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Abstract

The algebraic structure ([0,∞), +, ≤), together with Lebesgue mea-
sure (and the usual topology), is the standard representation of time for
a variety of probabilistic models. These include reliability theory and the
aging of lifetime distributions, renewal processes, and Markov processes,
to name just a few. The purpose of this monograph is to study probabil-
ity models in which the standard representation of time is generalized to
a partially ordered set (S,�) and to a natural structure (S, ·,�) known
as a positive semigroup. The partial order � replaces the ordinary order
≤, and in the case of a positive semigroup, the operation · replaces the
standard translation operator +. A reference measure λ on S replaces
Lebesgue measure, and in the case of a positive semigroup, we assume
that this measure is left-invariant.
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Basic Theory

1 Posets and Positive Semigroups

The structures that we will study involve algebra, topology, and measure.
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1.1 Algebra

The basic structure of interest is a partially ordered set (S,�). Topologial and
measure-theoretic assumptions will be imposed in the following sections. A
particularly important special case is when the partial order � is associated
with a positive semigroup.

Definition 1. A semigroup (S, ·) is a set S with an associative operation ·. A
positive semigroup is a semigroup (S, ·) that has an identity element e, has no
non-trivial invertible elements, and satisfies the left cancellation law.

A positive semigroup has a natural partial order associated with it.

Definition 2. Suppose that (S, ·) is a positive semigroup. We define a relation
� on S by

x � y if and only if xt = y for some t ∈ S

In the language of a multiplicative semigroup, x � y if and only if x divides y.

Theorem 1. The relation � is a partial order on S with e as the minimum
element. For each x ∈ S, the mapping t 7→ xt is an order-isomorphism from S
onto {y ∈ S : y � x}.

Proof. First, x � x since xe = x. Next, suppose that x, y ∈ S with x � y
and y � x. Then there exist a, b ∈ S such that xa = y and yb = x. Hence
xab = yb = x = xe. By the left cancellation law, ab = e and then since there
are no nontrivial invertible elements, a = b = e. Hence x = y. Finally, suppose
that x, y, z ∈ S and that x � y and y � z. Then there exists a, b ∈ S such that
xa = y and yb = z. But then xab = yb = z so x � z. Finally, ex = x so e � x
for any x ∈ S. Thus, � is a partial order on S with e as the minimum element.

Now let x ∈ S and consider the map t 7→ xt. The map is onto {y ∈ S :
y � x} by the definition of the order. The map is one-to-one because of the
left cancellation law. Suppose that x, y, a ∈ S. Ifx � y then there exits t ∈ S
such that xt = y. But then axt = ay so ax � ay. Conversely suppose that
ax � ay. Then there exists t ∈ S such that axt = ay. But then xt = y by the
left cancellation law, so x � y.

Note 1. Generally, a triple (S, ·,�) is a left-ordered semigroup if (S, ·) is a
semigroup, � is a partial order on S, and for every x, y, a ∈ S,

x � y if and only if ax � ay

Thus, if (S, ·) is a positive semigroup and � the natural partial order associated
with (S, ·), then (S, ·,�) is a left-ordered semigroup.

Note 2. For a positive semigroup (S, ·), the fact that S is order-isomorphic
to {y ∈ S : y � x} for each x ∈ S is a self-similarity property. Conversely,
suppose (S,�) is a partially ordered set with minimum element e and with
this self-similarity property. For each x ∈ S, we fix an isomorphism from S
to {y ∈ S : y � x}. and denote the value of this mapping at y by xy. Note
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that · defines a binary operation on S. Since e is the minimum element of S,
xe must be the minimum element of {y ∈ S : x � y} and therefore xe = x.
Also, we will take the isomorphism from S onto S to be the identity map and
hence ex = x for any x ∈ S. It follows that e is the identity. Next, since the
isomorphism y 7→ xy is one-to-one, the left cancellation law must hold. There
are no nontrivial invertible elements since if xy = e then x � e and hence
x = e and so also y = e. Finally, if the isomorphisms are chosen in such a way
that the operation · is associative then (S, ·) is a positive semigroup. Thus,
the algebraic assumptions are precisely the ones needed so that the partially
ordered set (S, �) has the self-similarity property.

Problem 1. Make this precise. That is, if (S,�) has a minimum element e and
satisfies the self-similarity property, then construct a positive semigroup (S, ·)
with � as the associated partial order.

Proposition 1. Every positive semigroup (S, ·) is isomorphic to a positive semi-
group of one-to-one mappings from S into S (with composition as the semigroup
operation).

Proof. Suppose that (S, ·) is a positive semigroup. For each a ∈ S, let ρa : S →
S be defined by

ρa(x) = ax, x ∈ S

Let T = {ρa : a ∈ S} and consider the composition operator ◦ on T . First, T is
closed under ◦ since for any a, b ∈ S,

ρa ◦ ρb(x) = a(bx) = (ab)x = ρab(x), x ∈ S

and therefore ρa ◦ ρb = ρab. The mappings in T are one-to-one:

ρa(x) = ρa(y)⇒ ax = ay ⇒ x = y

The identity map is in T since ρe(x) = ex = x for x ∈ S. Finally, suppose
that ρa and ρb are (functional) inverses. Then ρa(ρb(x)) = x for any x ∈ S or
equivalently abx = x for any x ∈ S. Letting x = e we have ab = e and therefore
a = b = e.

Proposition 2. Suppose that (S, ·) is a semigroup satisfying the left cancella-
tion law and the property that xy 6= x for every x, y ∈ S. Then (S, ·) can be
made into a positive semigroup with the addition of an identity element.

Proof. Note that the condition xy 6= x for all x, y ∈ S implies that S does not
have an identity. Thus let T = S ∪ {e} where e is a element not in S. Extend
· to T by xe = ex = x for all x ∈ T . We will show that (T, ·) is a positive
semigroup. First, the associative property (xy)z = x(yz) still holds, since it
holds in T and trivially holds if one of the elements is e. Next, e is the identity,
by construction. There are no nontrivial inverses in T : if x, y ∈ S then xy ∈ S
so xy 6= e. Hence if xy = e then at least one element, and hence both, must be
e. Finally, to show that the left cancellation law holds, suppose that xy = xz.
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If x, y, z ∈ S then y = z by the left cancellation law in S. If x = e then trivially
y = z. If x 6= e and y = e we have xz = x and hence z = e. Similarly, if x 6= e
and z = e we have xy = x so y = e.

Note 3. The algebraic assumptions of a positive semigroup do not rule out the
possibility that xy = y for some x, y ∈ S with x 6= e. However, if this is the
case, then xny = y for all n ∈ N. But then xn � y for all n ∈ N, so if S is
countable then (S, ·) is not locally finite (see Note 11). Ordinarily we do not
consider such semigroups.

Definition 3. Suppose that (S,�) is a partially ordered set. We will write
x ⊥ y if x and y are comparable, that is, either x � y or y � x. We will write
x ‖ y if x and y are non-comparable; that is, neither x � y nor y � x.

Definition 4. A partially ordered set (S,�) is (algebraically) connected if for
every x, y ∈ S, there exists a finite sequence (x0, x1, . . . , xn) such that

x = x0 ⊥ x1 · · · ⊥ xn = y

The proposition below gives another type of semigroup with an associated
partial order.

Proposition 3. Suppose that (S, ·) is a commutative semigroup with the idem-
potent property that x2 = x for all x. Define x � y if an only if xy = x. Then
� is a partial order on S.

Proof. First x � x for any x ∈ S since x2 = x by assumption. Next suppose
that x � y and y � x. Then xy = x and yx = y. But xy = yx so x = y.
Finally, suppose that x � y and y � z. Then xy = x and yz = y. Hence
xz = (xy)z = x(yz) = xy = x so x � z.

We next give a number of standard definitions for subsets of a partially
ordered set (S, �).

Definition 5. A ⊆ S is increasing, or respectively decreasing, if

x ∈ A, x � y ⇒ y ∈ A
y ∈ A, x � y ⇒ x ∈ A

In the case of a positive semigroup (S, ·), A is increasing if x ∈ A implies xu ∈ A
for any u ∈ S and A is decreasing if xu ∈ A implies x ∈ A.

Note 4. If Ai ⊆ S is increasing (respectively deceasing) for each i in a nonempty
index set I, then

⋂
i∈I Ai is also increasing (decreasing). If A ⊆ S then the

increasing (decreasing) set generated by A is the intersection of all increasing
(decreasing) subsets of S that contain A.
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Definition 6. For A ⊆ S, define

I(A) = {x ∈ S : x � a for some a ∈ A}
D(A) = {x ∈ S : x ≺ a for some a ∈ A}
I[A] = {x ∈ S : x � a for some a ∈ A}
D[A] = {x ∈ S : x � a for some a ∈ A}

Note that I[A] and D[A] are the increasing and decreasing sets generated by A,
respectivley. For a ∈ S, we simplify the notation to I(a), D(a), I[a], and D[a].

Definition 7. A ⊆ S is convex if

a ∈ A, b ∈ A, a � x � b⇒ x ∈ A

Note 5. If Ai ⊆ S is convex for each i in a nonempty index set I, then
⋂
i∈I Ai

is also convex. If A ⊆ S then the convex set generated by A is the intersection
of all convex subsets of S that contain A. This set is

C[A] = I[A] ∩D[A] = {x ∈ S : a � x � b for some a ∈ A, b ∈ A}

If A is increasing or if A is decreasing, then A is convex.

Definition 8. If a, b ∈ S and a � b, we use interval notation in the usual way:

[a, b] = {x ∈ S : a � x � b}
(a, b] = {x ∈ S : a ≺ x � b}
[a, b) = {x ∈ S : a � x ≺ b}
(a, b) = {x ∈ S : a ≺ x ≺ b}

Note 6. In particular, [a, b] = I[a]∩D[b]. Each of the intervals above is convex.
Generally, if A is convex if and only if a, b ∈ A and a � b imply [a, b] ⊆ A. If
(S,�) has a minimum element e then, D[a] = [e, a].

Definition 9. Suppose that (S, ·) is a positive semigroup. If A,B ⊆ S define

AB = {x ∈ S : x = ab for some a ∈ A, b ∈ B}
A−1B = {x ∈ S : ax ∈ B for some a ∈ A}

If A = {a} for some a ∈ S, we simplify the notation to aB and a−1B, respec-
tively. Similarly, if B = {b} for some b ∈ S, we simplify the notation to Ab and
A−1b respectively.

Note 7. If (S, ·) is a positive semigroup, note that I[A] = AS for any A ⊆ S
and in particular I[a] = aS for any a ∈ A. The set A−1B is empty unless there
exists a ∈ A and b ∈ B with a � b. In particular, x−1{y} is empty unless x � y
in which case the set contains the unique element u ∈ S such that xu = y. We
will denote this element by x−1y. Generally, x−1A = {x−1a : a ∈ A and x � a}
and

AB =
⋃
a∈A

aB, A−1B =
⋃
a∈A

a−1B
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Definition 10. Suppose that (S,�) is a partially ordered set and A ⊆ S.

1. x ∈ A is a minimal element of A if no y ∈ A satisfies y ≺ x.

2. x ∈ A is a maximal element of A if no y ∈ A satisfies y � x.

3. x ∈ A is the minimum element of A if x � y for all y ∈ A.

4. x ∈ A is the maximum element of A if x � y for all y ∈ A.

5. x ∈ S is a lower bound for A if x � y for all y ∈ A.

6. x ∈ S is an upper bound for A if y � x for all y ∈ A.

7. x ∈ S is the greatest lower bound or infimum of A if x is a lower bound of
A and x � y for any lower bound y of A.

8. x ∈ S is the least upper bound or supremum of A if x is an upper bound
of A and x � y for any upper bound y of A.

Note 8. As the language suggests, the minimum and maximum elements of A
are unique, if they exists, and are denoted min(A) and max(A), respectively. If
min(A) exists, it is also a minimal element of A, and similarly, if max(X) exists,
it is also a maximal element of A. Similarly, the infimum and supremum of A
are unique, if they exist, and are denoted inf(A) and sup(A), respectively. In
fact, inf(A) is the maximum of the set of lower bounds of A and sup(A) is the
minimum of the set of upper bounds of A. If x is a lower bound of A then A is
said to be bounded below by x, and if x is an upper bound of A then A is said
to be bounded above by x. The set A is bounded (in the algebraic sense!) if A
has both a lower bound x and an upper bound y; in this case A ⊆ [x, y].

Definition 11. The partially ordered set (S, �) is a lower semi-lattice if x∧y :=
inf{x, y} exists for every x, y ∈ S. Similarly, (S, �) is an upper semi lattice if
x ∨ y := sup{x, y} exists for every x, y ∈ S. Finally, (S, �) is a lattice if it is
both a lower semi-lattice and an upper semi-lattice.

Note 9. In the context of Definition 11, suppose that A ⊆ S is finite and
nonempty. If (S,�) is a lower semi-lattice then inf(A) exists. If (S,�) is an
upper semi-lattice then sup(A) exists.

Definition 12. Suppose that (S,�) is a partially ordered set and that x, y ∈ S.
Then y is said to cover x if y is a minimal element of {u ∈ S : x ≺ u}. If (S,�)
has a minimum element e, then an element i ∈ S that covers e is irreducible .
If S is countable, the Hasse graph or covering graph of (S,�) has vertex set S
and (directed) edge set {(x, y) ∈ S2 : y covers x}. These definitions are of most
value when S is countable.

Proposition 4. Suppose that (S, ·) is a positive semigroup. An element i ∈ S
is irreducible if and only if i cannot be factored i = xy except for the trivial
factoring i = ei = ie.
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Proof. If y ∈ S is not irreducible, then there exists x ∈ S with e ≺ x ≺ y.
But then there exists t ∈ S − {e} with y = xt and hence y has a non-trivial
factoring. Conversely, suppose that y = xt for some x, t ∈ S − {e}, so that y
has a non-trivial factoring. Then e ≺ x ≺ y so y is not irreducible.

Proposition 5. Suppose that (S, ·) is a positive semigroup. If x, y ∈ S then y
covers x if and only if y = xi for some irreducible element i.

Proof. Suppose that y covers x. Then x ≺ y so there exists i ∈ S − {e} with
y = xi. If i = ab for some a, b ∈ S−{e} then x ≺ xa ≺ xab = y which would be
a contradiction. Thus, i has no non-trivial factorings and hence is irreducible.
Conversely, suppose that y = xi for some irreducible element i. Then x ≺ y.
Suppose there exists u ∈ S with x ≺ u ≺ y. Then u = xs and y = ut for some
s, t ∈ S − {e}. Thus y = xst = xi so by left-cancellation, i = st. But this is a
contradiction since i is irreducible, so y covers x.

Suppose that (S,�) is a partially ordered set. For x ∈ S define

Ax = {y ∈ S : y covers x}
Bx = {w ∈ S : x covers w}

Thus, Ax is the set of elements immediately after x in the partial order while Bx
is the set of element immediately before x in the partial order. From Proposition
5, if (S, ·) is a positive semigroup then Ax = xI where I is the set of irreducible
elements. Hence Ax has the same cardinality as I for each x ∈ S.

Definition 13. Suppose that (S,�) is a partially ordered set and recall that
for s ∈ S,

I(s) = {t ∈ S : t � s}

For x, y ∈ S, we say that x and y are upper equivalent if I(x) = I(y).

Upper equivalence clearly is an equivalence relation on S; it’s the equivalence
relation associated with the function s 7→ I(s) from S to P(S).

Theorem 2. Let ≡ denote the upper equivalence relation and let Π = (S/ ≡)
denote the set of equivalence classes. Define � on Π by A ≺ B if and only if
there exists y ∈ B such that x ≺ y for all x ∈ A. Then � is a partial order on
Π.

Proof. We need to show that ≺ is irreflexive and transitive.
Suppose that A ∈ Π and A ≺ A. Then there exists y ∈ A such that x ≺ y

for all x ∈ A. In particular, y ≺ y which is a contradiction.
Next suppose that A,B,C ∈ Π with A ≺ B and B ≺ C. Then there exists

y ∈ B such that x ≺ y for all x ∈ A, and there exists z ∈ C such that w ≺ z
for all w ∈ B. In particular, y ≺ z and therefore x ≺ z for all x ∈ A. Hence
A ≺ C.
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1.2 Topology

Suppose that (S, �) is a partially ordered set. Ordinarily, we need a topology
on S that is compatible with the algebraic structure. Recall that, technically,
� is the set of ordered pairs

{(x, y) ∈ S2 : x � y}

(sometimes also called the graph of (S,�).

Definition 14. (S, �) is a topological poset if S has a topology with the fol-
lowing properties:

1. � is closed (as a subspace of S2 with the product topology).

2. S is locally compact, locally convex, and has a countable base.

3. D[x] is compact for each x ∈ S.

In the case that (S, ·) is a positive semigroup, we impose the additional condition
that the one-to-one mapping (x, t) 7→ (x, xt) from S2 onto R is a homeomor-
phism. In any case, the Borel σ-algebra will be denoted by B(S).

