫
Rnd

|umkm |nγ exp

[
− 1

2
Var

( n∑
j=1

〈uj , X(tj)〉
)]

du

}1/n

,

(2.23)

where the last inequality follows from the generalized Hölder inequality.
Now we fix a vector k = (k1, k2, . . . , kn) ∈ {1, . . . , d}n and n points t1, . . . , tn ∈

D such that all the coordinates of t1, . . . , tn are distinct [the set of such points has
full nN -dimensional Lebesgue measure]. Let M = M(k, t, γ) be defined by

M =

n∏
m=1

{∫
Rnd

|umkm |nγ exp

[
− 1

2
Var

( n∑
j=1

〈uj , X(tj)〉
)]

du

}1/n

. (2.24)

Note that X` (1 ≤ ` ≤ d) are independent copies of X0. By Condition A2, the
random variables X`(t

j) (1 ≤ ` ≤ d, 1 ≤ j ≤ n) are linearly independent. Hence
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Lemma 2.2 gives∫
Rnd

|umkm |nγ exp

[
− 1

2
Var

( n∑
j=1

〈uj , X(tj)〉
)]

du

=
(2π)(nd−1)/2[

detCov
(
X0(t1), . . . , X0(tn)

)]d/2 ∫
R

( v

σm

)nγ
e−

v2

2 dv

≤
cn
2,12

(n!)γ[
detCov

(
X0(t1), . . . , X0(tn)

)]d/2 1

σnγm
,

(2.25)

where σ2
m is the conditional variance of Xkm(tm) given Xi(t

j) (i 6= km or i = km
but j 6= m), and the last inequality follows from Stirling’s formula.

Combining (2.24) and (2.25) we obtain

M ≤
cn
2,13

(n!)γ[
detCov

(
X0(t1), . . . , X0(tn)

)]d/2 n∏
m=1

1

σγm
. (2.26)

In order to control the second product in (2.26), we use again the independence
of the coordinate processes of X and Condition A2 to derive

σ2
m = Var

(
Xkm(tm)

∣∣∣Xkm(tj), j 6= m
)
≥ c2,14

N∑
`=1

min
j 6=m

{
|tm` − tj` |

2H`
}
. (2.27)

For any n points {t1, . . . , tn} ∈ Dn, we define a permutation πτ of {1, 2, . . . , n}
such that

tπτ (1)
τ ≤ · · · ≤ tπτ (n)

τ . (2.28)

Then, by (2.27), we have

n∏
m=1

1

σγm
≤

n∏
m=1

1

c2,15
[
|tπτ (m)
τ − t

πτ (m−1)
τ |Hτ ∧ |tπτ (m+1)

τ − t
πτ (m)
τ |Hτ

]γ
≤ c−n

2,15

n∏
m=1

1

|tπτ (m)
τ − t

πτ (m−1)
τ |qmHτγ

,

(2.29)

where qm ∈ {0, 1, 2} satisfy that
∑n
m=1 qm = n.

It follows from (2.26), (2.6) and (2.29) that

M ≤
cn
2,12

(n!)γ[
detCov

(
X0(t1), . . . , X0(tn)

)]d/2 n∏
m=1

1

σγm

=
cn
2,12

(n!)γ[
detCov

(
X0(tπτ (1)), . . . , X0(tπτ (n))

)]d/2 n∏
m=1

1

σγm

≤
cn
2,16

(n!)γ∏n
j=1

[ τ∑̀
=1

min
0≤s≤j−1

|tπτ (j)
` − t

πτ (s)
` |H`

]d n∏
m=1

1

|tπτ (m)
τ − t

πτ (m−1)
τ |qmHτγ

.

(2.30)
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As in the proof of Eq. (2.9), we will prove Eq. (2.21) by cases. we will

integrate in the order of dt
πτ (n)
1 , . . . , dt

πτ (n)
N , . . . , dt

πτ (1)
1 , . . . , dt

πτ (1)
N . In Case 1,

after applying Part (i) of Lemma 5.2 (with p = 1) τ − 1 many times, we have∫
D

dt
πτ (n)
1 · · · dtπτ (n)

N[ τ∑̀
=1

min
0≤s≤n−1

|tπτ (n)
` − t

πτ (s)
` |H`

]d∣∣tπτ (n)
τ − t

πτ (n−1)
τ

∣∣qnHτγ

≤
∫ aτ+r

1
Hτ

aτ−r
1

Hτ

c2,17 n
τ−1r

∑N
`=τ+1

1
H` dt

πτ (n)
τ

min
0≤s≤n−1

|tπτ (n)
τ − t

πτ (s)
τ |Hτ

(
d−

∑τ−1
`=1

1
H`

+qnγ
) .

