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1 Introduction

Statistics can broadly be defined as the science of decision-making in the face of
(random) uncertainty. Gambling has the same definition, except in the narrower
domain of a gambler making decisions that affect his fortune in games of chance.
It is hardly surprising, then, that the two subjects are closely related. Indeed, if
the definitions of “game”, “decision”, and “fortune” in the context of gambling
are sufficiently broadened, the two subjects become almost indistinguishable.

Let’s review a bit of the history of the influence of gambling on the develop-
ment of probability and statistics. First, of course, gambling is one of the oldest
of human activities. The use of a certain type of animal heel bone (called the
astragalus) as a crude die dates to about 3500 BCE (and possibly much earlier).
The modern six-sided die dates to about 2000 BCE.

The early development of probability as a mathematical theory is intimately
related to gambling. Indeed, the first probability problems to be analyzed math-
ematically were gambling problems:

1. De Mere’s problem (1654), named for Chevalier De Mere and analyzed by
Blaise Pascal and Pierre de Fermat, asks whether it is more likely to get
at least one six with 4 throws of a fair die or at least one double six in 24
throws of two fair dice.

2. The problem of points (1654), also posed by De Mere and analyzed by
Pascal and Fermat, asks for the fair division of stakes when a sequence
of games between two players (Bernoulli trials in modern parlance) is
interrupted before its conlcusion.

3. Pepys’ Problem (1693), named for Samuel Pepys and analyzed by Isaac
Newton, asks whether it is more likely to get at least one six in 6 rolls of
a fair die or at least two sixes in 12 rolls of the die.
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4. The matching problem (1708), analyzed by Pierre-Redmond de Montmort,
is to find the probability that in a sequence of card draws, the value of a
card is the same as the draw number.

5. St. Petersburg Paradox (1713), analyzed by Daniel Bernoulli, deals with a
gambler betting on a sequence of coin tosses who doubles his bet each time
he loses (and leads to a random variable with infinite expected value).

Similarly, the first books on probability were written by mathematician-gamblers
to analyze games of chance: Liber de Ludo Aleae written sometime in the 1500’s
by the colorful Girolamo Cardano and published posthumously in 1663, and Es-
say d’Analyse sur les Jeux de Hazard by Montmort, published in 1708. See [2]
and [4] for more on the influence of gambling on the early development of prob-
ability and statistics.

In more modern times, the interplay between statistics and game theory
has been enormously fruitful. Hypothesis testing, developed by Ronald Fisher
and Karl Pearson and formalized by Jerzy Neyman and Egon Pearson is one of
the cornerstones of modern statistics, and has a game-theory flavor. The ba-
sic problem is choosing between a presumed null hypothesis and a conjectured
alternative hypothesis, with the decision based on the data at hand and the
probability of a type 1 error (rejecting the null hypothesis when it’s true). In-
fluenced by the seminal work of John von Neumann and Oscar Morgenstern on
game theory and economics [7], the Neyman-Pearson hypothesis-testing frame-
work was extended by Abraham Wald in 1940’s to statistical decsion theory [8].
In this completely game-theoretic framework, the statistician (much like the
gambler) chooses among a set of possible decisions, based on the data at hand
according to some sort of value function. Statistical decision theory remains one
of the fundamental paradigms of statistical inference to this day.

2 Bold Play in Red and Black

Gambling continue to be a source of interesting and deep problems in proba-
bility and statistics. In this section, we briefly describe a particularly beautiful
problem analyzed by Dubins and Savage [3]. A gambler bets, at even stakes, on
a sequence of Bernoulli trials (independent, identically distributed trials) with
success parameter p ∈ (0, 1). The gambler starts with an initial fortune and
must continue playing until he is ruined or reaches a fixed target fortune. (The
last two sentences form the mathematical definition of red and black.) On each
trial, the gambler can bet any proportion of his current fortune, so it’s con-
venient to normalize the target fortune to 1; thus the space of fortunes is the
interval [0, 1].