Note 10. The first assumptions means that the partially ordered set (S, �) is
topologically closed in the sense of Nachbin [22]. In particular, this assumption
implies that I[x] and D[x] are closed for each x, and that S is Hausdorff (so
that any two points can be separated by open neighborhoods). The second
assumption means that there are arbitrarily small compact neighborhoods and
arbitrarily small convex neighborhoods of each point, and that S is metrizable.
Local convexity also implies that the “squeeze theorem” for limits holds: if
(xn : n ∈ N+), (yn : n ∈ N+), and (tn : n ∈ N+) are sequences in S with xn → a
as n → ∞, yn → a as n → ∞, and xn � tn � yn eventually in n, then tn → a
as n→∞. The third assumption implies that [a, b] is compact for any a, b ∈ S
with a � b. In the case of a positive semigroup, the last assumption means that
the algebraic operation(x, t) 7→ xt from S2 onto R and its inverse, (x, y) 7→ x−1y
from R onto S2 are continuous.

Note 11. Clearly {x} ∈ B(S) for each x ∈ S, since singletons are closed in any
Hausdorff space. Hence, if (S, �) a topological poset and S is countable, then
B(S) is the power set of S; all subsets of S are countable unions of singletons
and hence are measurable. Conversely, suppose that (S, �) is a poset and that
S is countable. If D[x] is finite for each x ∈ S (so that (S, �) is locally finite),
then with the discrete topology, (S, �) is a topological positive semigroup.

Lemma 1. Suppose that S and T are LCCB spaces. If f : S → T is one-to-one
and continuous, then f(A) ∈ B(T ) for any A ∈ B(S).
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Proof. Since f is one-to-one, the following properties hold for any subsets A ⊆ S,
B ⊆ S, and Ai ⊆ S, i ∈ I where I is any nonempty index set:

f

(⋃
i∈I

Ai

)
=
⋃
i∈I

f(Ai)

f

(⋂
i∈I

Ai

)
=
⋂
i∈I

f(Ai)

f(B −A) = f(B)− f(A)

Now let F = {A ∈ B(S) : f(A) ∈ B(T )}. By the above identities, if Ai ∈ F
for i ∈ Z+ then ∪iAi ∈ F and ∩iAi ∈ F and if A, B ∈ F then B − A ∈ F .
Moreover, since f is continuous, F contains the compact sets. Since S is σ-
compact, S ∈ F . Finally, B(S) is generated by the compact sets and hence
F = B(S).

Note 12. If (S, ·) is a topological positive semigroup, then the Borel sets are
closed under left translations, i.e. if A ∈ B(S) and x ∈ S then xA ∈ B(S) and
x−1A ∈ B(S). These statements hold since the mapping y 7→ xy from S into S
is continuous and one-to-one.

Definition 15. Suppose that (S,�) is a toplogical poset. The poset dimension
of S is the smallest number of chains (total orders) on S whose intersection
gives �. We denote the poset dimension by dim(S,�).

Definition 16. Suppose that (S, ·) is a positive semigroup. Then S has semi-
group dimension n ∈ N+ if there exists B = {x1, x2, . . . , xn} ⊆ S such that if ϕ
is a continuous homomorphism from (S, ·) into the group (R, +) with ϕ(xi) = 0
for each i then ϕ(x) = 0 for each x ∈ S; moreover, no set with n−1 elements has
this property. The set B will be called a critical set. S has semigroup dimension
0 if there is no nontrivial continuous homomorphism from S into (R, +). S has
semigroup dimension ∞ if for every finite subset of S there exists a nontrivial
continuous homomorphism from S into (R, +) which maps the finite subset onto
0. We denote the semigroup dimension by dim(S, ·). These definitions are due
to Székely [31],

Problem 2. If (S, ·) is a positive semigroup, then we have two definitions of
dimension, one corresponding to the semigroup structure and one corresponding
to the associated partial order. How are these definitions related? They are
certainly not the same. The semigroup corresponding to the subset partial
order on finite subsets of N+ in Chapter 15 has semigroup dimension 1 and
poset dimension greater than 1.

Proposition 6. Suppose that (S, ·) is a standard, discrete positive semigroup
with I as the set of irreducible elements. If x ∈ S, then x can be factored finitely
over I. That is, x = i1i2 · · · in where ik ∈ I for each k.

12



Proof. Let x ∈ S. Since (S,�) is locally finite, there exists a finite path in the
Hasse graph from e to x, say (x0, x1, x2, . . . , xn) where x0 = e, xn = x, and xk+1

covers xk for each k. But then xk+1 = xkik for each k where ik ∈ I. Hence
x = i1i2 · · · in.

Note 13. Of course, the factoring of x over I is not necessarily unique, and
different factorings of x over I may have different lengths.

Proposition 7. Suppose that (S, ·) is a standard, discrete positive semigroup,
with I as the set of irreducible elements. Then dim(S, ·) ≤ #(I).

Proof. Suppose that ϕ is a homomorphism from (S, ·) into (R,+) and that
varphi(i) = 0 for each i ∈ I. If x ∈ S, then from Proposition 6, x can be
factored over I so that x = i1i2 · · · in where ik ∈ I for each k. But then

ϕ(x) = ϕ(i1) + ϕ(i2) + · · ·+ ϕ(in) = 0

Hence I is a critical set and so dim(S, ·) ≤ #(I)

Note 14. We can certainly have dim(S, ·) < #(I). The semigroup correspond-
ing to the subset partial order on finite subsets of N+ in Chapter 15 has infinitely
many irreducible elements but semigroup dimension 1.

1.3 Measure

Our last basic ingredient is a measure that is compatible with the algebraic
and topological structures. Thus, suppose that (S, �) is a topological poset.
The term measure on S will refer to a positive Borel measure on B(S); that
is, a positive measure λ on B(S) such that λ(K) < ∞ for compact K ⊆ S.
Because of the topological assumptions, λ is σ-finite, so there exists a sequence
An ∈ B(S) with S =

⋃∞
n=1An and λ(An) < ∞ for each n. Also, λ is regular;

that is,

λ(A) = sup{λ(K) : K compact,K ⊆ A} = inf{λ(U) : U open, A ⊆ U}

We will also usually assume that a measure λ has support S; equivalently λ(U) >
0 for any open set U

Definition 17. A measure λ on a topological positive semigroup (S, ·) is said
to left-invariant (or a left Haar measure) if

λ(xA) = λ(A), x ∈ S, A ∈ B(S)

Recall that t 7→ xt is an order-isomorphism from S onto xS = {y ∈ S : y �
x}; thus xA is the image of A under this isomorphism. Hence, a left-invariant
measure is compatible with the semigroup operation · and the self-similarity of
the partially ordered set (S, �).

Most of the positive semigroups that we will study have a left-invariant
measure that is unique up to multiplication by positive constants.
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Definition 18. If (S,�) is a topological, partially ordered set and λ is a fixed
reference measure, then (S,�, λ) will be referred to as a standard poset. If (S, ·)
is a topological positive semigroup and λ is a fixed left-invariant measure for S,
then (S, ·, λ) will be referred to as a standard positive semigroup.

Discrete posets and discrete positive semigroups are always standard. If
(S,�) is a discrete poset, then by the topological assumptions, D[x] is finite for
each x ∈ S. We wil always use counting measure # as the reference measure.

Proposition 8. If (S, ·) is a discrete positive semigroup then counting measure
# is left-invariant and is unique up to multiplication by positive constants.

Proof. Recall that B(S) is the power set of S, since {x} is closed (and hence a
Borel set) for each x ∈ S. Next note that

#(xA) = #(A), x ∈ S, A ⊆ S

since u 7→ xu maps A one-to-one onto xA. If µ is another left-invariant measure
on S then

µ({x}) = µ(x{e}) = µ({e})

Hence µ(A) = µ({e})#(A).

Proposition 9. Suppose that (S, ·) is a positive semigroup with left-invariant
measure λ. If λ{x} > 0 for some x ∈ S then (S, ·) is discrete (and then λ is a
multiple of counting measure).

Proof. Suppose that λ{x} > 0 for some x ∈ S. Then

λ{x} = λ(x{e}) = λ{e}

so λ{e} > 0 and as before,

λ{y} = λ(y{e}) = λ{e}, y ∈ S

Hence λ is a multiple of counting measure. Since λ is regular, we must have
λ(K) < ∞ for each compact K and hence compact sets must be finite. But S
is locally compact and has a countable base, and thus is σ-finite. It follows that
S is countable.

Much more generally, Szèkely [31] has given sufficient conditions for the
existence of a left-invariant measure on a semigroup. These conditions are rather
technical, but there may be more natural conditions for a positive semigroup.

Problem 3. Find sufficient conditions for the existence of a left-invariant mea-
sure on a positive semigroup, unique up to multiplication by positive constants.

Proposition 10. If (S, ·) is a non-trivial positive semigroup with left-invariant
measure λ, then λ(S) =∞.
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Proof. Suppose that λ(S) <∞. For every x ∈ S,

λ(S − xS) = λ(S)− λ(xS) = λ(S)− λ(S) = 0

But [e, x) ⊆ S − xS and hence λ[e, x) = 0 for every x ∈ S. Since S is non-
trivial, there exists a ∈ S, a 6= e. But [e, a2) is a neighborhood of a and hence
λ[e, a2) > 0—a contradiction.

Proposition 11. A measure λ on the positive semigroup (S, ·) is left-invariant
if and only if ∫

xS

ϕ(x−1y)dλ(y) =
∫
S

ϕ(z)dλ(z)

for every x ∈ S and every bounded measurable function ϕ : S → R.

Proof. Let ϕ = 1A where A ∈ B(S). Then for y ∈ xS, ϕ(x−1y) = 1 if and only
x−1y ∈ A if and only if y ∈ xA. Therefore∫

xS

ϕ(x−1y)dλ(y) = λ(xA)∫
S

ϕ(z)dλ(z) = λ(A)

The general result now follows in the usual way.

Corollary 1. A measure λ on B(S) is left-invariant for the postive semigroup
(S, ·) if and only if ∫

xA

ψ(y)dλ(y) =
∫
A

ψ(xz)dλ(z)

for every x ∈ S, A ∈ B(S), and every bounded measurable function ψ : S → R.

Note 15. Besides left invariance, there are other, related invariance properties
which have been studied (Mukherjea and Tserpes [21]). A measure λ is l∗-
invariant if

λ(x−1A) = λ(A)

for any x ∈ S and A ∈ B(S). A measure λ is left contra-invariant if

λ(x−1A) ≥ λ(A)

for any x ∈ S and A ∈ B(S). It is not reasonable to expect such properties
to hold for positive semigroups. In most cases, there exists an open set A and
x ∈ S such that no y ∈ A satisfies x � y. Thus x−1A is empty. Mukherjea
and Tserpes [21] have a number of results which state that if a semigroup has
an l∗-invariant measure then the support of the measure is a left group. Such
results do not apply here.

2 Operators and Cumulative Functions

In this chapter, we assume that (S,�, λ) is a standard poset.
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2.1 Lower and upper operators

Let D(S) denote the set of measureable functions from S into R, that are
bounded on D[x] for each x ∈ S. Recall that D[x] is compact for each x ∈ S.

Definition 19. Define the lower operator L on D(S) by

L(g)(x) =
∫
D[x]

g(t)dλ(t), x ∈ S

For n ∈ N, let Ln denote the n-fold composition of the operator L. Thus
L0(g) = g and for n ∈ N, Ln+1(g) = L(Ln(g)). Thus,

Ln+1(g)(x) =
∫
D[x]

Ln(g)(t)dλ(t)

The operator L is linear and is well defined on D(S). To see this, let g ∈
D(S). and y ∈ S. There exists Cy such that |g(t)| ≤ C for t ∈ D[y]. Moreover,
D[x] ⊆ D[y] for each x ∈ D[y]. Hence for x ∈ D[y]

|L(g)(x)| =

∣∣∣∣∣
∫
D[x]

g(t)dλ(t)

∣∣∣∣∣ ≤
∫
D[x]

|g(t)|dλ(t)

≤
∫
D[y]

|g(t)|dλ(t) ≤
∫
D[y]

Cdλ(t) = Cyλ(D[y])

Proposition 12. If g ∈ D(S) is nonnegative, then L(g) is increasing (and hence
Ln(g) is increasing for each n ∈ N+).

Proof. Clearly L(g) : S → [0,∞). If x � y,

L(g)(x) =
∫
D[x]

g(t)dλ(t) ≤
∫
D[y]

g(t)dλ(t) = L(g)(y)

Next, consider the usual Banach space L(S), consisting of measurable func-
tions g : S → R, with

||g|| =
∫
S

|g(x)|dλ(x) <∞

and recall that B(S) is the set of measurable functions from S into R.

Definition 20. Define the upper operator U : L(S)→ B(S) by

U(g)(x) =
∫
I[x]

g(y)dλ(y)

16



Of course, U is a linear operator. The lower operator L and the upper
operator U are complementary:

L(g)(x) =
∫
D[x]

g(t)dλ(t), x ∈ S

U(g)(x) =
∫
I[x]

g(y)dλ(y), x ∈ S

Moreover, we have the following duality:

Theorem 3. Suppose that f ∈ D(S) and that g ∈ L(S). Then, assuming that
the integrals exist,∫

S

L(f)(x)g(x)dλ(x) =
∫
S

f(x)U(g)(x)dλ(x)

Proof. By Fubinni’s theorem,∫
S

L(f)(x)g(x)dλ(x) =
∫
S

(∫
D[x]

f(t)dλ(t)

)
g(x)dλ(x)

=
∫
S

∫
D[x]

f(t)g(x)dλ(t)dλ(x)

=
∫
S

∫
I[t]

f(t)g(x)dλ(x)dλ(t)

=
∫
S

f(t)
∫
I[t]

g(x)dλ(x)dλ(t)

=
∫
S

f(t)U(g)(t)dλ(t)

Note 16. In the notation of the L2 inner product,

〈u, v〉 =
∫
S

u(x)v(x)dλ(x)

Theorem 3 becomes the adjoint condition

〈L(f), g〉 = 〈f, U(g)〉

Note 17. Both operators can be written as integral operators with a kernel
function. Define r : S × S → R by

r(x, y) =

{
1 if x � y
0 otherwise
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so that r is the Riemann function in the terminology of Möbius inversion (see
Section 2.4). Then

L(f)(x) =
∫
S

r(t, x)f(t)dλ(t), x ∈ S

U(f)(x) =
∫
S

r(x, t)f(t)dλ(t), x ∈ S

2.2 Cumulative functions

Definition 21. Define λn = Ln(1) (where 1 is the constant function 1 on S).
The function λn is called the cumulative function of order n corresponding to
λ.

Thus, λ0 = 1 and

λn+1(x) =
∫
D[x]

λn(t)dλ(t), x ∈ S

By Proposition 12, λn is increasing for each n ∈ N.

Definition 22. For n ∈ N+, let λn denote the n-fold product measure on Sn,
corresponding to the reference measure λ on S. Let

Dn = {(x1, x2, . . . , xn) ∈ Sn : x1 � x2 � · · · � xn}

For x ∈ S, let

Dn[x] = {(x1, x2, . . . , xn) ∈ Sn : x1 � x2 � · · · � xn � x}

Note that D1[x] is simply D[x] as defined earlier.

Proposition 13. For n ∈ N+, λn(x) = λn(Dn[x]).

Proof. By definition,

λ1(x) =
∫
D[x]

1 dλ(t) = λ(D[x]) = λ(D1[x])

so the result holds for n = 1. Suppose that the result holds for a given n ≥ 1.
Then

λn+1(Dn+1[x]) =
∫
S

λn{u ∈ Dn : (u, t) ∈ Dn+1[x]} dλ(t)

But (u, t) ∈ Dn+1[x] if and only if t ∈ D[x] and u ∈ Dn[t]. Hence

λn+1(Dn+1[x]) =
∫
D[x]

λn(Dn[t]) dλ(t) =
∫
D[x]

λn(t) dλ(t) = λn+1(x)

18



Proposition 14. Suppose that (S,�) is a discrete standard poset (with count-
ing measure # as the reference measure, of course). Then x ∈ S is a minimal
element if and only if #1(x) = 1, in which case #n(x) = 1 for all n ∈ N.

Proof. Note that x ∈ S is a minimal element if and only if D[x] = {x} if and
only if #1(x) = 1. Inductivley, if #n(x) = 1 then

#n+1(x) =
∑

y∈D[x]

#n(y) = #n(x) = 1

Definition 23. We can define a generating function of sorts. Let

Λ(x, t) =
∞∑
n=0

λn(x)tn

for x ∈ S and for t ∈ R for which the series converges absolutely. Let r(x)
denote the radius of convergence, so that the series converges absolutely for
|t| < r(x).