(2.31)

For γ > 0 sufficiently small so that Hτ

(
d−

∑τ−1
`=1

1
H`

+ 2γ
)
< 1, we apply Part (i)

of Lemma 5.3 to the last integral to obtain that∫
D

dt
πτ (n)
1 · · · dtπτ (n)

N[ τ∑̀
=1

min
0≤s≤n−1

∣∣tπτ (n)
` − t

πτ (s)
`

∣∣H`
]d∣∣tπτ (n)

τ − t
πτ (n−1)
τ

∣∣qnHτγ

≤ c2,18 n
τ−1+Hτ

(
d−

∑τ−1
`=1

1
H`

)
+qnHτγ r

∑N
`=1

1
H`

−d−qnγ

≤ c2,18n
ητ+2Hτγrα−qnγ ,

(2.32)

where, in deriving the last inequality, we have used the fact that qn ≤ 2.
Repeating the above procedure yields∫

Dn

M(k, t, γ) dt ≤ cn
2,19

(n!)ητ+(2Hτ+1)γrnα−
∑n

m=1 qmγ

= cn
2,19

(n!)ητ+(2Hτ+1)γrn(α−γ).

(2.33)

Combining Eq. (2.23) with Eq. (2.33), we prove (2.21) in Case 1.
For Cases 2 and 3, we can repeatedly apply Part (i) of Lemma 5.2 for τ − 2

times (notice that τ > 1 in this case) to derive∫
D

dt
πτ (n)
1 · · · dtπτ (n)

N[ τ∑̀
=1

min
0≤s≤n−1

|tπτ (n)
` − t

πτ (s)
` |H`

]d∣∣tπτ (n)
τ − t

πτ (n−1)
τ

∣∣qnHτγ

≤ c2,20 n
τ−2r

∑N
`=τ+1

1
H`

∫ aτ+r
1

Hτ

aτ−r
1

Hτ

dtπτ (n)
τ

∫ aτ−1+r
1

Hτ−1

aτ−1−r
1

Hτ−1

|tπτ (n)
τ − t

πτ (n−1)
τ |−qnHτγdt

πτ (n)
τ−1[ τ∑

`=τ−1

min
0≤s≤n−1

|tπτ (n)
` − t

πτ (s)
` |H`

]d−∑τ−2
`=1

1
H`

.

(2.34)

Let κ ∈ (0, 1) be a constant and γ ∈ (0, 1) small such that 2Hτγ < 1. Notice that

Hτ−1

(
d−

∑τ−2
`=1

1
H`

)
= 1, applying Part (ii) of Lemma 5.2 with

A = min
0≤s≤n−1

|tnτ − tsτ |2Hτ
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and then applying Lemma 5.4, we have∫
D

dt
πτ (n)
1 · · · dtπτ (n)

N[ τ∑̀
=1

min
0≤s≤n−1

|tπτ (n)
` − t

πτ (s)
` |H`

]d∣∣tπτ (n)
τ − t

πτ (n−1)
τ

∣∣qnHτγ

≤
∫ aτ+r

1
Hτ

aτ−r
1

Hτ

c2,21 n
τ−1r

∑N
`=τ+1

1
H` |tπτ (n)

τ − t
πτ (n−1)
τ |−qnHτγ dt

πτ (n)
τ

log
[
e+

((
min

0≤s≤n−1
|tπτ (n)
τ − t

πτ (s)
τ |Hτ

)− 1
Hτ−1 r

n

)κ]
≤ c2,22 n

τ−1+qnHτγ r
∑N

`=τ
1

H`
−qnγ log

[
e+ nHτ−Hτ−1

]
≤ c2,22 n

τ−1+2Hτγ r
∑N

`=τ
1

H`
−qnγ log

[
e+ nHτ−Hτ−1

]
,

(2.35)

where we have used the fact that qn ≤ 2, Hτ ≥ Hτ−1 and κ ∈ (0, 1).
Repeating the above procedure yields∫
Dn

M(k, t, γ) dt ≤ cn
2,23

(n!)ητ+(2Hτ+1)γrnα−
∑n

m=1 qmγ
n∏
j=1

log
[
e+ jHτ−Hτ−1

]
= cn

2,23
(n!)ητ+(2Hτ+1)γrn(α−γ)

n∏
j=1

log
[
e+ jHτ−Hτ−1

]
.

(2.36)

Combining Eq. (2.23) with Eq. (2.36) and (2.20), we prove (2.21) in Cases 2 and
3. This finishes the proof of Lemma 2.4. �

Now we are ready to prove Theorem 2.1.

Proof. The joint continuity of the local time of X follows from the moment esti-
mates in Lemmas 2.3, 2.4 and a multiparameter version of Kolmogorov’s continuity
theorem [cf. Khoshnevisan (2002)]. Since the proof is similar to that of Theorem
3.1 in Ayache, Wu and Xiao (2008) [see also the proof of Theorem 8.2 in Xiao
(2009)], we omit the details. �

We end this section with the following two technical lemmas, which will be
useful in the next section.

Lemma 2.5. Under the conditions of Lemma 2.3, there exist positive and finite
constants c

2,24
and c

2,25
, depending on N, d, H and T only, such that the following

hold:
(i). For all D = Bρ(a, r) ⊆ T with r ∈ (0, 1), x ∈ Rd and all integers n ≥ 1,

E
[
L
(
x+X(a), D

)n] ≤ { cn
2,24

(n!)ητ rnα in Cases 1 and 2,

cn
2,24

(n!)ητ
(
log(e+ n)

)n
rnα in Case 3.