The gambler’s goal is to maximize the probability F (x) of reaching the target
fortune 1, starting with an initial fortune x (thus, F is the value function in
the context of statistical decision theory). The gambler’s strategy consists of
decisions on how much to bet on each trial. Since the trials are independent,
the only information of use to the gambler on a given trial is his current fortune.
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Thus, we need only consider stationary, deterministic strategies. Such a strategy
is defined by a betting function S(x) that gives the amount bet on a trial as a
function of the current fortune x.

Dubins and Savage showed that in the sub-fair case (p ≤ 1
2 ), an optimal

strategy is bold play, whereby the gambler, on each trial, bets his entire fortune
or the amount needed to reach the target (whichever is smaller). That is, the
betting function for bold play is

S(x) =

{
x, 0 ≤ x ≤ 1

2

1− x, 1
2 ≤ x ≤ 1

Conditioning on the first trial shows that the value function F for bold play
satisfies the functional equation

F (x) =

{
pF (2x), x ∈ [0, 1

2 ]
p + (1− p)F (2x− 1), x ∈ [ 12 , 1]

(1)

with boundary conditions F (0) = 0, F (1) = 1. Moreover, F is the unique
bounded solution of (1) satisfying the boundary conditions. This functional
equation is one of the keys in the analysis of bold play. In particular, the proof of
optimality involves showing that if the gambler starts with some other strategy
on the first trial, and then plays boldly thereafter, the new value function is no
better than the value function with bold play.

Interestingly, as Dubins and Savage also showed, bold play is not the unique
optimal strategy. Consider the following strategy: Starting with fortune x ∈
[0, 1

2 ), the gambler plays boldly, but with the goal of reaching 1
2 . Starting with

fortune x ∈ ( 1
2 , 1], the gambler plays boldly, but with the goal of not falling

below 1
2 . In either case, if the gambler’s fortune reaches 1

2 , he plays boldly and
bets 1

2 . Thus, the betting function S2 for this new strategy is related to the
betting function S of bold play by

S2(x) =


1
2S(2x), 0 ≤ x < 1

2
1
2S(2x− 1), 1

2 < x ≤ 1
1
2 , x = 1

2

By taking the three cases x ∈ [0, 1
2 ), x = 1

2 , and x ∈ ( 1
2 , 1], it’s easy to see that

that the value function F2 for strategy S2 satisfies the functional equation (1).
Trivially the boundary conditions are also satisfied, so by uniqueness, F2 = F
and thus S2 is also optimal.

Once one sees that this new strategy is also optimal, it’s easy to construct
an entire sequence of optimal strategies. Specifically, let S1 = S denote the
betting function for ordinary bold play and then define Sn recursively by

Sn+1(x) =


1
2Sn(2x), 0 ≤ x < 1

2
1
2Sn(2x− 1), 1

2 < x ≤ 1
1
2 , x = 1

2
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Then Sn has the same value function F as bold play and so is optimal for each n.
Moreover, if x ∈ (0, 1) is not a binary rational (that is, does not have the form
k
2n for some k and n), then there exist optimal strategies that place arbitrarily
small bets when the fortune is x. This is a surprising result that seems to run
counter to a naive interpretation of the law of large numbers.

Bold play in red and black leads to some exotic functions of the type that
are not usually associated with a simple, applied problem. The value function
F can be interpreted as the distribution function of a random variable X (the
variable whose binary digits are the complements of the trial outcomes). Thus
F is continuous, but has derivative 0 almost everywhere if p 6= 1

2 (singular
continuous). If p = 1

2 , X is uniformly distributed on [0, 1] and F (x) = x.
If G(x) denotes the expected number of trials under bold play, starting with
fortune x, then G is discontinuous at the binary rationals and continuous at the
binary irrationals.

Finally, note that when the gambler plays boldly, his fortune process follows
the deterministic map x 7→ 2x mod 1, until the trial that ends the game (with
fortune 0 or 1). Thus, bold play is intimately connected with a discrete dynam-
ical system. This connection leads to other interesting avenues of research (see
[5]).
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