Since λn is increasing for each n ∈ N, x 7→ Λ(x, t) is increasing for fixed t,
and hence the radius of convergence r is decreasing. The generating function Λ
turns out to be important in the study of the point process associated with a
constant rate distribution.

2.3 Convolution

Definition 24. Suppose that (S, ·) is a positive semigroup and that µ and ν
are measures on S. The convolution of µ with ν is the measure µν defined by

µν(A) =
∫
S

ν(x−1A)dµ(x), A ∈ B(S)

Definition 25. Suppose that λ is a measure on S and that f, g : S → R are
locally bounded (that is, bounded on compact subsets of S). The convolution
of f with g, with respect to λ, is the function f ∗ g defined by

(f ∗ g)(x) =
∫

[e,x]

f(t)g(t−1x) dλ(t), x ∈ S

If f : S → R is locally bounded, then for n ∈ N+, we denote the convolution
power of f of order n by f∗n = f ∗f ∗· · ·∗f (n times). If there is any uncertainty
about the underlying measure λ, we use ∗λ.

Note 18. The definition makes sense. For fixed x ∈ S, [e, x] and {t−1x : t � x}
are compact. Hence, there exist positive constants Ax and Bx such that |f(t)| ≤
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Ax and |g(t−1x)| ≤ Bx for t ∈ [e, x]. Therefore∣∣∣∣∣
∫

[e,x]

f(t)g(t−1x) dλ(x)

∣∣∣∣∣ ≤
∫

[e,x]

|f(t)||g(t−1x| dλ(x)

≤
∫

[e,x]

AxBx dλ(x) ≤ AxBxλ[e, x] <∞

Note 19. Convolution is associative: f ∗ (g ∗ h) = (f ∗ g) ∗ h, and the common
value at x ∈ S is given by

(f ∗ g ∗ h)(x) =
∫

[e,x]

∫
[e,t]

f(s)g(s−1t)h(t−1x) dλ(s) dλ(t), x ∈ S

However, since the semigroup operation is not in general commutative, neither
is the convolution operation.

Note 20. In the case of a positive semigroup (S, ·), the lower operator L on
D(S) can be simply expressed interms of convolution: L(g) = g ∗ 1, and hence
Ln(g) = g ∗ 1∗n. In particular, λn = 1∗(n+1) for n ∈ N.

2.4 Möbius inversion

Suppose that (S, �) is a discrete standard poset. In particular D[x] is finite for
each x ∈ S and hence (S, �) is locally finite [3].

Definition 26. An arithmetic function is a function f : S × S → R with the
properties

f(x, y) 6= 0 if x = y

f(x, y) = 0 if x � y

The set A of arithmetic functions on S is a group with the operation

(f · g)(x, y) =
∑
t∈[x,y]

f(x, t)g(t, y)

The identity element is the Kronecker delta function δ ∈ A:

δ(x, y) =

{
1, if x = y

0, if x 6= y

The inverse of f ∈ A is the function f−1 ∈ A defined inductively as follows:

f−1(x, x) =
1

f(x, x)

f−1(x, y) = − 1
f(y, y)

∑
t∈[x,y)

f−1(x, t)f(t, y) if x ≺ y
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Definition 27. The Riemann function r ∈ A is defined as follows:

r(x, y) =

{
1 if x � y
0 otherwise

The Möbius function m ∈ A is defined inductively as follows:

m(x, x) = 1

m(x, y) = −
∑
t∈[x,y)

m(x, t) if x ≺ y

The functions r and m are inverses of each other. The Möbius inversion
formula states that if f and g are real-valued functions on S and

f(x) =
∑
t∈D[x]

g(t), x ∈ S

then
g(x) =

∑
t∈D[x]

f(t)m(t, x) x ∈ S

Restated in terms of the operator L, the inversion formula gives a formula for
the inverse L−1:

L(g)(x) =
∑
t∈D[x]

g(t), x ∈ S

L−1(f)(x) =
∑
t∈D[x]

f(t)m(t, x), x ∈ S

3 Basic Constructions

There are several important ways to build new posets and positive semigroups
from old ones.

3.1 Isomorphism

Posets (S,�) and (T,�) are isomorphic if there exists a one-to-one function Φ
from S onto T such that x � y in S if and only if Φ(x) � Φ(y) in T .

Positive semigroups (S, ·) and (T, ·) are isomorphic if there exists a one-to-
one function Φ from S onto T such that

Φ(xy) = Φ(x)Φ(y), x, y ∈ S

It follows that the partially ordered sets (S, �S) and (T, �T ) are isomorphic as
well.
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If the posets or positive semigroups are topological, we require the isomor-
phism Φ to be continuous and have a continuous inverse. In this case, if λ is a
measure on S, then µ defined by

µ(B) = λ
(
Φ−1(B)

)
, B ∈ B(T )

is a measure on T , and for any bounded, measurable f : T → R,∫
T

f(y)dµ(y) =
∫
S

f (Φ(x)) dλ(x)

In the semigroup case, if λ is left-invariant on (S, ·) then µ is left-invariant on
(T, ·).

Suppose now that (S, ·) is a positive semigroup, and that Φ: S → T is
one-to-one and onto. We can define an operation · on T by

uv = Φ
(
Φ−1(u)Φ−1(v)

)
, u, v ∈ T

Proposition 15. (T, ·) is a positive semigroup isomorphic to (S, ·).

Proof. Let u, v, w ∈ T . Then

(uv)w = Φ[Φ−1(uv)Φ−1(w)] = Φ[Φ−1(u)Φ−1(v)Φ−1(w)]

= Φ[Φ−1(u)Φ−1(vw)] = u(vw)

Thus (T, ·) is a semigroup. Let e denote the identity in S and let i = Φ(e) ∈ T .
For u ∈ T ,

ui = Φ[Φ−1(u)e] = u, iu = Φ[eΦ−1(u)] = u

and therefore ui = iu = u. Thus i is the identity of (T, ). Suppose u, v, w ∈ T
and uv = uw. Then

Φ[Φ−1(u)Φ−1(v)] = Φ[Φ−1(u)Φ−1(w)]

Therefore Φ−1(u)Φ−1(v) = Φ−1(u)Φ−1(w) and hence Φ−1(v) = Φ−1(w) and so
v = w. Suppose u, v ∈ T and uv = i. Then Φ[Φ−1(u)Φ−1(v)] = i = Φ(e)
and hence Φ−1(u)Φ−1(v) = e. Therefore Φ−1(u) = e, Φ−1(v) = e and therefore
u = v = i.

Again, if the spaces are topological, and Φ a homeomorphism, then (S, ·)
and (T, ·) are isomorphic as topological positive semigroups, and so our previous
comments apply.

3.2 Sub-semigroups

Suppose that (S, ·) is a positive semigroup. A non-empty subset T of S is a
sub-semigroup if x, y ∈ T implies xy ∈ T , so that (T, ·) is a semigroup in its
own right. If T is a sub-semigroup of S and e ∈ T then (T, ·) is also a positive
semigroup. Note that the nonexistence of inverses, the left cancellation law, and
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the associative property are inherited. If T is a sub-semigroup of S and e /∈ T ,
then T ∪ {e} is also a sub-semigroup, and hence the previous comments apply.
Thus, unless otherwise noted, we will only consider sub-semigroups that contain
the identity.

The partial orders on S that are compatible with the semigroup operation ·
can be completely characterized in terms of the sub-semigroups of (S, ·). Specif-
ically, if T is a sub-semigroup of S we define the relation �T on S by

x �T y if and only if xt = y for some t ∈ T

Theorem 4. Suppose that (S, ·) is a positive semigroup.

1. If T is a sub-semigroup of S then (S, ·,�T ) is a left-ordered semigroup
and �T is a sub-order of �S .

2. Conversely, if (S, ·,�) is a left-ordered semigroup and � is a sub-order of
�S then � is �T for some sub-semigroup T of S.

3. If T and U are sub-semigroups of S then �T and �U are the same if and
only if T = U .

Proof. Suppose that T is a sub-semigroup of S. If x ∈ S then x �T x since
xe = x and e ∈ T . Suppose that x �T y and y �T x. Then xs = y and yt = x
for some s, t ∈ T . Hence xst = x so st = e by left cancellation, and hence
s = t = e since there are no non-trivial inverses. Suppose that x �T y and
y �T z. Then y = xs and z = yt for some s, t ∈ T . Hence z = xst and therefore
x �T z since st ∈ T . Trivially, if x �T y then x �S y. Suppose that x �T y and
a ∈ S. Then y = xt for some t ∈ T so ay = axt and hence ax �T ay. Conversely,
suppose that ax �T ay. The ay = axt for some t ∈ T . By left-cancellation,
y = xt so x �T y. Thus, (S, ·,�T ) is a left-ordered semigroup.

Conversely, suppose that � is a sub-order of �S and that (S, ·,�) is a left-
ordered semigroup. Define

T = {t ∈ S : e � t}

Let s, t ∈ T . Then e � t and hence s = se � st. Also e � s, so by transitivity,
e � st and hence st ∈ T . Of course e � e so e ∈ T . Thus T is a sub-semigroup
of S. Suppose that x y ∈ S and x � y. Since � is a sub-order of �S , there
exists t ∈ S so that y = xt. Thus we have x = xe � xt and hence e � t. Hence
t ∈ T so x �T y. Conversely, suppose that x, y ∈ S and x �T y. There exists
t ∈ T such that y = xt. But e � t and hence x = xe � xt = y. Thus � is the
same as �T .

Finally, suppose that T and U are sub-semigroups of S and a ∈ T −U . Then
a �T a2 but a 6�U a2.

Note 21. In particular, �T is the same as �S if and only if T = S. At the
other extreme, if T = {e} then �T is the equality relation: x �T y if and only
if x = y. Of course, �T restricted to T is the partial order associated with the
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positive semigroup (T, ·). Note again however, that �T restricted to T is not
the same as �S restricted to T in general. Specifically, for x, y ∈ T , x �T y
implies x �S y but the converse is not true unless x−1y ∈ T . This leads to our
next definition.

Definition 28. A sub-semigroup T is (algebraically) complete in S if x, y ∈ T
and x �S y imply x−1y ∈ T .

Note 22. If T is complete in S then �T restricted to T is the same as �S
restricted to T , and thus we may drop the subscripts. We will seldom need to
refer to topological completeness, so the term complete will mean algebraically
complete unless otherwise specified.

Proposition 16. Suppose that Ti is a sub-semigroup of S for each i in a
nonempty index set I. Then T =

⋂
i∈I Ti is a sub-semigroup of S. If Ti is

complete in S for each i, then so is T .

Proof. Suppose x, y ∈ T . Then x, y ∈ Ti for each i ∈ I and hence xy ∈ Ti for
each i ∈ I. Therefore xy ∈ T . Suppose Ti is complete in S for each i ∈ I, and
let x, y ∈ T with x � y. Then x, y ∈ Ti for each i ∈ I and hence x−1y ∈ Ti for
each i ∈ I. Therefore x−1y ∈ T .

Definition 29. Suppose that A ⊆ S. The sub-semigroup of (S, ·) generated
by A is the intersection of all sub-semigroups containing A:

SA =
⋂
{T : T is a sub-semigroup of S and A ⊆ T}

The complete sub-semigroup of (S, ·) generated by A is the intersection of all
complete sub-semigroups containing A:

ŜA =
⋂
{T : T is a complete sub-semigroup of S and A ⊆ T}

Note 23. SA is the smallest sub-semigroup containing A, and can be written
as the set of all finite products of elements in A:

SA = {x1x2 · · ·xn : n ∈ N, xi ∈ A for i = 1, 2, . . . n}

As usual, an empty product is interpreted as e. Of course, the products

x1x2 · · ·xn

do not necessarily represent distinct elements in SA, unless SA is a free semi-
group (see Section 13). Similarly, ŜA is the smallest complete sub-semigroup
containing A.

Proposition 17. Suppose that (S, ·) is a topological positive semigroup and
that T is a sub-semigroup of S. Then cl(T ), the closure of T is also a sub-
semigroup of S.
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Proof. Suppose that x, y ∈ cl(T ). Then there exist sequences xn ∈ T and
yn ∈ T (n ∈ N+) such that xn → x and yn → y as n → ∞. But T is a sub-
semigroup, so xnyn ∈ T for each n ∈ N+. By continuity, xnyn → xy as n→∞.
Hence xy ∈ cl(T ).

Proposition 18. Suppose that (S, ·) is a topological positive semigroup and
that T is a closed, complete sub-semigroup of S. Then (T, ·) is also a topological,
positive semigroup (where T is given the relative topology).

Proof. Since S is locally compact and T is a closed subset of S, T is locally
compact, as a subspace of S. Trivially, T is Hausdorff and has a countable
base, since S has these properties. Suppose that xn ∈ T for n ∈ N+ and that
x ∈ T . Then xn → x as n → ∞ in T if and only if xn → x as n → ∞ in S.
Hence the mapping (x, y) 7→ xy from T 2 to T is continuous. Similarly, because
of completeness, the mapping (x, y) 7→ x−1y from {(x, y) ∈ T 2 : x � y} to T is
continuous. For x ∈ T , [e, x]T = [e, x]∩T is compact in S and in T . If x, y ∈ T
and x ≺ y then [e, y] is a neighborhood of x in S, so [e, y]T = [e, y] ∩ T is a
neighborhood of x in T , and xS is a neighborhood of y in S, so xT = xS ∩ T is
a neighborhood of y in T .

Example 1. Suppose that (S, ·) is a positive semigroup. The sub-semigroup
generated by e is just {e}. If t 6= e, the sub-semigroup generated by t is

St = {tn : n ∈ N}

where by convention, t0 = e. Note that e = t0 ≺ t1 ≺ t2 ≺ · · · , so in particular
the elements are distinct. Note also that St is complete in S: tm � tn in and
only in m ≤ n, in which case (tm)−1tn = tn−m.

Proposition 19. Suppose that (S, ·) is a (topological) positive semigroup. If
t 6= e then St does not have a convergent subsequence. Moreover, St is closed
and the relative topology is discrete.

Proof. Suppose that tnk → a as k → ∞ where nk is strictly increasing in k.
If U is a convex neighborhood of a then tnk ∈ U for k sufficiently large. But
then tn ∈ U for n sufficiently large by convexity, since tn ∈ [tnj , tnk ] for some
j and k. Hence tn → a as n → ∞. But then tnt = tn+1, so taking limits and
using continuity we have at = a. But then t = e by left-cancellation, which
is a contradiction. It now follows that St is closed. Finally, for each n there
exists a convex neighborhood U of tn that does not contain tn−1 or tn+1 by the
Hausdorff property. But then by convexity, U does not contain tm for m > n+1
or m < n− 1. Thus, {tn} is open in St.

Proposition 20. If A ⊆ S is increasing, then T = A ∪ {e} is a sub-semigroup.
If T is non-trivial (T 6= {e} and T 6= S) then T is not complete in S.

Proof. If x ∈ A and y ∈ S then x � xy and hence, by definition, xy ∈ A. In
particular, if x, y ∈ A then xy ∈ A, so T is a sub-semigroup. Suppose that T
is non-trivial. Then there exists u /∈ T and a ∈ A, a 6= e. But then a ∈ T and
x = au ∈ T and a � x, but a−1x = u /∈ T , so T is not complete.
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Example 2. Suppose that (S, ·) is a positive semigroup and A ⊂ S. Then

AS = {x ∈ S : x � a for some a ∈ A}

is the increasing set generated by A. Thus, TA := {e} ∪AS is a sub-semigroup
of S, and is not complete in S, unless TA is trivial. Since TA contains A, we
have SA ⊆ TA.

Suppose that (S, ·) is a positive semigroup and that T is a sub-semigroup
of S. Recall that cl(T ), the closure of T is also a sub-semigroup, so we will
frequently assume that T is closed. We will always assume at least that T ∈ B(S)
and that T with the relative topology satisfies the topological assumptions.
Recall, in particular, that this is true when T is closed and complete. If λ is a
measure on S and λ(T ) > 0, then λT , the restriction of λ to B(T ) is a measure
on T . If λ is left-invariant on S, then λT is left-invariant on T . Recall that
a locally compact topological group has a left-invariant measure, unique up to
multiplication by positive constants, and that many positive semigroups are
embedded in such groups.