(2.37)
where ητ and α are defined in (2.8).
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(ii). For all D = Bρ(a, r) ⊆ T with r ∈ (0, 1), x, y ∈ Rd with |x− y| ≤ 1, all even
integers n ≥ 1 and all γ ∈

(
0, 1 ∧ α

2

)
,

E
[(
L(x+X(a), D)− L(y +X(a), D)

)n]
≤

{
cn
2,25

(n!)ητ+(2Hτ+1)γ rn(α−γ) in Cases 1 and 2,

cn
2,25

(n!)ητ+(2Hτ+1)γ
(
log(e+ n)

)n
rn(α−γ) in Case 3.

(2.38)

Proof. For each fixed a ∈ T , we define the Gaussian random field Y = {Y (t), t ∈
RN+} with values in Rd by Y (t) = X(t)−X(a). It follows from (2.1) that if X has

a local time L(x, S) on any Borel set S, then Y also has a local time L̃(x, S) on S

and, moreover, L(x+X(a), S) = L̃(x, S). It can be verified that the random field
Y satisfies Condition A. By applying Lemmas 2.3 and 2.4 to the Gaussian field Y ,
we derive that both (2.37) and (2.38) hold. �

The following lemma is a consequence of Lemma 2.5 and Chebyshev’s inequality.
The proof is standard, hence omitted.

Lemma 2.6. Assume the conditions of Lemma 2.3 hold. For any constants b1 > 0
and b2 > 0, there exist positive constants c2,26 and c2,27 (depending on N , d, H
and T only) such that the following hold:
(i) For all D = Bρ(a, r) ⊆ T with radius r ∈ (0, 1), x ∈ Rd and u > 1, we have

P
{
L
(
x+X(a), D

)
≥ c2,26 r

α uητ
}

≤ exp
(
−b1 u

)
(2.39)

in Cases 1 and 2; and

P
{
L
(
x+X(a), D

)
≥ c2,26 r

α uητ log(e+ u)

}
≤ exp

(
−b1 u

)
(2.40)

in Case 3.
(ii) For all D = Bρ(a, r) ⊆ T with r ∈ (0, 1), |x − y| ≤ 1 and γ ∈

(
0, 1 ∧

1
2

(∑τ
`=1

1
H`

− d
))

,

P
{∣∣∣L(x+X(a), D

)
− L

(
y +X(a), D

)∣∣∣
≥ c2,27 |x− y|γ rα−γ uητ+(1+2Hτ )γ

}
≤ exp

(
−b2 u

) (2.41)

in Cases 1 and 2; and

P
{∣∣∣L(x+X(a), D

)
− L

(
y +X(a), D

)∣∣∣
≥ c2,27 |x− y|γ rα−γ uητ+(1+2Hτ )γ log(e+ u)

}
≤ exp

(
−b2 u

)
(2.42)

in Case 3.

We conclude this section by the exponential integrability of L(x,D), which is a
direct consequence of Lemma 2.3. We omit its proof here.
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Theorem 2.7. Assume the conditions of Lemma 2.3 hold and D1 = Bρ(a, 1) ⊂ T .
Then there exists a positive constant δ, depending on N , d, H and T only, such
that the following hold:

(i). In Cases 1 and 2, E
(
eδL(x,D1)

η−1
τ
)
<∞ for every x ∈ Rd.

(ii). In Case 3, E
(
eδψ(L(x,D1))

)
<∞ for every x ∈ Rd, where

ψ(x) =
(
x/ log x

)1/(τ−1)
.

3. Hölder Conditions for the Local Times

In this section we investigate the local and uniform asymptotic behavior of the
local time L(x,D) at x and the maximum local time L∗(D) = maxx∈Rd L(x,D) as
r → 0, where D = Bρ(a, r) ⊂ T . The results are then applied to study the sample
path properties of X.

3.1. Hölder Conditions for L(x, •). By applying Lemma 2.6 and the Borel-
Cantelli lemma, one can easily derive the following law of the iterated logarithm
for the local time L(x, ·): There exists a positive constant c3,1 such that for every

x ∈ Rd and t ∈ [ε,∞)N ,

lim sup
r→0

L(x,Bρ(t, r))

ϕ1(r)
≤ c3,1 in Cases 1 and 2,

lim sup
r→0

L(x,Bρ(t, r))

ϕ2(r)
≤ c3,1 in Case 3,

(3.1)

where

ϕ1(r) = rα
(
log log(1/r)

)ητ
,

ϕ2(r) = rα
(
log log(1/r)

)ητ
log log log(1/r)

(3.2)

for r > 0 small enough. We believe the rate function ϕ1(r) is sharp in Cases 1
and 2, but the question in Case 3 seems to be more subtle. In the special case of
fractional Brownian motion, laws of the iterated logarithm for the local times have
been obtained recently by Baraka and Mountford (2008), Baraka, et al. (2009),
and Chen et al. (2009).

It follows from Fubini’s theorem that, with probability one, (3.1) holds for λN -
almost all t ∈ [ε,∞)N . Now we prove a stronger version of this result, which is
useful in determining the exact ρ -Hausdorff measure of the level set X−1(x) =
{t ∈ RN : X(t) = x}.