3.3 Direct product

Suppose that (S,�1, µ) and (T,�2, ν) are standard posets. The direct product
(S×T,�, λ) is also a standard poset, where S×T is given the product topology,
� is the product order

(u, v) � (x, y) if and only if u �1 x and v �2 y

and where λ = µ⊗ ν, the product measure. Also, B(S×T ) = B(S)⊗B(T ) (the
σ-algebra generated by the measurable rectangles). The cumulative functions
are related as follows:

Proposition 21. λn(x, y) = µn(x)νn(y) for n ∈ N, x ∈ S, and y ∈ T ,

Proof. Of course λ0(x, y) = 1 = µ0(x)ν0(y) for (x, y) ∈ S×T . Assume that the
result holds for n ∈ N.Note that DS×T [(x, y)] = DS [x]×DT [y]. Thus

λn+1(x, y) =
∫
DS×T [x,y]

λn(s, t)dλ(s, t)

=
∫
DS [x]

∫
DT [y]

µn(s)νn(t)dν(t)dµ(s)

= µn+1(x)νn+1(y)

Note however that the generating function of (λn : n ∈ N) has no simple
representation in terms of the generating function of (µn : n ∈ N) and the
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generating function of (νn : n ∈ N):

Λ[(x, y), r] =
∞∑
n=0

λn(x, y)rn =
∞∑
n=0

µn(x)νn(y)rn

M(x, r) =
∞∑
n=0

µn(x)rn, N(y, r) =
∞∑
n=0

ν(y)rn

Suppose now that (S, ·) and (T, ·) are topological positive semigroups. The
direct product is the semigroup (S×T, ·) with the binary operation · defined by

(x, y)(u, v) = (xu, yv)

and with the product topology. The direct product is also a topological positive
semigroup. If e and ε are the identity elements in S and T respectively, then
(e, ε) is the identity element in S×T . If �S and �T are the partial orders corre-
sponding to (S, ·) and (T, ·) respectively then the partial order � corresponding
to (S × T, ·) is the product order described above.

Proposition 22. If µ and ν are left-invariant measures for (S, ·) and (T, ·),
respectively, then µ ⊗ ν is left invariant for (S × T, ·). If (S, ·) and (T, ·) are
standard positive semigroups, then so is (S × T, ·).

Proof. For x ∈ S, y ∈ T , A ∈ B(S), and B ∈ B(T ),

(µ⊗ ν)[(x, y)(A×B)] = (µ⊗ ν)(xA× yB)
= µ(xA)ν(yB) = µ(A)ν(B) = (µ⊗ ν)(A×B)

Therefore, for fixed (x, y) ∈ S × T , the measures on S × T

C 7→ (µ⊗ ν)[(x, y)C]
C 7→ (µ⊗ ν)(C)

agree on the measurable rectangles A×B where A ∈ B(S) and B ∈ B(T ). Hence,
these measures must agree on all of B(S × T ), and hence µ⊗ ν is left-invariant
on (S × T, ·).

Suppose now that (S, ·) and (T, ·) are standard, so that the left-invariant
measures µ and ν are unique, up to multiplication by positive constants. Let
C(T ) denote the set of compact subsets of T . Suppose now that λ is a left-
invariant measure for (S × T, ·). For C ∈ C(T ), define

µC(A) = λ(A× C), A ∈ B(S)

Then µC is a regular measure on S (although it may not have support S).
Moreover, for x ∈ S and A ∈ B(S),

µC(xA) = λ(xA× C) = λ((x, ε)(A× C)) = λ(A× C) = µC(A)
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so µC is left-invariant for (S, ·). It follows that for each C ∈ C(T ), there exists
ρ(C) ∈ [0,∞) such that µC = ρ(C)µ; that is,

λ(A× C) = µ(A)ρ(C), A ∈ B(S), C ∈ C(T ) (1)

Fix A ∈ B(S) with 0 < µ(A) <∞. If C, D ∈ C(T ) and C ⊆ D then

µ(A)ρ(C) = λ(A× C) ≤ λ(A×D) = µ(A)ρ(D)

so ρ(C) ≤ ρ(D). If C, D ∈ C(T ) are disjoint then

µ(A)ρ(C ∪D) = λ(A× (C ∪D)) = λ((A× C) ∪ (A×D))
= λ(A× C) + λ(A×D) = µ(A)ρ(C) + µ(A)ρ(D)

so ρ(C ∪D) = ρ(C) + ρ(D). If C, D ∈ C(T ) then

µ(A)ρ(C ∪D) = λ(A× (C ∪D)) = λ((A× C) ∪ (A×D))
≤ λ(A× C) + λ(A×D) = µ(A)ρ(C) + µ(A)ρ(D)

so ρ(C ∪D) ≤ ρ(C) + ρ(D). Thus, ρ is a content in the sense of [15], and hence
can be extended to a regular measure on T (which we will continue to call ρ).
Thus, from (1) we have

λ(A× C) = (µ⊗ ρ)(A× C), A ∈ B(S), B ∈ C(T )

By regularity, it follows that λ = µ⊗ρ. Again fix A ∈ B(S) with 0 < µ(A) <∞.
If y ∈ T and B ∈ B(T ) then

µ(A)ρ(yB) = λ(A× yB) = λ((e, y)(A×B)) = λ(A×B) = µ(A)ρ(B)

so it follows that ρ(yB) = ρ(B) and hence ρ is left-invariant for (T, ·). Thus,
ρ = cν for some positive constant c and so λ = cµ ⊗ ν. Therefore µ ⊗ ν is the
unique left-invariant measure for (S × T, ·) , up to multiplication by positive
constants.

The direct product (S × T, ·) has several natural sub-semigroups. First,
{(x, ε) : x ∈ S} is a complete sub-semigroup isomorphic to S and {(e, y) : y ∈ T}
is a complete sub-semigroup isomorphic to T . If S = T , then {(x, x) : x ∈ S} is
a complete sub-semigroup isomorphic to S. On the other hand, {(x, y) : x � y}
is a sub-semigroup that is not complete in general.

Naturally, the results in this subsection can be extended to the direct product
of n positive semigroups (S1, ·), (S2, ·), . . . (Sn, ·) and in particular to the n-fold
direct power (Sn, ·) of a positive semigroup (S, ·).

Suppose that (Si, ·) is a discrete positive semigroup for i = 1, 2, . . .. We can
construct an infinite product that will be quite useful. Let

T = {(x1, x2, . . .) : xi ∈ Sifor each i and xi = ei for all but finitely many i}

As before, we define the component-wise operation:

(x1, x2, . . .) · (y1, y2, . . .) = (x1y1, x2y2, . . .)

so that the associated partial order is also component-wise: x � y if and only if
xi �i yi for each i = 1, 2, . . .. The set T is countable and hence with the discrete
topology and counting measure is a discrete positive semigroup.
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3.4 Ordered groups

Definition 30. The triple (G, ·, �) is said to be a left-ordered group if (G, ·)
is a group; � is a partial order on G and for x, y, z ∈ G,

x � y ⇒ zx � zy

If e denote the identity of G, then S = {x ∈ G : e � x} is the set of
positive elements of G (although more accurately, it should be called the set of
nonnegative elements of S).

Proposition 23. If (G, ·, �) is a left-ordered group and S is the set of positive
elements, then (S, ·) is a positive semigroup, and for x, y ∈ G, x � y if and
only if there exists u ∈ S such that xu = y. In particular, � restricted to S is
the partial order associated with S. Conversely, if (G, ·) is a group and S is a
positive sub-semigroup of G, then � defined by x � y if and only if there exists
u ∈ S such that xu = y makes G into a left-ordered group with S as the set of
positive elements.

Proof. Suppose that (G, ·, �) is a left-ordered group and S is the set of positive
elements, Let x, y ∈ S. Then e � y so

e � x = xe � xy

and therefore xy ∈ S. Of course S inherits the associativity property from G
so (S, ·) is a semigroup. Next e � e so e ∈ S so S has an identity. Also S
inherits the left cancellation law from G. Suppose that x, x−1 ∈ S. Then e � x
so x−1 = x−1e � x−1x = e. But also e � x−1 so x−1 = e and hence x = e.
Therefore S has no nontrivial invertible elements.

Now let x ∈ G, u ∈ S. Then e � u so x = xe � xu. Conversely, suppose
x, y ∈ G and x � y. Then

e = x−1x � x−1y

so x−1y ∈ S. But x(x−1y) = y.
Now suppose that (G, ·) is a group and S a positive sub-semigroup. Define

x � y if and only if there exists u ∈ S such that xu = y. Then x � x since
e ∈ S and xe = x. Suppose x � y and y � x. There exists u, v ∈ S such that
xu = y and yv = x. But then

xuv = yv = x = xe

so uv = e and hence u = v = e. Therefore x = y. Suppose x � y and y � z.
Then there exist u, v ∈ S such that xu = y and yv = z. But uv ∈ S and
xuv = yv = z so x � z. Suppose that x � y so that there exists u ∈ S with
xu = y. For any z ∈ G, zxu = zy so zx � zy. Hence, (G, ·, �) is a left-ordered
group. Finally, if e � x then there exists u ∈ S such that u = eu = x, so x ∈ S
and conversely, if u ∈ S then eu = u so e � u. Thus S is the set of positive
elements of G.
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Note 24. In particular this result applies to the special case of a commutative
ordered group and an ordered vector space. In any of these cases, the set of
positive elements forms a positive semigroup. Conversely, if a positive semigroup
(S, ·) can be embedded in a group (G, ·), then G can be ordered so that S is
the set of positive elements. As the next result shows, this is always the case if
the semigroup is commutative.

Proposition 24. Suppose that (S, ·) is a commutative positive semigroup.
Then S is isomorphic to the positive elements of a commutative ordered group.

Proof. The method is similar to the construction of the positive rationals from
the positive integers. We define an equivalence relation ∼ on S2 as follows:

(x, y) ∼ (z, w) if and only if xw = yz

First (x, y) ∼ (x, y) since xy = yx. If (x, y) ∼ (z, w) then xw = yz so zy = wx
and hence (z, w) ∼ (x, y). Finally if (u, v) ∼ (x, y) and (x, y) ∼ (z, w) then
uy = vx and xw = yz so

uyw = vxw = vyz

Hence yuw = yvz so canceling gives uw = vz. Therefore (u, v) ∼ (z, w).
Let [x, y] denote the equivalence class generated by (x, y) under ∼. Define

G = {[x, y] : x, y ∈ S}

Define a binary operator · on G by

[x, y][z, w] = [xz, yw]

Suppose that (x, y) ∼ (x1, y1) and (z, w) ∼ (z1, w1). Then xy1 = yx1 and
zw1 = wz1. Hence

(xz)(y1w1) = (xy1)(zw1) = (yx1)(wz1) = (yw)(x1z1)

so (xz, yw) ∼ (x1z1, y1w1) and therefore the operator is well defined. Next

([u, v][x, y])[z, w] = [ux, vy][z, w] = [uxz, vyw]
= [u, v][xz, yw] = [u, v]([x, y][z, w])

so the associative property holds and

[x, y][z, w] = [xz, yw] = [zx, wy] = [z, w][x, y]

so the commutative property holds. Note that (x, x) ∼ (y, y) for any x, y ∈ S
and

[x, x][y, z] = [xy, xz] = [y, z]

so [x, x] =: ε is the identity. Also

[x, y][y, x] = [xy, yx] = [xy, xy] = ε
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so every element of G has an inverse. Thus (G, ·) is a group.
Next, the mapping x 7→ [x, e] defines an isomorphism from S to the following

sub-semigroup of G:
S′ = {[x, e] : x ∈ S}

Note that x 6= y ⇒ [x, e] 6= [y, e] so the mapping is one-to-one, and[x, e][y, e] =
[xy, e] so the mapping is a homomorphism. It follows that (S′, ·) is a positive
semigroup so the partial order � defined by [x, y] � [z, w] if and only if there
exists [u, e] ∈ S′ such that [x, y][u, e] = [z, w] makes G into an ordered group
with S′ as the set of positive elements.

3.5 Simple sums

Suppose first that (Si,�i, λi) is a standard poset for each i ∈ I, where I is a
countable index set. We assume that Si, i ∈ I are disjoint. Now let

S =
⋃
i∈I

Si

and define � on S by x � y if and only if x, y ∈ Si for some i ∈ I and x �i y.
That is, � is the union of the relations �i over i ∈ I. We give S the topology
which is the union of the topologies of Si, over i ∈ I. We define λ on B(S) by

λ(A) =
∑
i∈I

λi(Si ∩A)

The poset (S,�, λ) is the simple sum of the posets (Si,�i, λi) over i ∈ I. In the
discrete case, the covering graph of the new poset is obtained by juxtaposing
the covering graphs of Si, i ∈ I.

3.6 Lexicographic sums

Suppose that (R,�R, µ) is a standard poset and that for each x ∈ R, (Sx,�x, νx)
is a standard poset. We define the lexicographic sum of Sx over x ∈ R as follows:
First, let

T = {(x, y) : x ∈ R, y ∈ Sx} =
⋃
x∈R
{x} × Sx

Define the partial order � on T by

(u, v) � (x, y) if and only if u ≺R x or (u = x and v �x y)

In the special case that (R,�R) is a discrete antichain, the lexicographic sum
reduces to the simple sum of Sx over x ∈ R, studied in Section 5.5. Since we
have already studied that setting, let’s assume that (R,�R) is not an antichain,
and that Sx is compact for each x. In this case, there is a natural topology that
gives the usual topological assumptions and we can define the reference measure
λ on T by

λ(C) =
∫
S

νx(Cx)dµ(x), C ∈ B(T )
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where Cx = {y ∈ Sx : (x, y) ∈ C}, the cross section of C at x ∈ R. In the
special case that (Sx,�x, νx) = (S,�S , ν), independent of x ∈ R, we have the
lexicographic product of (R,�S , µ) with (S,�S , ν). .

In the discrete case, the covering graph of the lexicographic sum can be
constructed as follows:

1. Start with the covering graph of (R,�R).

2. Replace each vertex x of the graph in step 1 with the covering graph of
Sx.

3. If (x, y) is a directed edge in the graph in step 1, then in the graph in
step 2, draw an edge from each maximal element of Sx to each minimal
element of Sy.

We give an example of a construction with positive semigroups whose asso-
ciated partial order is a lexicographic sum. This construction will be useful for
counterexamples.

Example 3. Suppose that (S, ·) is a standard discrete positive semigroup with
minimum element e, and let I be a countable set with 0 /∈ I. Define

T = {(e, 0)} ∪

 ⋃
x∈S−{e}

{x} × I


We define a binary operation · on T as follows: First (e, 0) is the identiy element
of T so that (e, 0)(x, i) = (x, i)(e, 0) = (x, i) for (x, i) ∈ T . Less trivially,

(x, i)(y, j) = (xy, j), x, y ∈ S − {e}, i, j ∈ I

Proposition 25. In the setting of Example 3, (T, ·) is a standard discrete
positive semigroup with minimum element e and associated partial order

(x, i) ≺ (y, j) if and only if x ≺ y

Moreover, this partial order corresponds to the lexicographic sum of (Ix,�x)
over x ∈ S where Ie = {e} and where Ix = I and �x is the equality relation for
x ∈ S − {e}.

Proof. First, note that e is the identity of T by construction, so the basic prop-
erties of a positive semigroup need only be verified for non-identity elements.
The operation · is associative:

((x, i)(y, j))(z, k) = (xy, j)(z, k) = (xyz, k)

and
(x, i)((y, j)(z, k)) = (x, i)(yz, k) = (xyz, k)
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The left-cancellation property holds: if (x, i)(y, j) = (x, i)(z, k) then (xy, j) =
(xz, k) so xy = xz and j = k. But the left-cancellation law holds in S so y = z.
Thus (y, j) = (z, k). Clearly there are no non-trival inverses.

Now, suppose that (x, i) ≺ (y, j). Then there exists (z, k) such that

(x, i)(z, k) = (y, j)

But then (xz, k) = (y, j) so in particular, xz = y so x ≺ y. Conversely, suppose
that x ≺ y and i, j ∈ I. Then there exists z ∈ S with xz = y so

(x, i)(z, j) = (xz, j) = (y, j)

so (x, i) ≺ (y, j).

Note that for x ∈ S−{e}, the points (x, i), i ∈ I are upper equivalent in the
sense of Definition 13

3.7 Uniform posets

Definition 31. A discrete standard poset (S,�) is uniform if for every x, y ∈ S
with x � y, all paths from x to y have the same length. We let d(x, y) denote
the common length.

Proposition 26. If (S,�) is a discrete standard poset with minimum element
e, then (S,�) is uniform if and only if for every x ∈ S, all paths from e to x
have the same length.

Proof. If (S,�) is uniform, then trivially all paths from e to x have the same
length, for every x ∈ S. Conversely, suppose that all paths from e to x have the
same length for every x ∈ S. Suppose that x � y and there are paths from x to
y with lengths m and n. There must exist a path from e to x, since the poset
is locally finite; let k denote the length of this path. Then we have two paths
from e to y of lengths k+m and k+n, so k+m = k+n and hence m = n.

If the partially ordered set (S,�) is associated with a positive semigroup,
then (S,�) is uniform if and only if, for each x, all factorings of x over I (the set
of irreducible elements) have the same length. A rooted tree is always uniform,
since there is a unique path from e to x for each x ∈ S.

3.8 Quotient spaces

Suppose that (S, ·) is a standard positive semigroup with left-invariant measure
λ and that T is a standard sub-semigroup of S with left-invariant measure µ.
Let

S/T = {z ∈ S : [e, z] ∩ T = {e}} =
⋂

t∈T−{e}

(S − tS).

Note that e ∈ S/T , but if y ∈ T and y 6= e then y /∈ S/T . Thus, T ∩ S/T = {e}
and so S/T is a type of quotient space. We are interested in factoring elements
in S over the sub-semigroup T and the quotient space S/T .
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Proposition 27. Suppose that x ∈ S. Then x = yz for some y ∈ T and
z ∈ S/T if and only if y is a maximal element (with respect to �T ) of [e, x]∩ T
(and z = y−1x).

Proof. Suppose that x = yz for some y ∈ T and z ∈ S/T . Then y � x by
definition. Suppose that t ∈ T , t � x, and y �T t. There exists a ∈ S and b ∈ T
such that x = ta and t = yb. Hence x = yba. By the left cancellation rule,
z = ba, so b � z. But z ∈ S/T so b = e and hence t = y. Hence y is maximal.
Conversely, suppose that y is a maximal element of [e, x] ∩ T . Then y � x so
x = yz for some z ∈ S. Suppose that t ∈ T and t � z. Then z = tb for some
b ∈ S so x = ytb. Hence yt � x and yt ∈ T . Since y is maximal, yt = y and so
t = e. Therefore z ∈ S/T .

For the remainder of this section, we impose the following assumptions:

Assumption 1. For each x ∈ S, [e, x]∩T has a unique maximal element ϕT (x)
(with respect to �T ). The function ϕT : S → T is measurable.

Thus S/T = {z ∈ S : ϕT (z) = e}, so S/T is measurable as well. For x ∈ S,
let ψT (x) = ϕ−1

T (x)x ∈ S/T so that x ∈ S can be factored uniquely as x =
ϕT (x)ψT (x). This quotient space structure does correspond to an equivalence
relation: if we define u ∼ v if and only if ψT (u) = ψT (v), then∼ is an equivalence
relation on S and the elements in S/T = range(ψT ) generate a complete set of
equivalence classes. However, ∼ is not a congruence in the sense of [13]. That
is, if u ∼ v, it is not necessarily true that xu ∼ xv (unless, of course, x ∈ T ).
Finally, note that the mapping (ϕT , ψT ) : S → T × (S/T ) is one-to-one and
onto. This mapping also preserves the measure-theoretic structure:

Proposition 28. There exists a measure ν on S/T such that

λ(AB) = µ(A)ν(B), A ∈ B(T ), B ∈ B(S/T )

Proof. For C ∈ C(S/T ) and A ∈ B(T ), let µC(A) = λ(AC). Then µC is a
regular measure on T for each C ∈ B(T ) (although µC may not have support
T ). Moreover, for y ∈ T and A ∈ B(T ),

µC(yA) = λ(yAC) = λ(AC) = µC(A)

so µC is left-invariant for (T, ·). It follows that for each C ∈ C(S/T ), there exists
ν(C) ∈ [0,∞) such that µC = ν(C)µ; that is,

λ(AC) = µ(A)ν(C), A ∈ B(T ), C ∈ C(S/T )

Fix A ∈ B(T ) with 0 < µ(A) <∞. If C, D ∈ C(S/T ) with C ⊆ D then

µ(A)ν(C) = λ(AC) ≤ λ(AD) = µ(A)ν(D)

and hence ν(C) ≤ ν(D). If C, D ∈ C(S/T ) are disjoint then AC and AD are
also disjoint and hence

µ(A)ν(C ∪D) = λ(A(C ∪D)) = λ(AC ∪AD)
= λ(AC) + λ(AD) = µ(A)ν(C) + µ(A)ν(D)
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Therefore ν(C ∪D) = ν(C) + ν(D). Finally, if C, D ∈ C(S/T ) then

µ(A)ν(C ∪D) = λ(A(C ∪D)) = λ(AC ∪AD)
≤ λ(AC) + λ(AD) = µ(A)ν(C) + µ(A)ν(D)

and so ν(C ∪D) ≤ ν(C) + ν(D). It follows that ν is a content on S/T in the
sense of [15], and hence can be extended to a measure on S/T (which we will
also call ν). It now follows from regularity that

λ(AB) = µ(A)ν(B), A ∈ B(T ), B ∈ B(S/T )

The following examples should help clarify the assumptions. In particular,
the assumptions are satisfied in our most important special case when T = St.

Example 4. Let (S, ·) be a positive semigroup and let t ∈ S − {e}. The
sub-semigroup St = {tn : n ∈ N} has quotient space S/St = S − tS. Since
[e, x] is compact and S is locally convex, it is straightforward to show that
{n ∈ N : tn � x} is finite for each x, and hence has a maximum element nt(x).
Thus, Assumption 1 is satisfied and ϕt(x) = tnt(x).

Example 5. Consider the standard positve semigroup ([0,∞)k,+, λk) where
λk is k-dimensional Lebesgue measure, of course. The associated order ≤ is the
ordinary (product) order. Let T = Nk, so that T is a discrete, complete, positive
sub-semigroup of S. The quotient space is S/T = [0, 1)k and the assumptions
are satisfied. The decomposition is

x = n + t

where n is the vector of integer parts of x and t is the vector of remainders. The
left-invariant measure on T is counting measure, of course, and the reference
measure on S/T is k-dimensional Lebesgue measure. Moreover, the partially
ordered set (S,≤) is the lexicographc product of (T,≤) with (S/T,≤).

Example 6. Again, let (S, ·) be a positive semigroup and let t ∈ S −{e}. The
sub-semigroup Tt = {e} ∪ tS also has quotient space S − tS, but Assumption 1
of a unique decomposition is not satisfied in general.

Example 7. Consider the direct product (S, ·) of standard positive semigroups
(S1, ·) and (S2, ·), with identity elements e1 and e2, and with left-invariant mea-
sures λ1 and λ2, respectively. Let T1 = {(x1, e2) : x1 ∈ S1}. Then T1 is a closed
sub-semigroup of S satisfying Assumption 1. Moreover, the quotient space
S/T1 = {(e1, x2) : x2 ∈ S2} is also a positive semigroup. In this example, the
spaces T1 and T2 = S/T1 are symmetric; T1 is isomorphic to S1 and T2 is iso-
morphic to S2. The unique decomposition is simply (x1, x2) = (x1, e2)(e1, x2).
The measures µ and ν are

µ(A) = λ1(A1), A ∈ B(T1)
ν(B) = λ2(B2), B ∈ B(T2)

where A1 = {x1 ∈ S1 : (x1, e2) ∈ A} and B2 = {x2 ∈ S2 : (e1, x2) ∈ B}.
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Part II

Probability Distributions
In this part we study probability distributions on partially ordered sets and
positive semigroups. We are particularly interested in distributions that have
exponential-type properties. The constant rate property requires only a partial
order. The memoryless and full exponential properties require the complete
semigroup structure. Interestingly, the most important secondary properties
flow just from the simpler constant-rate property.

4 Preliminaries

As usual, we start with a standard poset (S,�, λ). Frequently, we will also need
the additional strucutre of a positive semigroup (S, ·, λ). Recall that all density
functions are with respect to the reference measure λ.

4.1 Distribution functions

Definition 32. Suppose that X is a random variable taking values in S. The
upper probability function of X is the mapping F given by

F (x) = P(X � x) = P(X ∈ I[x]), x ∈ S

In the case of a positive semigroup (S, ·), we can also write the upper probability
function as

F (x) = P(X ∈ xS), x ∈ S
The lower probability function of X is the mapping G given by

G(x) = P(X � x) = P(X ∈ D[x]), x ∈ S

Note 25. If X has probability density function f , then the upper probability
function is F = U(f) and the lower probability function is G = L(f), where as
usual, U and L are the lower and upper operators.

Note 26. We will primarily be interested in the upper probability function.
Since I[x] contains an open set for each x ∈ S, the upper probability function
F is strictly positive if the random variable X has support S. Also, of course,
F (x) ≤ 1 for all x ∈ S, and F is decreasing on S. What other properties must
it have?

Problem 4. Find conditions on F : S → (0, 1] so that F is an upper probability
function. That is, find conditions on F so that there exists a random variable
X with support S and F (x) = P(X � x) for all x ∈ S.

Even when F is an upper probability function, the corresponding distribu-
tion is not necessarily unique. That is, the distribution of X is generally not
determined by its upper probability function.
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Example 8. Let A be fixed set with k elements (k ≥ 2), and let (S,�) denote
the lexicographic sum of the anti-chains (An,=) over (N,≤), where A0 = {e}
and An = A for n ∈ N+. Thus, (0, e) is the minimum element of S and for
n, m ∈ N+ and x, y ∈ A, (m,x) ≺ (n, y) if and only if n < m. Moreover, (S,�)
is associated with a positive semigroup, as in Section 3.6.

Now let f be a probability density function on S with upper probability
function F . Define g by

g(n, x) = f(n, x) +
(
− 1
k − 1

)n
c0 (2)

and let
G(n, x) =

∑
(m,y)�(n,x)

g(m, y)

Then

G(n, x) = g(n, x) +
∞∑

m=n+1

∑
y∈A

g(m, y)

= f(n, x) +
(
− 1
k − 1

)n
c0 +

∞∑
m=n+1

∑
y∈A

[
f(m, y) + c0

(
− 1
k − 1

)m]

= F (n, x) + c0

(
− 1
k − 1

)n
+

∞∑
m=n+1

kc0

(
− 1
k − 1

)m
F (n, x) + c0

(
− 1
k − 1

)n
− c0

(
− 1
k − 1

)n
= F (n, x)

In particular, G(0, e) =
∑

(x,n)∈S g(n, x) = 1. It follows that if we can choose
c0 so that g(n, x) > 0 for every (n, x) ∈ S, then g is a probability density
function with the same upper probability function as f . For any k ≥ 3, there
exists distinct PDFs f and g with the same upper probability function F . For
example, define f by

f(0, e) =
6
π2

f(n, x) =
6

kπ2(n+ 1)2
, n ∈ N+, x ∈ A

Thus, if (N,X) is the associated random variable, then N + 1 has the zeta
distribution with parameter 2 and given N = n, X is uniformly distributed on
An. The condition that g(n, x) > 0 is satisfied if

6(k − 1)n > c0kπ
2(n+ 1)2

In turn, this condition will hold for any k ≥ 3 if 0 < c0 <
1

2π2 .
Conversely, if g is a PDF on S with upper probability function F , then it’s

not hard to show that g must have the form given in (2).
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Note 27. However, since the partial order � is topologically closed, that is
since

{(x, y) ∈ S2 : x � y}

is closed in S2 (with the product topology) then a distribution on S is completely
determined by its values on the increasing sets in B(S). That is, if µ and ν are
distributions on S and µ(A) = ν(A) for every increasing A ∈ B(S), then µ = ν
[17].

Problem 5. Find conditions sufficient for the probability distribution of X to
be completely determined by its upper probability function x 7→ P(X � x).

Problem 6. Find conditions sufficient for the probability distribution of X to
be completely determined by its lower probability function x 7→ P(X � x).

Proposition 29. If (S,�) is a discrete standard poset, then the distribution of
a random variable X taking values in S is completely determined by its lower
probability function.

Proof. Suppose that X has lower probability function F and probability density
function f . Then

F (x) =
∑
t∈D[x]

f(t), x ∈ S

and hence by the Möbius inversion formula,

f(x) =
∑
t∈D[x]

F (t)m(t, x), x ∈ S

where m is the Möbius function.

Definition 33. We can define a more general upper probability function. If A
is a finite subset of S, define

F (A) = P(X � x for each x ∈ A)

Note 28. For a finite A ⊆ S, the set {y ∈ S : y � x for all x ∈ A} is clearly
increasing. So the question becomes whether a probability distribution is com-
pletely determined by its values on this special class of increasing sets.

Proposition 30. If (S,�) is a dscrete standard poset, then the distribution
of a random variable X is completely determined by the generalized upper
probability function.

Proof. Let X be a random variable with probability density function f and
(generalized) upper probability function F . For x ∈ S,

{X � x} = {X = x} ∪ {X � x} = {X = x} ∪
⋃

y∈I(x)

{X � y}
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Suppose that I(x) has n elements. By the inclusion-exclusion rule,

F (x) = f(x) +
n∑
k=1

(−1)k−1
∑

A⊆I(x),#(A)=k

F (A)

Suppose that I(x) = {x1, x2, . . .} is countably infinite, and let

In(x) = {x1, x2, . . . , xn}

Then

F (x) = f(x) + lim
n→∞

P

 ⋃
y∈In(x)

{X � y}


By another application of the inclusion-exclusion rule,

F (x) = f(x) + lim
n→∞

n∑
k=1

(−1)k−1
∑

A⊆In(x),#(A)=k

F (A)

So in any event, f(x) is determined by F (A) for finte A.

Problem 7. An extension of Problem 5 is to find the smallest n such that the
distribution of X is completely determined by F (A) for A ⊆ S with #(A) ≤ n.
We will refer to this as the distributional dimension of the poset (S,�). In
particular, distributional dimension 1 means that a probability distribution on
(S,�) is uniquely determined by the upper probability function F .

Proposition 31. If (S,�) is a discrete upper semilattice, then (S,�) has dis-
tributional dimension 1.

Proof. If A ⊆ S is finite, then sup(A) exists, so F (A) = F (sup(A)).

Proposition 32. If (S,�) is a rooted tree then (S,�) has distributional di-
mension 1.

Proof. For x ∈ S recall that Ax denotes the set of elements that cover x. (These
are the children of x since S is a rooted tree.) Let f be a probability density
function on S with upper probability function F . If x is not maximal (not a
leaf) then

f(x) = F (x)−
∑

y∈A(x)

F (y)

If x is maximal, f(x) = F (x).

Example 9. Consider the poset (S,�) in Example 8. Suppose that X is a
random variable taking values in S with probability density function f and
upper probability function F . Then for (n, x) ∈ S,

f(n, x) = F (n, x)− F ({n+ 1} ×A)
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Thus, the distributional dimension of (S,�) is no more than k. Is it exactly k?
No. For example, suppose that k = 4 and A = {a, b, c, d}. For (n, x) ∈ S,

f(n, x) = F (n, x)− F{(n+ 1, a), (n+ 1, b)} − F{(n+ 1, b), (n+ 1, c)}
− F{(n+ 1, c), (n+ 1, d)}+ F (n+ 1, b) + F (n+ 1, c)

Thus, the distributional dimension is no greater than 2. But Example 8 shows
that it is not 1 and hence must be exactly 2. Similar arguments show that the
distributional dimension is 2 for any k ≥ 3.

On the other hand, for k = 2, the distributional dimension is 1. Let A =
{a, b}. For (n, x) ∈ S,

f(n, x) = F (n, x) +
∞∑
i=1

(−1)n[F (n+ i, a) + F (n+ i, b)]

Problem 8. For each n ∈ N+, construct a standard, discrete poset whose distri-
butional dimension is n. If this cannot be done, what distributional dimensions
are possible? In particular, is the distributional dimension always either 1 or 2?

Proposition 33. Suppose that (S,�) is a standard discrete poset, and that X
is a random variable with upper probabiltiy function F . If x1 ≺ x2 ≺ x3 · · · is
an infinite chain in S then F (xn)→ 0 as n→∞.

Proof. The events {X � xn} are decreasing in n, and
⋂∞
n=1{X � xn} = ∅ since

S is locally finite. Hence F (xn)→ 0 by the continuity theorem.

A consequence of the next proposition is that the upper probability function
is measurable in the case of a positive semigroup.

Proposition 34. Suppose that (S, ·) is a standard positive semigroup and that
X is a random variable taking values in S. If A ∈ B(S) then x 7→ P(X ∈ xA) is
measurable.

Proof. Let g : S2 → S2 be defined by g(x, y) = (x, xy). Then g is continuous
and one-to-one and hence g(C) ∈ B(S2) for any C ∈ B(S2). In particular, if
A ∈ B(S)

g(S ×A) = {(x, xy) : x ∈ S, y ∈ A} ∈ B(S2)

Therefore by Fubinni’s Theorem,

x 7→ E
(
1g(S×A)(x,X)

)
is measurable. But for fixed x ∈ S, (x, z) ∈ g(S × A) if and only if z = xy for
some y ∈ A if and only if z ∈ xA. Therefore x 7→ P(X ∈ xA) is measurable.

Problem 9. Under what conditions is the mapping x 7→ P(X ∈ xA) continuous
on S for each A ∈ B(S)? It is clearly not sufficient that X have a continuous
distribution, so that P(X = x) = 0 for each x ∈ S. For example, consider
the positive semigroup ([0,∞)2,+), the direct power of the standard semigroup

40



([0,∞),+). A random variable (X,Y ) could have a continuous distribution on
[0,∞)2 and yet place positive probabiity on a vertical line x = x0. The UPF F
would be discontinous at (x0, y) for each y ∈ [0,∞). There are clearly lots of
other examples.