Theorem 3.1. For any fixed x ∈ Rd, let L(x, ·) be the local time of X at x which
is a random measure supported on Γx. Then there exists a positive and finite
constant c

3,2
independent of x such that with probability 1,

lim sup
r→0

L(x,Bρ(t, r))

ϕ1(r)
≤ c3,2 in Cases 1 and 2,

lim sup
r→0

L(x,Bρ(t, r))

ϕ2(r)
≤ c3,2 in Case 3

(3.3)

for L(x, ·)-almost all t ∈ T , where ϕ1(r) and ϕ2(r) are defined in (3.2).
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Proof. For any x ∈ Rd and every integer k > 0, we consider the random measure
Lk(x, •) on the Borel subsets C of T defined by

Lk(x,C) =

∫
C

(2πk)d/2 exp

(
− k |X(t)− x|2

2

)
dt

=

∫
C

∫
Rd

exp

(
− |u|2

2k
+ i〈u,X(t)− x〉

)
du dt.

(3.4)

Then, by the occupation density formula (2.1) and the continuity of the function
y 7→ L(y, C), one can verify that almost surely Lk(x,C) → L(x,C) as k → ∞ for
every Borel set C ⊂ B.

For every integer m ≥ 1, denote fm(t) = L
(
x, Bρ(t, 2

−m)
)
. From the proof of

Theorem 2.1 we can see that almost surely the functions fm(t) are continuous and
bounded. Hence we have almost surely, for all integers m, n ≥ 1,∫

T

[fm(t)]
n
L(x, dt) = lim

k→∞

∫
T

[fm(t)]
n
Lk(x, dt). (3.5)

It follows from (3.5), (3.4) and the proof of Proposition 3.1 of Pitt (1978) that for
every positive integer n ≥ 1,

E
∫
T

[fm(t)]
n
L(x, dt) =

(
1

2π

)(n+1)d ∫
T

∫
Bρ(t,2−m)n

∫
R(n+1)d

exp

(
− i

n+1∑
j=1

〈x, uj〉
)

× E exp

(
i

n+1∑
j=1

〈uj , X(sj)〉
)
duds,

(3.6)

where u = (u1, . . . , un+1) ∈ R(n+1)d and s = (t, s1, . . . , sn). Similar to the proof
of (2.9) we have that the right hand side of Eq. (3.6) is at most

cn
3,3

∫
T

∫
Bρ(t,2−m)n

ds[
detCov

(
X0(t), X0(s1), . . . , X0(sn)

)]d/2
≤
{
cn
3,4

(n!)ητ 2−nmα in Cases 1 and 2,

cn
3,4

(n!)ητ (logn)n 2−nmα in Cases 3,
.

(3.7)

where c3,4 is a positive finite constant depending on N, d, H, and T only.
In Cases 1 and 2, let γ > 0 be a constant whose value will be determined later.

We consider the random set

Bm(ω) =
{
t ∈ T : fm(t) ≥ γϕ1(2

−m)
}
.

Denote by µω the restriction of the random measure L(x, ·) on T , that is, µω(E) =
L(x, E ∩ T ) for every Borel set E ⊂ RN+ . Now we take n = blogmc, where byc
denotes the integer part of y. Then by applying (3.7) and by Stirling’s formula,
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we have

Eµω(Bm) ≤
E
∫
T
[fm(t)]

n
L(x, dt)

[γϕ1(2−m)]n

≤
cn
3,4

(n!)ητ 2−mnα

γn2−mnα(logm)nητ
≤ m−2,

(3.8)

provided γ > 0 is chosen large enough, say, γ ≥ c3,4 e
2 := c3,2 . This implies that

E

( ∞∑
m=1

µω(Bm)

)
<∞.

Therefore, with probability 1 for µω almost all t ∈ T , we have

lim sup
m→∞

L(x,Bρ(t, 2
−m))

ϕ1(2−m)
≤ c3,2 . (3.9)

For any r > 0 small enough, there exists an integer m such that 2−m ≤ r <
2−m+1 and (3.9) is applicable. Since ϕ1(r) is increasing near r = 0, (3.3) for Cases
1 and 2 follows from (3.9) and a monotonicity argument.

The proof of Case 3 is almost identical to the above, therefore it is omitted
here. �

3.2. Hölder Conditions for L∗(•). The following theorem establishes sharp
Hölder conditions for the maximum local times L∗(D) = supx∈Rd L(x,D) of X as
the radius of the ρ -ball D approaches to 0 under ρ-metric.

Theorem 3.2. Let X = {X(t), t ∈ RN} be an anisotropic Gaussian random field
in Rd satisfying Condition A. Then for every T ∈ A there exist positive constants
c3,5 and c3,6 such that for every a ∈ T ,

lim sup
r→0

L∗(Bρ(a, r))

ϕ1(r)
≤ c3,5 , a.s. in Cases 1 and 2,

lim sup
r→0

L∗(Bρ(a, r))

ϕ2(r)
≤ c3,5 , a.s. in Case 3,

(3.10)

and

lim sup
r→0

sup
a∈T

L∗(Bρ(a, r))

Φ1(r)
≤ c3,6 , a.s. in Cases 1 and 2,

lim sup
r→0

sup
a∈T

L∗(Bρ(a, r))

Φ2(r)
≤ c

3,6
, a.s. in Case 3,

(3.11)

where

Φ1(r) = rα
(
log(1/r)

)ητ
,

Φ2(r) = rα
(
log(1/r)

)ητ
log log

(
1/r
)
.

(3.12)

For proving Theorem 3.2, we will make use of the following lemma, which is a
consequence of Lemma 2.1 in Talagrand (1995) and Condition A1.
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Lemma 3.3. There exist positive constants c3,7 and c3,8 such that for all D =

Bρ(a, h) with h ∈ (0, 1) and all u > c3,7h, we have

P
{
sup
t∈D

∣∣X(t)−X(a)
∣∣ ≥ u

}
≤ exp

(
− c3,8

(u
h

)2)
. (3.13)

Proof of Theorem 3.2 As in Ehm (1981) and Xiao (1997), the proof of Theorem
3.2 is based on Lemma 2.6 and a chaining argument. Hence we will only sketch a
proof of (3.10) for Cases 1 and 2, indicating the necessary modifications.

Recall that ϕ1(r) = rα
(
log log r−1

)ητ
for r ∈ (0, 1/e). In order to prove (3.10)

it is sufficient to show that for every a ∈ T ,

lim sup
n→∞

L∗(Cn)

ϕ1(2−n)
≤ c3,9 , a.s., (3.14)

where Cn = Bρ(a, 2
−n) for n ≥ 1.

We divide the proof of (3.14) into four steps.

(a) Pick u = 2−n
√

2c−1
3,10

log n in Lemma 3.3, we have

P
{
sup
t∈Cn

∣∣X(t)−X(a)
∣∣ ≥ 2−n

√
2c−1

3,10
log n

}
≤ exp(−2 log n) = n−2. (3.15)

Hence the Borel-Cantelli lemma implies that a.s. ∃n1 = n1(ω) such that

sup
t∈Cn

∣∣X(t)−X(a)
∣∣ ≤ 2−n

√
2c−1

3,10
log n, for all n ≥ n1. (3.16)

(b) Let θn = 2−n
(
log log 2n

)−(1+2Hτ )
for all n ≥ 1, and define

Gn =
{
x ∈ Rd : |x| ≤ 2−n

√
2 c−1

3,10
log n with x = θnp for some p ∈ Zd

}
.

Then, at least when n is large enough, the cardinality of Gn satisfies

]Gn ≤ c3,11 (logn)
(2+2Hτ )d . (3.17)

It follows from (2.39) (take b1 = 2) that we can choose a constant c > 0 such that
for all integer n large enough,

P
{
max
x∈Gn

L (x+X(a), Cn) ≥ cητ ϕ1(2
−n)

}
≤ c3,11

(
log n

)(2+2Hτ )d
n−2. (3.18)

Since the right hand side of (3.18) is summable, the Borel-Cantelli lemma implies
that almost surely ∃n2 = n2(ω) such that

max
x∈Gn

L (x+X(a), Cn) ≤ cητ ϕ1(2
−n), for all n ≥ n2. (3.19)

(c) Given integers n, k ≥ 1 and x ∈ Gn, we define

F (n, k, x) =

{
y ∈ Rd : y = x+ θn

k∑
j=1

εj 2
−j , εj ∈ {0, 1}d for 1 ≤ j ≤ k

}
.
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A pair of points y1, y2 ∈ F (n, k, x) is said to be linked if y2 − y1 = θnε2
−k for

some ε ∈ {0, 1}d. We choose γ > 0 small such that (2.41) in Lemma 2.6 holds.
Consider the event Fn defined by

Fn =
⋃
x∈Gn

∞⋃
k=1

⋃
y1,y2

{∣∣L(y1 +X(a), Cn)− L(y2 +X(a), Cn)
∣∣

≥ 2−n(α−γ) |y1 − y2|γ
(
c k log n

)ητ+(1+2Hτ )γ
}
,

(3.20)

where
⋃
y1,y2

signifies the union over all the linked pairs y1, y2 ∈ F (n, k, x) [note

that there are at most 2kd3d linked pairs in F (n, k, x)] and where c > 0 is a
constant such that (2.41) holds with b2 = 2.

Consequently we derive that for all n > 2d ,

P{Fn} ≤ c3,12
(
log n

)(2+2Hτ )d
∞∑
k=1

2dk exp
(
− 2k log n

)
= c3,13

(
log n

)(2+2Hτ )d 2d/n2

1− 2d/n2
.

(3.21)

Since
∑∞
n=1 P{Fn} <∞, the Borel-Cantelli lemma implies that almost surely, Fn

occurs only finitely many times.
(d) Fix an integer n together with some y ∈ Rd that satisfies

|y| ≤ 2−n
√

2c−1
3,10

log n,

we can represent y in the form y = limk→∞ yk with

yk = x+ θn

k∑
j=1

εj2
−j , (3.22)

where y0 = x ∈ Gn and εj ∈ {0, 1}d for j = 1, . . . , k.
Since the local time L is jointly continuous, by expansion (3.22) and the trian-

gular inequality, we see that on the event F cn,∣∣L(y +X(a), Cn)− L(x+X(a), Cn)
∣∣

≤
∞∑
k=1

∣∣L(yk +X(a), Cn)− L(yk−1 +X(a), Cn)
∣∣

≤
∞∑
k=1

2−n(α−γ) |yk − yk−1|γ
(
ck log n

)ητ+(1+2Hτ )γ

≤ c3,14 ϕ1(2
−n).