Definition 34. Suppose that X has upper probability function F and probabil-
ity density function f . The rate function of X with respect to λ is the function
r : S → (0,∞) defined by

r(x) =
f(x)
F (x)

, x ∈ S

.

Roughly speaking, r(x) dλ(x) is the probability that X is in a small neigh-
borhood of x (with measure dλ(x)), given that X � x. If the semigroup is
([0, ∞), +) and λ is Lebesgue measure, then the rate function is the ordinary
failure rate function; the value at x gives the probability density of failure at x
given survival up to x. Of course, in the generality of our setting of posets and
semigroups, the reliability interpretation does not have much meaning; we are
using “rate” simply as a convenient term.

Definition 35. Random variable X has constant rate if r is constant on S,
increasing rate if r is increasing on S and decreasing rate if r is decreasing on S.

We are particularly interested in distributions with constant rate; these will
be studied in the next chapter.

Proposition 35. Suppose that (S,�) is a standard discrete poset, and that X
is a random variable with support S and rate function r. Then 0 < r(x) ≤ 1
for x ∈ S and r(x) = 1 if and only if x is maximal.

Proof. As usual, let f denote the probability density function of X and F the
upper probability function. For x ∈ S,

F (x) = f(x) + P(X � x) = r(x)F (x) + P(X � x)

Hence
P(X � x) = [1− r(x)]F (x) (3)

Since X has support S, we must have r(x) > 0 for all x, and by (3) we must also
have that r(x) ≤ 1 for all x ∈ S. If x is maximal, then P(X � x) = P(∅) = 0
so r(x) = 1. Conversely, if x is not maximal then P(X � x) > 0 (since X has
support S) and hence r(x) < 1.

Suppose that the standard posets (S,�, λ) and (T,�, µ) are isomorphic and
let Φ: S → T be an isomorphism. Thus, λ and µ are related by

µ(B) = λ
(
Φ−1(B)

)
, B ∈ B(T )
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Proposition 36. Suppose that X is a random variable taking values in S
and let Y = Φ(X). If X has upper probability function F then Y has upper
probability function G = F ◦Φ−1. If X has probability density function f then
Y has probability density function g = f ◦ Φ−1.

Proof. First note that

G(y) = P(Y �T y) = P (Φ(X) �T y)

= P
(
X �S Φ−1(y)

)
= F

(
Φ−1(y)

)
, y ∈ T

Next, for B ∈ B(T ),

P(Y ∈ B) = P (Φ(X) ∈ B) = P
(
X ∈ Φ−1(B)

)
=
∫

Φ−1(B)

f(x) dλ(x) =
∫
B

f
(
Φ−1(y)

)
dµ(y)

so f ◦ Φ−1 is a density function for Y .

Proposition 37. Suppose that the standard poset (S,�, λ) is a lower semilat-
tice, and that X and Y are independent random variables taking values in S,
with upper probability functions F and G respectively. The random variable
X ∧ Y has upper probability function FG.

Proof. Note that for x, y ∈ S, x∧y � z if and only if x � z and y � z. Therefore

P(X ∧ Y � z) = P(X � z, Y � z) = P(X � z)P(Y � z) = F (z)G(z)

In particular, if S is a lower semilattice, the collection of upper probability
functions forms a semigroup under pointwise multiplication.

Problem 10. Suppose that (S,�) is a standard poset (with no special struc-
ture). If F and G are upper probability functions on S is it true that FG is an
upper probability function? If not, under what additional conditions will this
be true?

Problem 11. Suppose that (S,�) is a standard poset, and that F is an upper
probability function on S. For what values of r > 0 is F r an upper probability
function?

4.2 Residual distributions

In this section, we suppose that (S, ·, λ) is a standard positive semigroup. The
conditional distribution of x−1X given X � x will play a fundamental role in
our study of exponential distributions in the next chapter. We will refer to this
distribution as the residual distribution at x.
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Proposition 38. Suppose that X has upper probability function F . For x ∈ S,
the residual distribution at x is given by

P(x−1X ∈ A | X � x) =
P(X ∈ xA)

F (x)
, A ∈ B(S)

The upper probability function Fx of the residual distribution at x is given by

Fx(y) =
F (xy)
F (x)

, y ∈ S

If X has density function f , then the residual distribution at x has density fx
given by

fx(y) =
f(xy)
F (x)

, y ∈ S

Proof. Let A ∈ B(S). Then

P(x−1X ∈ A | X � x) =
P(x−1X ∈ A,X � x)

P(X � x)
=
P(X ∈ xA)
P(X ∈ xS)

=
P(X ∈ xA)

F (x)

If we let A = yS in this equation we get

P(x−1X � y | X � x) =
P(X ∈ xyS)

F (x)
=
P(X � xy)
F (x)

=
F (xy)
F (x)

Finally, suppose that X has density f . Returning to our first equation above,
and using the integral version of the left-invariance property, we have

P(x−1X ∈ A | X � x) =
1

F (x)

∫
xA

f(z) dλ(z) =
∫
A

f(xy)
F (x)

dλ(y)

Note 29. If the semigroup is ([0, ∞), +) and the random variable X is inter-
preted as the lifetime of a device, then the upper probability function is the
survival function or reliability function and the residual distribution at x is the
remaining lifetime distribution at x, i.e., the conditional distribution of X − x
given X ≥ x.

4.3 Expected value

In this section, we assume thatXis a random variable taking values in a standard
poset (S,�, λ). The following proposition gives a simple but important result
on the expected values of the cumulative functions. Suppose that g ∈ D(S),
and recall the cumulative functions Ln(g) associated with g in Definition 19

Theorem 5. For n ∈ N,∫
S

Ln(g)(x)P(X � x)dλ(x) = E[Ln+1(g)(X)]
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Proof. Using Fubinni’s theorem,∫
S

Ln(g)(x)P(X � x)dλ(x) =
∫
S

Ln(g)(x)E[1(X � x)]dλ(x)

= E

(∫
D[X]

Ln(g)(x)dλ(x)

)
= E[Ln+1(g)(X)]

Note 30. In the case that X has a PDF f , Theorem 5 follows from Theorem
3. The proof as the following form, where F is the UPF and f PDF:∫

S

Ln(g)(x)F (x)dλ(x) =
∫
S

Ln(g)(x)U(f)(x)dλ(x)

=
∫
S

Ln+1(g)(x)f(x)dλ(x) = E[Ln+1(g)(X)]

Corollary 2. For n ∈ N,∫
S

λn(x)P(X � x)dλ(x) = E[λn+1(X)]

Corollary 3. In particular, when n = 0, Corollary 2 gives∫
S

P(X � x)dλ(x) = E(λ(D[X])) (4)

Corollary 4. When S is discrete and n = 0, Corollary 2 gives∑
x∈S

P(X � x) = E(#(D[X]))

Corollary 5. In particular, when the poset is (N,≤), then we get the standard
result

∞∑
n=0

P (X ≥ n) = E(X) + 1

Corollary 6. When the poset is ([0, ∞), ≤), λ is Lebesgue measure, and n = 0
then Corollary 2 reduces to the standard result∫ ∞

0

P(X ≥ x) dx = E(X)
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4.4 Moment generating function

Suppose again that (S,�, λ) is a standard poset. Recall the generating function

Λ(x, t) =
∞∑
n=0

λn(x)tn, x ∈ S, |t| < r(x)

where λn is the cumulative function of order n and where r(x) is the radius of
convergence for a given x ∈ S. If X is a random variable with values in S, then
we can define a moment generating function of sorts:

ΛX(t) = E[Λ(X, t)] =
∞∑
n=0

E[λn(X)]tn

The power series will converge for |t| < r where r is the radius of convergence
of the series. Assuming that r > 0, we can compute the cumulative moments
in the usual way:

E[λn(X)] =
Λ(n)
X (0)
n!

, n ∈ N

Theorem 6. Suppose that X is a random variable with values in S and upper
probability function F . Then

ΛX(t) = 1 + t

∫
S

Λ(x, t)F (x)dλ(x)

Proof.

ΛX(t) = E[λ0(X)]t0 +
∞∑
n=0

E[λn+1(X)]tn+1 = 1 +
∞∑
n=0

E[λn+1(X)]tn+1

But from Corollary 2, we can rewrite this as

ΛX(t) = 1 +
∞∑
n=0

(∫
S

λn(x)F (x)dλ(x)
)
tn+1

From Fubinii’s theorem,

ΛX(t) = 1 + t

∫
S

( ∞∑
n=0

λn(x)tn
)
F (x)dλ(x) = 1 + t

∫
S

Λ(x, t)F (x)dλ(x)

4.5 Joint distributions

Suppose that (S,�, µ) and (T,�, ν) are standard posets, Recall that the direct
product (S × T, �, µ ⊗ ν) is also a standard poset, where S × T is given the
product topology and where

(u, v) � (x, y) in S × T if and only if u � x in S and v � y in T
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In this subsection, suppose that X and Y are random variables taking values in
S and T , respectively, so that (X,Y ) takes values in S×T . The first proposition
is a standard result.

Proposition 39. If (X,Y ) has density h then X has density f and Y has
density g, where

f(x) =
∫
T

h(x, y)dν(y), x ∈ S

g(y) =
∫
S

h(x, y)dµ(x), y ∈ T

If X and Y are independent, X has density function f , and Y has density
function g, then (X,Y ) and density function h where

h(x, y) = f(x)g(y), (x, y) ∈ S × T

When the posets have minimum elements, there is a simple relationship
between the upper probability functions of X, Y , and (X,Y ).

Proposition 40. Suppose that S has minimum element e and T has mini-
mum element ε. Let F and G be the upper probability function of X and Y ,
respectively, and let H denote the upper probability function of (X,Y ). Then

F (x) = H(x, ε), G(y) = H(e, y); x ∈ S, y ∈ T

If X and Y have independent upper events then

H(x, y) = F (x)G(y), (x, y) ∈ S × T

Proof. For x ∈ S,

F (x) = P(X � x) = P(X � x, Y � ε) = P[(X,Y ) � (x, ε)] = H(x, ε)

Similarly for y ∈ T ,

G(y) = P(Y � y) = P(X � e, Y � y) = P[(X,Y ) � (e, y)] = H(e, y)

If X and Y have independent upper events, then for (x, y) ∈ S × T ,

H(x, y) = P[(X,Y ) � (x, y)] = P(X � x, Y � y)
= P(X � x)P(Y � y) = F (x)G(y)

Note 31. The results of Propositions 39 and 40 extend in a straightforward
way to the direct product of n posets ((Si, �i) : i ∈ {1, 2, . . . n}). In particular,
the results extend to the n-fold direct power of a poset (S, �).
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4.6 Products of independent variables

In this section, we suppose that (S, ·, λ) is a standard positive semigroup.

Proposition 41. Suppose that X and Y are independent random variables
taking values in S. Then (X,XY ) takes values in D2 = {(x, z) ∈ S2 : x � z}.
If X and Y have densities f and g respectively, then the density of (X,XY )
(with respect to λ2) is the function h given by

h(x, z) = f(x)g(x−1z) (x, y) ∈ D2

Proof. Note that technically, D2 is the partial order �. Let A, B ∈ B(S). Then

P(X ∈ A, XY ∈ B) = E (P(X ∈ A, XY ∈ B|X)) = E
(
P(Y ∈ X−1B|X);A

)
.

Therefore

P(X ∈ A, XY ∈ B) =
∫
A

(∫
x−1B

g(y)dλ(y)
)
f(x)dλ(x)

But by an integral version of the left-invariance property of λ,∫
x−1B

g(y)dλ(y) =
∫
S

g(y)1x−1B(y)dλ(y)

=
∫
xS

g(x−1z)1x−1B(x−1z)dλ(z)

=
∫
B

g(x−1z)1D2(x, z)dλ(z)

Therefore

P(X ∈ A, XY ∈ B) =
∫
A

∫
B

f(x)g(x−1z)1D2(x, z)dλ(x)dλ(z)

Corollary 7. Suppose that (X1, X2, . . .) is a sequence of independent random
variables taking values in S and that Xi has density fi for each i. Let Yn =
X1 · · ·Xn for n ∈ N+. Then the density of (Y1, Y2, . . . Yn) (with respect to λn)
is the function hn given by

hn(y1, y2, . . . yn) = f1(y1)f2(y−1
1 y2) · · · fn(y−1

n−1yn), (y1, y2, . . . , yn) ∈ Dn

where we recall thatDn = {(y1, y2, . . . , yn) ∈ Sn : y1 � y2 � · · · � yn}.

Corollary 8. Suppose that (X1, X2, . . .) is a sequence of independent, identi-
cally distributed random variables taking values in S, with common probabiity
density function f . Let Yn = X1 · · ·Xn for n ∈ N+. Then Y = (Y1, Y2, . . .) is a
homogenous Markov chain with transtion probability density function g given
by

g(y, z) = f(y−1z), y ∈ S, z ∈ I[y]
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In this case, the joint density of (Y1, Y2, . . . Yn) (with respect to λn) is the
function hn given by

hn(y1, y2, . . . yn) = f(y1)f(y−1
1 y2) · · · f(y−1

n−1yn), (y1, y2, . . . , yn) ∈ Dn

Proposition 42. Suppose again that X and Y are independent random vari-
ables taking values in S, with densities f and g, respectively. Then XY has
density f ∗ g (all densities are with respect to λ).

Proof. For A ∈ B(S),

P(XY ∈ A) =
∫
S

(∫
x−1A

g(y)dλ(y)
)
f(x)dλ(x)

=
∫
S

(∫
S

g(y)1x−1A(y)dλ(y)
)
f(x)dλ(x)

But by one of the integral versions of left-invariance,∫
S

g(y)1x−1A(y)dλ(y) =
∫
xS

g(x−1z)1x−1A(x−1z)dλ(z)

=
∫
xS

g(x−1z)1A(z)dλ(z)

Therefore

P(XY ∈ A) =
∫
S

∫
xS

g(x−1z)1A(z)f(x)dλ(z)dλ(x)

=
∫
S

∫
[e,z]

g(x−1z)1A(z)f(x)dλ(x)dλ(z)

and hence
P(XY ∈ A) =

∫
A

∫
[e,z]

g(x−1z)f(x)dλ(x)dλ(z)

It follows that the density of XY is the convolution f ∗ g.

4.7 Ladder Variables

Suppose again that (S,�, λ) is a standard poset. Let X = (X1, X2, . . .) be a
sequence of independent, identically distributed random variables, taking values
in S, with common upper probability function F and density function f . We
define the sequence of ladder times N = (N1, N2, . . .) and the sequence of ladder
variables Y = (Y1, Y2, . . .) associated with X as follows: First

N1 = 1
Y1 = X1

and then recursively,

Nn+1 = min{n > Nn : Xn � Yn}
Yn+1 = XNn+1
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Proposition 43. The sequence Y is a homogeneous Markov chain with tran-
sition probability density g given by

g(y, z) =
f(z)
F (y)

, y ∈ S, z ∈ I[y]

Proof. Let (y1, . . . , yn−1, y, z) ∈ Dn+1. The conditional distribution of Yn+1

given {Y1 = y1, . . . , Yn−1 = yn−1, Yn = y} corresponds to observing independent
copies of X until a variable occurs with a value greater that y (in the partial
order). The distribution of this last variable is the same as the conditional
distribution of X given X � y. This conditional distribution has density z 7→
f(z)/F (y) on I[y].

Corollary 9. The random vector (Y1, Y2, . . . , Yn) has density function hn given
by

hn(y1, y2, . . . , yn) = f(y1)
f(y2)
F (y1)

· · · f(yn)
F (yn−1)

, (y1, y2, . . . , yn) ∈ Dn

Proof. Note that Y1 = X1 has probability density function f . Hence by Propo-
sition 43, (Y1, Y2, . . . , Yn) has probability density function

hn(y1, y2, . . . , yn) = f(y1)g(y2|y1) · · · g(yn|yn−1)

= f(y1)
f(y2)
F (y1)

· · · f(yn)
F (yn−1)

, (y1, y2, . . . , yn) ∈ Dn

Note 32. The density function of (Y1, Y2, . . . , Yn) can also be written in terms
of the rate function r as

hn(y1, y2, . . . , yn) = r(y1)r(y2) · · · r(yn−1)f(yn), (y1, y2, . . . , yn) ∈ Dn

Corollary 10. The density function gn of Yn is given by

gn(y) = f(y)
∫
Dn−1[y]

r(y1)r(y2) · · · r(yn−1)dλn−1(y1, y2, . . . yn−1), y ∈ S

Corollary 11. The conditional distribution of (Y1, . . . , Yn−1) given Yn = y has
density function

hn−1(y1, . . . , yn−1|y) =
1

Cn−1[y]
r(y1) · · · r(yn−1), (y1, . . . , yn−1) ∈ D[y]

where Cn−1[y] =
∫
Dn−1[y]

r(y1) · · · r(yn−1)dλn−1(y1, . . . yn−1) is the normalizing
constant.
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4.8 The point process

Suppose that (S,�, λ) is a standard poset, and suppose that Y = (Y1, Y2, . . .) is
an increasing sequence of random variables with values in S. One special case
is when Y is the sequence of ladder variables associated with an IID sequence
X = (X1, X2, . . .), as in Section 4.7. When (S,�, λ) is the poset associated
with a standard positive semigroup (S, ·, λ), then another special case occurs
when Y is the partial product sequence corresponding to an IID sequence X =
(X1, X2, . . .). Of course, in this latter special case, the ladder sequence and the
partial product sequence will be different in general.