(3.23)

We combine (3.19) and (3.23) to get that for n large enough,

sup
|x|≤2−n

√
2c−1

3,10
log n

L
(
x+X(a), Cn

)
≤ c

3,15
ϕ1(2

−n). (3.24)

Since L∗(Cn) = sup
{
L(x, Cn) : x ∈ X(Cn)

}
, (3.14) follows from (3.24). This

proves (3.10) for Cases 1 and 2. �
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The Hölder conditions for the local times of X are closely related to the irreg-
ularity of the sample path of X. In the following, we apply Theorem 3.2 to derive
results about the degree of oscillation of the sample paths of X, which improves
Theorem 4.5 of Ayache, Wu and Xiao (2008) for fractional Brownian sheets.

Theorem 3.4. Let X = {X(t), t ∈ RN+} be an (N, d)-Gaussian random field
satisfying Condition A and let T ∈ A be a fixed interval. Then there exists a
constant c3,16 > 0 such that for every a ∈ T ,

lim inf
r→0

sup
t∈Bρ(a,r)

|X(t)−X(a)|
r
(
log log r−1

)−H1
≥ c3,16 , a.s. (3.25)

and

lim inf
r→0

inf
a∈T

sup
t∈Bρ(a,r)

|X(t)−X(a)|
r
(
log r−1

)−H1
≥ c3,16 , a.s. (3.26)

Proof. It is sufficient to prove the results for d = 1. Note that H1 < 1, Theorem
3.2 is always applicable for d = 1 with τ = 1, which belongs to Case 1. For any
D ⊂ T , we have

λN (D) =

∫
X0(D)

L(x,D) dx ≤ L∗(D)× sup
u,v∈D

∣∣X0(u)−X0(v)
∣∣. (3.27)

By taking D = Bρ(s, r) we see that (3.25) follows immediately from (3.27) and
(3.10). Similarly, (3.26) follows from (3.27) and (3.11). �

It would be interesting to study if the equalities in (3.25) and (3.26) hold. These
problems are closely related to the small ball probability of Gaussian random
fields which satisfy Condition A and are non-trivial. For some partial results for
fractional Brownian sheets, see Mason and Shi (2001). Recently Luan and Xiao
(2010) proved a Chung’s law of the iterated logarithm for a class of anisotropic
Gaussian random fields which satisfy the property of strong local nondeterminism
in metric ρ [i.e., Condition (C3′) in Xiao (2009)]. In that case, the power of
log log r−1 is different from the one in (3.25).

4. ρ -Hausdorff Dimension of the Level Sets

In this section we apply the results on local times to study fractal properties
of the level set X−1(x) = {t ∈ RN : X(t) = x} of X. For this purpose we first
collect some results on Hausdorff measure and Hausdorff dimension in the metric
space (RN , ρ), where ρ is defined by (1.3).

4.1. Hausdorff measures in (RN , ρ). For some δ0 > 0, let F be the class of non-
decreasing, right continuous functions ϕ : (0, δ0) → R+ which satisfy ϕ(0+) = 0
and the doubling condition, that is, there exists a finite constant c4,1 > 0 for which

ϕ(2s)

ϕ(s)
≤ c4,1 for 0 < s <

1

2
δ0.
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For any ϕ ∈ F, the ϕ-Hausdorff measure in the metric ρ is defined by

ϕ-mρ(E) = lim
δ→0

inf

{ ∞∑
n=1

ϕ(2rn) : E ⊆
∞⋃
n=1

Bρ(t
n, rn), rn ≤ δ

}
, ∀E ⊂ RN .

(4.1)
When ϕ(s) = sβ for β > 0, ϕ-mρ(E) is called the β -dimensional Hausdorff measure
of E, and is denoted by Hβ

ρ (E). The Hausdorff dimension of E in the metric ρ (or
simply, ρ -Hausdorff dimension of E) is defined by

dimρ
H
E = inf{β > 0 : Hβ

ρ (E) = 0, }. (4.2)

It has been shown by Wu and Xiao (2007) and Xiao (2009) that ρ-Hausdorff di-
mension is useful for studying fractal properties of anisotropic random fields. Next
we present a useful tool for studying the exact Hausdorff measure of anisotropic
fractals.

Let µ be a finite Borel measure on RN . For any t ∈ RN , the ρ-upper ϕ-density
of µ at t is defined by

D
ϕ,ρ

µ (t) = lim sup
r↓0

µ
(
Bρ(t, r)

)
ϕ(r)

. (4.3)

The connection between D
ϕ,ρ

µ (t) and ϕ-mρ is given by the following theorem,
which generalizes the classical result of Rogers and Taylor (1961) in the Euclidean
metric.