In any event, we are interested in the corresponding point process. Thus,
for x ∈ S, let

Nx = #{n ∈ N+ : Yn � x}

That is, Nx is the number of random points in D[x]. We have the usual inverse
relation between the processes (Yn : n ∈ N+) and (Nx : x ∈ S):

Proposition 44. Yn � x if and only if Nx ≥ n for n ∈ N+ and x ∈ S.

Proof. Suppose that Yn � x. Then Yk � x for k ≤ n so Nx ≥ n. Conversely,
suppose that Yn 6� x. Then Yk 6� x for k ≥ n so Nx < n

For n ∈ N+, let Gn denote the lower probability function of Yn, so that

Gn(x) = P(Yn � x), x ∈ S

Then by Proposition 44, for x ∈ S,

P(Nx ≥ n) = P(Yn � x) = Gn(x), n ∈ N+

Of course, P(Nx ≥ 0) = 1. Let’s adopt the convention that G0(x) = 1 for all
x ∈ S. Then for fixed x ∈ S, n 7→ Gn(x) is the upper probability function of
Nx. Thus we have the following standard results as well, for x ∈ S:

P(Nx = n) = Gn(x)−Gn+1(x), n ∈ N

E(Nx) =
∞∑
n=1

Gn(x)

A bit more generally, we can define

N(A) = #{n ∈ N+ : Yn ∈ A} =
∞∑
n=1

1(Yn ∈ A), A ∈ B(S)

Thus, A 7→ N(A) is a random, discrete measure on S that places mass 1 at Yn
for each n ∈ N+. Of course, Nx = N(D[x]) for x ∈ S. Also,

E[N(A)] =
∞∑
n=1

P(Yn ∈ A)
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4.9 Entropy

In this section, we assume that (S,�, λ) is a standard poset. Suppose that X is
a random variable taking values in S and that the distribution of X has density
function f . The entropy of X is

H(X) = −E[ln(f(X))] = −
∫
S

f(x) ln[f(x)]dλ(x)

The following proposition gives a fundamental inequality for entropy.

Proposition 45. Suppose thatX and Y are random variables on S with density
functions f and g respectively. Then

H(Y ) = −
∫
S

g(x) ln[g(x)]dλ(x) ≤ −
∫
S

g(x) ln[f(x)]dλ(x)

with equality if and only if λ{x ∈ S : f(x) 6= g(x)} = 0 (so that X and Y have
the same distribution).

Proof. Note first that ln(t) ≤ t − 1 for t > 0, so − ln(t) ≥ 1 − t for t > 0, with
equality only at t = 1. Hence,

− ln
(
f(x)
g(x)

)
= − ln[f(x)] + ln[g(x)] ≥ 1− f(x)

g(x)
, x ∈ S

Multiplying by g(x) gives

−g(x) ln[f(x)] + g(x) ln[g(x)] ≥ g(x)− f(x), x ∈ S

Therefore

−
∫
S

g(x) ln[f(x)]dλ(x) +
∫
S

g(x) ln[g(x)] ≥
∫
S

g(x)dλ(x)−
∫
S

f(x)dλ(x)

= 1− 1 = 0

Equality holds if and only f(x)/g(x) = 1 except on a set of λ measure 0.

5 Distributions with Constant Rate

5.1 Definitions and basic properties

As usual, we start with a standard poset (S,�, λ). Let X be a random variable
taking values in S. We can extend the definition of constant rate to the case
where the support of X is a proper subset of S.

Definition 36. Suppose that X has upper probability function F . Then X has
constant rate α > 0 if f = αF is a probability density function of X.
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Theorem 7. Suppose that g ∈ D(S). If X has constant rate α, then

E[Ln(g)(X)] =
1
αn
E[g(X)], n ∈ N

Proof. Let F denote the upper probability function of X, so that f = αF is a
density function of X with respect to λ. By Theorem 5,

E[Ln+1(g)(X)] =
∫
S

Ln(g)(x)F (x)dλ(x)

=
1
α

∫
S

Ln(g)(x)f(x)dλ(x) =
1
α
E[Ln(g)(X)]

and of course, E[L0(g)(X)] = E[g(X)] since L0(g) = g.

Corollary 12. If X has constant rate α, then

E[λn(X)] =
1
αn

, n ∈ N

In particular, E[λ1(X)] = E[λ(D[X])] = 1/α, so the rate constant is the
reciprocal of E[λ1(X)], which must be finite.

Corollary 13. If X has constant rate α then the generating function of X is

ΛX(t) =
α

α− t
, |t| < α

Proof. Recall that ΛX(t) = E[Λ(X, t)] =
∑∞
n=0 E[λn(X)]tn. Hence if X has

constant rate,

ΛX(t) =
∞∑
n=0

(
t

α

)n
=

1
1− t/α

=
α

α− t
, |t| < α

The converse of Theorem 7 also holds, and thus gives a characterization of
constant rate distributions.

Theorem 8. Suppose that random variable X satisfies

E[L(g)(X)] =
1
α
E[g(X)] (5)

for every g ∈ D(S). Then X has constant rate α.

Proof. Suppose that (5) holds for every g ∈ D(S). Let F dentoe the upper
probability function of X. For g ∈ D(S),

E[L(g)(X)] = E

[∫
D[X]

g(t)dλ(t)

]
= E

[∫
S

g(t)1(t � X)dλ(t)
]

=
∫
S

g(t)P(X � t) =
∫
S

g(t)F (t)dλ(t)
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Thus (5) gives ∫
S

g(t)αF (t)dλ(t) = E[g(X)]

It follows that αF is a density of X and hence X has constant density.

Theorem 9. The poset (S,�, λ) supports a distribution with constant rate α
if and only if there exists a measureable function G : S → (0,∞) that satisfies∫

S

G(x)dλ(x) <∞ (6)∫
I[x]

G(y)dλ(y) =
1
α
G(x), x ∈ S (7)

Proof. If F is the upper probability function of a distribution with constant
rate α, then trivially (6) and (7) hold with G = F , since f = αF is a proba-
bility density function of the distribution. Conversely, suppose G : S → (0,∞)
satisfies (6) and (7). Let

C =
∫
S

G(x)dλ(x)

and let F = G/(αC). Then from (6),∫
S

αF (x)dλ(x) =
1
C

∫
S

G(x)dλ(x) = 1

so f = αF is a density function with respect to λ. Next, from (7),∫
I[x]

f(x)dλ(x) =
∫
I[x]

αF (y) =
1
C

∫
I[x]

G(y)dλ(y) =
1
αC

G(x) = F (x)

so F is the upper probability function corresponding to f .

Note 33. If the poset (S,�) has a minimum element e (in particular, if the
poset is associated with a a standard positive semigroup (S, ·, λ), then condition
(6) is unnecessary. Letting x = e in (7) gives∫

S

G(x)dλ(x) =
∫
I[e]

G(y)dλ(y) =
1
α
G(e) <∞

From Theorem 9, it’s clear that finding constant rate distributions is an
eigenvalue-eigenvector problem for the upper operator U . From Theorem 9,
(S,�, λ) supports a distribution with constant rate α > 0 if and only if there
exists a positive g ∈ L(S) satisfying U(g) = 1

αg. That is, if and only if there is a
strictly positive eigenfunction of the operator U corresponding to the eigenvalue
1
α . The upper probability function F of a distribution with constant rate α is
a positive eigenfunction of the operator U with the additional property that
||F || = 1/α. It’s interesting that we can characterize constant rate distributions
in terms of both of the lower and upper operators.
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5.2 Discrete Posets

Suppose that (S,�) is a standard discrete poset, so that the reference measure
is counting measure #. Suppose that X has constant rate α on S. Recall from
Proposition 35 that if x ∈ S then

(1− α)P(X � x) = P(X � x), x ∈ S (8)

If α = 1, then P(X � x) = 0 for every x ∈ S, so X must be concentrated
on the set of minimal elements of S (which form an anti-chain). Conversely,
any distribution concentrated on the minimial elements has constant rate 1. In
particular, if S is an anti-chain, then every distribution on S has constant rate
1 since

P (X = x) = P(X � x), x ∈ S

On the other hand, if P(X � x) > 0 for some x ∈ S, then we must have
0 < α < 1.

Suppose now that x is a maximal element of S. Then P(X � x) = 0, so
from (8), either F (x) = 0 or α = 1. Thus, either F (x) = 0 for every maximal
element x of S, or α = 1 and X is concentrated on the minimal elements of S.

Suppose that X has constant rate α on S and is not supported by the
minimal elements. Thus the maximal elements of S are not in the support
set and hence can be removed. Repeating the argument, we can remove the
maximal elements of the new poset. Continuing in this way, we see that if x is
in the support set of X then there must be an infinite chain in S containing x.

Suppose that X has constant rate α on S and upper probability function
F . If x, y are upper equivalent (Definition 13), then P(X � x) = P(X � y) so
from (8), F (x) = F (y). Thus, the upper probability function (and hence also
the density function) are constant on the equivalence classes.

Note 34. If F is an upper probability function of a distribution with constant
rate α on (S,�), then F is well defined on the partially ordered collection of
equivalence classes (Π,�) (see Theorem 2). However in general, the mapping
[x] 7→ F (x) on Π = S/ ≡ is not an upper probabiltiy function, let alone one
with constant rate. In general, it’s not clear how to go from constant rate
distributions on (S,�) to constant rate distributions from (Π,�), or the other
way around.

5.3 Entropy

Theorem 10. Suppose that X has constant rate and upper probability function
F . Then X maximizes entropy among all random variables Y on S for which
E[ln(F (Y ))] is constant.

Proof. Suppose that X has constant rate α, so that f = αF is a density of X.
Suppose that Y is a random variable taking values in S, with density function
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g. From Proposition 45 we have

H(Y ) = −
∫
S

g(x) ln[g(x)]dλ(x) ≤ −
∫
S

g(x) ln[f(x)]dλ(x)

= −
∫
S

g(x){ln(α) + ln(F (x))}dλ(x)

= − ln(α)−
∫
S

g(x) ln[F (x)]dλ(x) = − ln(α)− E[ln(F (Y ))]

Of course, the entropy of X achieves the upper bound.

Note that since the upper probability function F typically has an “expo-
nential” form of some sort, E[ln(F (Y ))] often reduces to a natural moment
condition.

5.4 Sub-posets

Suppose that (S,�, λ) is a standard poset and that X has constant rate α on S
with upper probability function F . Suppose further that T ⊆ S and λ(T ) > 0.
In this section, we are interested in the conditional distribution of X given
X ∈ T on the poset (T,�, λ). The upper probability function of the conditional
distribution of X given X in T is

FT (x) = P(X � x|X ∈ T ) =
P(X � x,X ∈ T )

P(X ∈ T )
, x ∈ T (9)

The density of the conditional distribution is

fT (x) =
αF (x)
P(X ∈ T )

=
αP(X � x)
P(X ∈ T )

, x ∈ T (10)

So the conditional distribution of X given X ∈ T has constant rate β if and
only if

αP(X � x) = βP(X � x,X ∈ T ), x ∈ T (11)

In particular, we see that if we take T to be the support of X then P(X ∈ T ) = 1
so the conditional distribution of X given X ∈ T also has constant rate α. Thus,
we are particularly interested in the case when X has support S; equivalently, we
are interested in knowing when a poset S supports distributions with constant
rate.

Theorem 11. Suppose that S has a minimum element e and that e ∈ T . Then
the conditional distribution of X given X ∈ T has constant rate on T if and only
if {X ∈ T} and {X � x} are independent for each x ∈ T . The rate constant of
the conditional distribution is α/P(X ∈ T ).

Proof. Suppose that {X ∈ T} and {X � x} are independent for each x ∈ T .
Then from (9), FT (x) = F (x) for x ∈ T and from (10),

fT (x) = α
F (x)

P(X ∈ T )
, x ∈ T
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Thus, the conditional distribution has constant rate α/P(X ∈ T ). Conversely,
suppose that the conditional distribution of X given X ∈ T has constant rate
β. Then taking x = e in (11) we have α = βP(X ∈ T ) and then substituting
back we have

P(X � x)P(X ∈ T ) = P(X � x,X ∈ T ), x ∈ T

so {X ∈ T} and {X � x} are independent for each x ∈ T .

Theorem 12. If t ∈ S with F (t) > 0, then the conditional distribution of X
given X � t has constant rate α on I[t] = {x ∈ S : x � t}.

Proof. From (9), the upper probability function of the conditional distribution
of X given X � t is

Ft(x) =
F (x)
F (t)

, x � t

From (10), the conditional density of X given X � t is

ft(x) =
αF (x)
F (t)

, x � t

Hence ft(x) = αFt(x) for x � t, so the conditional distribution of X given
X � t also has constant rate α.

Proposition 46. Suppose (S, ·, λ) is a standard positive semigroup and that X
is a random variable taking values in S and that X has constant rate α. Then
the conditional distribution of x−1X given X � x also has constant rate α for
every x ∈ S.

Proof. Let F denote the upper probability function of X. Recall from Proposi-
tion 38 that the upper probability function Fx of x−1X given X � x is

Fx(y) =
F (xy)
F (x)

, y ∈ S

If f is the density function of X, then the density function fx of the conditional
distribution is

fx(y) =
f(xy)
F (x)

, y ∈ S

Since X has constant rate α, we have f = αF and therefore

fx(y) =
αF (xy)
F (x)

= α
F (xy)
F (x)

= αFx(y), y ∈ S
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5.5 Mixtures

Many important distributions are actually parametric families of distributions.
New distributions can be created by randomizing one or more of the parameters;
the new distributions are mixtures of the given distributions. This process can
be applied to a family of distributions with constant rate on a standard poset
(S,�, λ); the constant rate property is preserved.

Specifically, suppose that Xi is a random variable taking values in S for each
i ∈ I, where (I, I) is a measurable space. Suppose that U is a random variable
taking values in I, independent of (Xi : i ∈ I). Thus, the distribution of XU is
mixture of the distributions of (Xi : i ∈ I), and U is the mixing variable.

Theorem 13. If Xi has constant rate α for each i ∈ I then XU has constant
rate α.

Proof. For i ∈ I, let Fi denote the upper probability function of Xi, so that Xi

has density function αFi. Let G denote the upper probability function of XU .
Then

G(x) = P (XU � x) = E [P (XU � x|U)] = E[FU (x)], x ∈ S

Next, for A ∈ B(S),

P (XU ∈ A) = E [P (XU ∈ A|U)]

= E
[∫

A

αFU (x)dλ(x)
]

=
∫
A

αE [FU (x)] dλ(x)

Hence XU has density function g(x) = αE [FU (x)] and thus XU has constant
rate α.

We consider two applications of mixing—to simple sums and to simple joins.
Suppose first that (Si,�i, λi) is a standard poset for each i ∈ I, where I is a
countable index set. Let (S,�, λ) be the simple sum of (Si,�i, λi) over i ∈ I as
defined in Section 3.5.

Suppose now that Xi is a random variable taking values in Si for each i ∈ I
and that Xi has constant rate α and upper probability function Fi, for each
i ∈ I. Without loss of generality, we can assume that Xi, i ∈ I are defined on
a common probability space. Then Xi also has constant rate α considered as
a random variable taking values in S (although, of course, the support of Xi is
a subset of Si). If we extend the upper probability function Fi and density fi
of Xi to all of S, then for x ∈ Si, fi(x) = αFi(x) while for x /∈ Si, Fi(x) = 0
and fi(x) = 0. Now let U take values in I, independent of (Xi : i ∈ i). Define
Y = XU , so that Y takes values in S. Then Y has constant rate α on S.

This construction leads to an interpretation of mixtures generally, in the
setting of Theorem 13. Let Si be a copy of S for each i ∈ I, where Si are
disjoint. Modify Xi so that it takes values in Si, and we are in the setting of
this section. Thus, we can think of random variable U as selecting the copy Si.
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Puri and Rubin [25] have shown that in ([0, ∞)k, +), the only distributions
with constant rate with respect to Lebesgue measure are mixtures of exponential
distributions. This result does not hold for general posets.

Suppose that (T,�) is a standard discrete poset with minimal element u.
Suppose there exist subsets R and S of T with the property that R ∪ S = T ,
R ∩ S = {u} and for x ∈ R − {u} and y ∈ S − {u}, x ‖ y. Conversely, given
disjoint standard discrete posets (R,�) and (S,�) with minimal elements a and
b, respectively, we could create a new poset (T,�) by joining a and b to create
a new vertex u.