Theorem 4.1. For any ϕ ∈ F, there is a positive constant c4,2 ≥ 1 (depending

on c4,1 only) such that for any finite Borel measure µ on RN and any Borel set

E ⊂ RN

c−1
4,2
ϕ-mρ(E) inf

t∈E
D
ϕ,ρ

µ (t) ≤ µ(E) ≤ c4,2 ϕ-mρ(E) sup
t∈E

D
ϕ,ρ

µ (t). (4.4)

Proof. In the special case of ϕ(s) = sβ (β > 0), (4.4) is Theorem 1.5.13 in Edgar
(1998). Since ϕ satisfies the doubling condition, the same proof of Edgar (1998)
goes through with little modification. There is no need to reproduce the proof. �

4.2. Uniform Hausdorff dimension results. The Hausdorff dimension (in the
Euclidean metric) of the level sets of a Gaussian field X that satisfies Condition
A has been derived in Xiao (2009). More generally, Biermé, et al. (2009) have
determined the Hasdorff dimension of the inverse image X−1(F ) for all Borel sets
F ⊂ Rd.

By using a similar argument we can prove that, if
∑N
`=1

1
H`

> d, then for every

x ∈ Rd,

dimρ
H
X−1(x) =

N∑
`=1

1

H`
− d (4.5)

with positive probability [which depends on x]. In the following, we prove a
“uniform” result for the ρ-Hausdorff dimension of the level sets. Compared with
Theorem 7.1 in Xiao (2009), the formula (4.5) is much simpler, which shows that
dimρ

H
is naturally adapted to the anisotropy of X.
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Theorem 4.2. Let X = {X(t), t ∈ RN} be an (N, d) Gaussian random field

satisfying Condition A. If
∑N
`=1

1
H`

> d, then for every T ∈ A almost surely

dimρ
H

(
X−1(x) ∩ T

)
=

N∑
`=1

1

H`
− d, ∀ x ∈ O, (4.6)

where O is the random set defined by O = {x ∈ Rd : L(x, T ) > 0}.

For proving Theorem 4.2, we will make use of the following lemmas. Lemma 4.3
on the modulus of continuity of X is derived from Condition A1 by using standard
methods [cf. e.g., Xiao (2009)]. More precise results on the exact uniform and local
moudli of continuity of X have been proved recently by Meerschaert, Wang and
Xiao (2010) under Condition A.

Lemma 4.3. Let X0 = {X0(t), t ∈ RN} be a real valued, centered Gaussian
random field satisfying Condition A1. Then, for any compact interval T ∈ A,
there exists a positive constant c4,3 such that

lim sup
|h|→0

supt∈T,s∈[0,h] |X0(t+ s)−X0(t)|
ρ(0, h)

√
log(1 + ρ(0, h)−1)

≤ c4,3 a.s. (4.7)

The following is a Frostman-type lemma in the metric space (RN , ρ), see Xiao
(2009).

Lemma 4.4. For any Borel set E ⊂ RN , Hβ
ρ (E) > 0 if and only if there exist a

Borel probability measure µ on E and a positive constant c such that µ
(
Bρ(s, r)

)
≤

c rβ for all s ∈ RN and r > 0.

Lemma 4.5. Let X = {X(t), t ∈ RN} be a centered Gaussian random field with
values in Rd and let T ∈ A. If for any ε > 0, there exists a positive random
variable δ such that a.s.

|X(s)−X(t)| ≤ ρ(s, t)1−ε ∀ s, t ∈ T with ρ(s, t) ≤ δ, (4.8)

and X has a local time L(x, T ) which is almost surely bounded in x. Then almost
surely

dimρ
H

(
X−1(x) ∩ T

)
≤

N∑
`=1

1

H`
− d, ∀ x ∈ RN . (4.9)

Proof. We divide T into upright sub-intervals Cn,k of side length 2−n/Hj (j =
1, · · · , N). Then the number of such intervals is at most c2nQ and the ρ-diameter
of Cn,k is c2−n. Let us fix ω ∈ Ω such that (4.8) holds and L(x, T ) is bounded.

For any x ∈ Rd, if X−1(x) ∩ Cn,k 6= ∅, then (4.8) implies that, for n large
enough,

X(Cn,k) ⊂ Bρ(x, 2
−n(1−ε)). (4.10)

Denote by Nn(x) the number of intervals Cn,k that satisfy (4.10). Then the occu-
pation density formula (2.1) and the boundedness of L(·, T ) imply that

Nn(x)2
−Qn ≤

∫
Bρ(x,2−n(1−ε))

L(y, T ) dy ≤ K 2−n(1−ε)d, (4.11)
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where K is a random variable. Thus, Nn(x) ≤ K 2−n[Q−(1−ε)d] a.s. Since the
family {Cn,k : X−1(x) ∩ Cn,k 6= ∅} forms a covering of X−1(x) ∩ T by ρ-balls of
radius 2−n, we derive that dimρ

H

(
X−1(x) ∩ T

)
≤ Q− (1− ε)d a.s. Since ε > 0 is

arbitrary, (4.9) follows. �

Now, we are ready to prove Theorem 4.2.

Proof. The upper bound in (4.6) follows from Lemmas 4.3 and 4.5. Next we prove
that a.s.

dimρ
H

(
X−1(x) ∩ T

)
≥

N∑
`=1

1

H`
− d (4.12)

for all x ∈ O. To this end, note that L(x, ·) is a finite and positive Borel measure
on X−1(x)∩T for every x ∈ O. Hence Theorem 3.2 and Lemma 4.4 together yield
(4.12). This finishes the proof. �

4.3. Exact Hausdorff measure functions. As an application of Theorem 3.1,
we present a partial result on the exact Hausdorff measure of the level set.

Theorem 4.6. Assume that
∑N
`=1

1
H`

> d and T ∈ A. Then there exists a positive
constant c4,4 such that with probability 1

ϕ1-mρ

(
X−1(x) ∩ T

)
≥ c4,4L(x, T ) in Cases 1 and 2, (4.13)

and

ϕ2-mρ

(
X−1(x) ∩ T

)
≥ c4,4L(x, T ) in Case 3 . (4.14)

Proof. We only prove (4.13). If L(x, T ) = 0, it holds automatically. If L(x, T ) > 0,
then L(x, ·) is a finite Borel measure on X−1(x) ∩ T . Hence (4.13) follows from
Theorem 3.1 and Theorem 4.1. �

5. Appendix

In this Appendix, we provide some technical lemmas that are used in Section
2 for proving the main moment estimates. Lemma 5.1 is similar to Lemma 8.6 in
Xiao (2009) whose proof is elementary. Lemma 5.2 and Lemma 5.3 are extensions
of Lemma 2.3 in Xiao (1997), which were proved in Wu and Xiao (2009a). Lemma
5.4 is a further generalization of Lemma 5.3, which is useful for estimating the
moments of increments of the local times.

Lemma 5.1. Let β, γ and p be positive constants, then for all A ∈ (0, 1)∫ 1

0

rp−1(
A+ rγ

)β dr �
 A

p
γ −β if βγ > p,

log
(
1 +A−1/γ

)
if βγ = p,

1 if βγ < p.

(5.1)

In the above, f(A) � g(A) means that the ratio f(A)/g(A) is bounded from below
and above by positive constants that do not depend on A ∈ (0, 1).

Even though, in this paper, Lemmas 5.2–5.4 are only applied for p = 1, we state
and prove them in their general forms which will be useful elsewhere.

Lemma 5.2. Let β, γ and p be positive constants such that γβ ≥ p.
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(i). If γβ > p, then there exists a constant c5,1 > 0 whose value depends on
γ, β and p only such that for all A ∈ (0, 1), r > 0, u∗ ∈ Rp, all integers
n ≥ 1 and all distinct u1, . . . , un ∈ Op(u

∗, r) we have∫
Op(u∗,r)

du[
A+ min

1≤j≤n
|u− uj |γ

]β ≤ c5,1 nA
p
γ −β , (5.2)

where Op(u
∗, r) denotes a p-dimensional ball centered at u∗ with radius r.

(ii). If γβ = p, then for any κ ∈ (0, 1) there exists a constant c5,2 > 0 whose
value depends on γ, β, κ and p only such that for all A ∈ (0, 1), r > 0,
u∗ ∈ Rp, all integers n ≥ 1 and all distinct u1, . . . , un ∈ Op(u

∗, r) we have∫
Op(u∗,r)

du[
A+ min

1≤j≤n
|u− uj |γ

]β ≤ c5,2 n log

[
e+

(
A−1/γ r

n1/p

)κ]
. (5.3)

Lemma 5.3. Let β > 0 be a constant and let p ≥ 1 be an integer such that β < p.
Then the following statements hold.

(i). For all r > 0, u∗ ∈ Rp, for any integer n ≥ 1 and any distinct u1, . . . , un ∈
Op(u

∗, r) we have∫
Op(u∗,r)

du

min
1≤j≤n

|u− uj |β
≤ c5,3 n

β
p rp−β , (5.4)

where c5,3 > 0 is a constant whose value depends on β and p only.
(ii). For all constants r > 0 and K > 0, all u∗ ∈ Rp, integers n ≥ 1 and any

distinct u1, . . . , un ∈ Op(u
∗, r) we have∫

Op(u∗,r)

log
[
e+K

(
min

1≤j≤n
|u− uj |

)−β]
du

≤ c5,4 r
p log

[
e+K

( r

n1/p

)−β]
,

(5.5)

where c5,4 > 0 is a constant whose value depends on β and p only.

Lemma 5.4. Let α, β > 0 be two constants and let p ≥ 1 be an integer such that
β < p and α < p. Then for all r > 0, K > 0, u∗ ∈ Rp, for any integer n ≥ 1 and
all points u1, . . . , un ∈ Op(u

∗, r) we have

∫
Op(u∗,r)

log
[
e+K

(
min

1≤j≤n
|u− uj |

)−β]
min

1≤j≤n
|u− uj |α

du

≤ c5,5 n
α
p rp−α log

[
e+K

( r

n1/p

)−β]
,

(5.6)

where c5,5 > 0 is a constant whose value depends on α, β and p only.

Proof. The idea of the proof is similar to that of Xiao (1997) [see also the proof
of Lemma 2.4 in Wu and Xiao (2009a)]. We omit it here. �
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