Suppose now that F is the upper probability function of a distribution with
constant rate α on (R,�) and that G is the upper probability function with rate
α on (S,�). We can extend F to T by F (x) = 0 for x ∈ T − R, and similarly,
we can extend G to T by G(x) = 0 for x ∈ T − S.

Proposition 47. F and G are the upper probability functions of distributions
with constant rate α on T (but of course, not support T in general).

Proof. We prove the result for F ; the proof for G is identical. First∑
x∈T

αF (x) =
∑
x∈R

αF (x) = 1

Next, for x ∈ R, ∑
y∈I[x]

αF (y) =
∑

y∈I[x]∩R

αF (y) = F (x)

while for x ∈ S − {u},∑
y∈I[x]

αF (y) =
∑

y∈I[x]∩S

αF (y) = 0 = F (x)

It now follows from our general Theorem 13 that for p ∈ (0, 1), the mixture
distribution with upper probability function H given by

H(x) = pF (x) + (1− p)G(x), x ∈ T

has constant rate α on T . In particular, if (R,�) and (S,�) support constant
rate distributions, then so does (T,�) (and with an additional free parameter,
namely p).

5.6 Special constructions

In this section we describe two special constructions for a standard discrete
poset (S,�).

For the first construction, we fix v ∈ S and then add a new element u so that
v covers u. Thus, we have constructed a new poset (T,�) where T = S ∪ {u}.
The new partial order is defined as follows: for x, y ∈ S, x � y in T if and only

58



if x � y in S. For x ∈ S, x � u in T if and only if x � v in S. Finally, no x ∈ S
satisfies x ≺ u in T . Thus, u is minimal in T .

Suppose now that F is the upper probability funciton of a distribution with
constant rate α on (S,�). Define G on T by

G(x) =
1− α

1− α+ αF (v)
F (x), x ∈ S

G(u) =
F (v)

1− α+ αF (v)

Theorem 14. The function G is the upper probability function of a distribution
with constant rate α on (T,�).

Proof. Let C = (1− α)/(1− α+ αF (v)). For x ∈ S,∑
y�x

αG(y) = C
∑
y�x

αF (y) = CF (x) = G(x)

Also, ∑
y�u

αG(y) = αG(u) + C
∑
y�v

αF (y) = αG(u) + CF (v)

=
αF (v)

1− α+ αF (v)
+

(1− α)F (v)
1− α+ αF (v)

=
F (v)

1− α+ αF (v)
= G(u)

Finally, ∑
x∈T

αG(x) = αG(u) + C
∑
x∈S

αF (x) = αG(u) + C

=
αF (v)

1− α+ αF (v)
+

1− α
1− α+ αF (v)

= 1

Our next construction requires a definition. A point u ∈ S is a chain point
if for every x ∈ S, either x � u or u � x. For a fixed chain point u ∈ S we
can split u into two new vertices v and w, to create a new set T . We define the
partial order on T as follows:

1. For x ∈ S, if x covers u in S then x covers v and x covers w in T .

2. For x ∈ S, if u covers x in S then v covers x and w covers x in T .

3. For x, y ∈ S − {u}, if y covers x in S then y covers x in T .
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Theorem 15. Suppose that (S,�) is a standard discrete poset with a chain
point u. Suppose that F is the upper probability function of a distribution with
constant rate α on S. Let (T,�) be the poset obtained by splitting S at the
chain point u (into new points v and w). Define the function G on T by

G(x) =


1

1+αF (u) if x ∈ {v, w}
1

1+αF (x) if x � u in S

F (x) if x ≺ u in S

Then G is the upper probability function of a distribution with constant rate α
on T .

Proof. In the definition of G note that x � u in S if and only if x � v in T and
x � w in T . Similarly x ≺ u in S if and only if x ≺ v in T and x ≺ w in T .
Also, since u is a chain point in S, x ∈ T if and only if x ∈ {v, w} or x ≺ u in
S or x � u in S and these statements are mutually exclusive.

First we show that αG is a probability density function.∑
x∈T

αG(x) = αG(v) + αG(w) +
∑
x�u

αG(x) +
∑
x≺u

αG(x)

=
α

1 + α
F (v) +

α

1 + α
F (w) +

∑
x�u

α

1 + α
F (x) +

∑
x≺u

αF (x)

But since F is the upper probability function of a constant rate distribution on
S, and since u is a chain point,∑

x≺u
αF (x) = 1−

∑
x�u

αF (x) = 1− F (u)

Also,

∑
x�u

α

1 + α
F (x) =

1
1 + α

∑
x�u

αF (x)− αF (u)


=

1
1 + α

[F (u)− αF (u)] =
1− α
1 + α

F (u) (12)

Substituting gives∑
x∈T

αG(x) =
2α

1 + α
F (u) +

1− α
1 + α

F (u) + 1− F (u) = 1

so αG is a probability density function on T .
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Finally, we show the constant rate property. First∑
y�T v

αG(y) = αG(v) +
∑
y�u

αG(y)

=
α

1 + α
F (u) +

∑
y�u

α

1 + α
F (y)

=
1

1 + α

∑
y�u

αF (y) =
1

1 + α
F (u) = G(v)

Similarly, ∑
y�Tw

αG(y) = G(w)

Next, suppose x � v in T (so that x � u in S). Then∑
y�T x

αG(y) =
∑
y�x

αG(y) =
∑
y�x

α

1 + α
F (y)

=
1

1 + α

∑
y�x

αF (y) =
1

1 + α
F (x) = G(x)

Finally, suppose that x ≺ u (so that x ≺T v and x ≺T w. Then∑
y�T x

αG(y) =
∑

x�y≺u

αG(y) + αG(v) + αG(w) +
∑
y�u

αG(y)

=
∑

x�y≺u

αF (y) +
α

1 + α
F (u) +

α

1 + α
F (u) +

∑
y�u

α

1 + α
F (y)

=
∑
y�x

αF (y)−
∑
y�u

αF (y) + 2
α

1 + α
F (u) +

1− α
1 + α

F (u)

= F (x)− F (u) + F (u) = F (x)

Note that we used (12) in the next to the last line.

5.7 Joint distributions

In this section, suppose that (S,�S , µ) and (T,�T , ν) are standard posets, and
that (S × T,�, λ) is the direct product. Suppose that X and Y are random
variables taking values in S and T , respectively, so that (X,Y ) takes values
in S × T . Let F denote the upper probability function of X, G the upper
probability function of Y , and H the upper probability function of (X,Y ).

Theorem 16. If (X,Y ) has constant rate γ and X and Y have independent
upper events, then X and Y are completely independent and there exist α > 0
and β > 0 with αβ = γ such that X has constant rate α and Y has constant
rate β. Conversely, if X and Y are independent and have constant rates α and
β, respectively, then (X,Y ) has constant rate γ = αβ.
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Proof. Suppose that (X,Y ) has constant rate γ with respect to λ and thatX and
Y have independent upper events. Then H(x, y) = F (x)G(y) for x,∈ S, y ∈ T ,
and hence (X,Y ) has density h with respect to λ given by h(x, y) = γH(x, y) =
γF (x)G(y) for x ∈ S, y ∈ T . It follows from the standard factorization theorem
that X and Y are independent. Moreover, there exists α and β such that X
has density f with respect to µ given by f(x) = αF (x); Y has density g with
respect to ν given by g(x) = βG(x); and αβ = γ.

Conversely, suppose that X and Y are independent and have constant rates
α and β with respect to µ and ν, respectively. Then X has density f = αF with
respect to µ and Y has density g = βG with respect to ν, and by independence,
(X,Y ) has density h with respect to λ given by

h(x, y) = f(x)g(y) = αF (x)βG(y) = αβF (x)G(y) = αβH(x, y), (x, y) ∈ S × T

Hence (X,Y ) has constant rate αβ with respect to λ.

In the second part of Theorem 16, if we just know that X and Y have
constant rates and have independent upper events, then we can conclude that
H is the upper probability function of a distribution with constant rate on
S×T . and that this distribution is the joint distribution of independent random
variables. However, we cannot conclude that this distribution is the distribution
of our given variables (X,Y ), unless we know that upper probability functions
on S × T completely determine distributions (that is, unless (S × T,�) has
distributional dimension 1.

In general, there will be lots of constant rate distributions on (S×T,�) that
do not fit Theorem 16.

Example 10. Suppose that (S × T ) is a discrete poset and that S and T
have minimum elements e and ε, respectivley. Suppose that (X,Y ) is a random
variable taking values in S×T with constant rate α. As usual, let F , G, and H
denote the upper probability functions of X, Y , and (X,Y ), respectivley, and let
f , g, and h denote the corresponding density functions. The upper probability
function of X is F (x) = H(x, ε) while the density function is

f(x) =
∑
y∈T

h(x, y) =
∑
y∈T

αH(x, y)

It certainly seems possible that (X,Y ) could have constant rate without X and
Y having constant rate.

In particular, we can typically construct mixtures of constant rate distribu-
tions (Section 5.5) that do not satisfy the setting of Theorem 16.

Example 11. In the simplest example, suppose that (X1, Y1) and (X2, Y2) are
random variables taking values in the discrete poset (S×T,�). We assume that
(X1, Y1) and (X2, Y2) are independent and both have constant rate γ. Let U be
an indicator variable independent of (X1, Y1) and (X2, Y2) and let

(X,Y ) = U(X1, Y1) + (1− U)(X2, Y2) = (UX1 + (1− U)X2, UY1 + (1− U)Y2)
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Then (X,Y ) has the mixture distribution and hence it also has constant rate
γ, although clearly X and Y will not be independent in general and may not
have constant rate. Speciallizing further, suppose X1 and Y1 are independent
with constant rates α1, β1 respectively, with α1β1 = γ and that similarly X2

and Y2 are independent with constant rates α2, β2 respectively, with α2β2 = γ.
Then X and Y are still not independent and would still not have constant rate,
unless α1 = α2 and β1 = β2.

The results of this section extend in an obvious way to the direct product of a
finite number of posets (S1,�1, µ1), (S2,�2, µ2), . . . , (Sn,�n, µn). On the other
hand, given a countably infinite collection of posets ((Sn,�n, µn) : n ∈ N+),
where Si has minimum element ei for each i, define

T = {(x1, x2, . . .) : xi ∈ Si for all i and xi = ei eventually in i}

Using component-wise constructions, the result of this section extend to the
poset (T,�, λ).

5.8 Lexicographic sums

As in Section 3.6, suppose that (R,�R, µ) is a standard poset and that for each
x ∈ R, (Sx,�x, νx) is standard poset. We let (T,�, λ) denote the lexicographic
sum of (Sx,�x) over x ∈ R.

Suppose now that (X,Y ) is a random variable taking values in T . Then X
takes values in R, and given X = x ∈ R, Y takes values in Sx. Unconditionally,
Y takes values in ∪x∈RSx. We will let F denote the upper probability function
of X and f the density function of X (relative to µ). For x ∈ R, we will let Gx
and gx denote the upper probability function and density (with respect to νx)
of the conditional distribution of Y given X = x. Finally, we will let H and h
denote the upper probability function and density (with respect to λ) of (X,Y ).
Then

h(x, y) = f(x)gx(y), (x, y) ∈ T
Also

H(x, y) = P[(X,Y ) � (x, y)]
= P[X �S x or (X = x and Y �x y)]
= P(X �S x) + P(X = x, Y �x y)
= F (x)− µ{x}f(x) + µ{x}f(x)Gx(y)
= F (x)− µ{x}f(x)[1−Gx(y)], (x, y) ∈ T

There are a couple of obvious special cases. If X has a continuous distribution,
so that µ({x}) = 0, then

H(x, y) = F (x), x ∈ R, y ∈ Sx

If X has a discrete distribution, so that µ is counting measure, then

H(x, y) = F (x)− f(x) + f(x)Gx(y) = F (x)− f(x)[1−Gx(y)], (x, y) ∈ U
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Suppose now that X has constant rate α on R, so that f = αF . Then (X,Y )
has density h given by

h(x, y) = αF (x)gx(y), (x, y) ∈ T

and upper probability function H given by

H(x, y) = F (x)1− αµ{x}F (x) + αµ{x}F (x)Gx(y)
= F (x)[1− αµ{x}+ αµ{x}Gx(y)], (x, y) ∈ T

If X has a continuous distribution (and constant rate α), then (X,Y ) will
have constant rate β if

αF (x)gx(y) = βF (x), (x, y) ∈ T

or equivalently we need gx(y) constant in (x, y) ∈ T . This can only happen
if νx(Sx) is constant in x and the conditional distribution of Y given X = x
is uniform on Sx. In the special case that Sx = S for each x, the condition
for (X,Y ) to have constant rate is that X have constant rate α, X and Y be
independent, and Y uniformly distributed on S.

If X has a discrete distribution (and constant rate α), then (X,Y ) will have
constant rate β if

αF (x)gx(y) = βF (x)[1− α+ αGx(y)], (x, y) ∈ T

or equivalently,

gx(y) =
β

α
[1− α+ αGx(y)], (x, y) ∈ T (13)

That is, we need gx(y)/[1− α+ αGx(y)] constant in (x, y) ∈ T . In the discrete
case, when Sx is finite for each x, so we might be able to satisfy (13) by working
backwards from the maximal elements of Sx.

5.9 Pairs of independent variables

First we consider independent random variables X and Y taking values in a
standard poset (S,�, λ). Let F and G denote the upper probability functions
of X and Y , respectively.

Proposition 48. Suppose that X has constant rate α and let

1
γ

=
∫
S

F (x)G(x)dλ(x)

Then P(X � Y ) = α/γ and the conditional density of X given X � Y is γFG.

Proof. By assumption, f = αF is a density of X with respect to λ and therefore

P(X � Y ) = E[P(X � Y | X)] = E[G(X)] =
∫
S

αF (x)G(x)dλ(x) =
α

γ
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Next, if A ∈ B(S), then

P(X ∈ A,X � Y ) = E[P(X ∈ A,X � Y | X)]

= E[G(X), X ∈ A] =
∫
A

G(x)αF (x)dλ(x)

and therefore
P(X ∈ A | X � Y ) =

∫
A

γF (x)G(x)dλ(x)

so the conditional density of X given X � Y is γFG.

Problem 12. Find conditions on X and Y so that the conditional distribution
of X given X � Y has constant rate. That is, find conditions on X and Y
so that the conditional distribution of X given X � Y has upper probability
function FG.

If Y has constant rate β, then P(Y � X) = β/γ. If X has constant rate α
and Y has constant rate β and P(X = Y ) = 0 (which would be the case if X or
Y have a continuous distribution) then

P(X ‖ Y ) = 1− α+ β

γ

On the other hand, suppose that S is discrete (with counting measure as the
reference measure, of course). Suppose that X has constant rate α and that Y
has constant rate β. As above let

γ =
∑
x∈S

F (x)G(x)

Then as above, P(X � Y ) = α/γ and P(Y � X) = β/γ. Moreover,

P(X = Y ) = E[P(X = Y | X)] = E[βG(X)] = αβ
∑
x∈S

F (x)G(x) =
αβ

γ

Therefore

P(X ≺ Y ) =
α(1− β)

γ
, P(Y ≺ X) =

β(1− α)
γ

P(X ⊥ Y ) =
α+ β − αβ

γ
, P(X ‖ Y ) =

γ − α+ β − αβ
γ

Problem 13. Recall that if (S,�) is a lower semi-lattice, then the upper prob-
ability function of X ∧ y is FG. Find conditions on X and Y so that X ∧Y has
constant rate.
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5.10 Gamma distributions

As usual, assume that (S,�, λ) is a standard poset. Recall the cumulative func-
tions λn, n ∈ N discussed in Section 2.2 and the discussion of ladder variables
in Section 4.7.

Suppose that F is the upper probability function of a distribution on S with
constant rate α. Let X = (X1, X2, . . .) be a sequence of independent, identically
distributed random variables with this distribution, and let Y = (Y1, Y2, . . .) be
the corresponding sequence of ladder variables. The following results follow
easily from the general results in Section 4.7.

Proposition 49. Y is a homogeneous Markov chain on S with transition prob-
ability density g given by

g(z|y) = α
F (z)
F (y)

, y ∈ S, z ∈ I[y]

Proof. From Proposition 43, Y is a homogeneous Markov chaing with transition
probability g given by

g(y, z) =
f(z)
F (y)

, y ∈ S, z ∈ I[y]

so if X has constant rate α,

g(y, z) = α
F (z)
F (y)

, y ∈ S, z ∈ I[y]

Proposition 50. (Y1, Y2, . . . , Yn) has probability density function hn given by

hn(y1, y2, . . . , yn) = αnF (yn), (y1, y2, . . . , yn) ∈ Dn

Proof. From Corollary 9, (Y1, Y2, . . . , Yn) has probability density function hn
given by

hn(y1, y2, . . . , yn) = r(y1)f(y2) · · · r(yn−1)f(yn), (y1, y2, . . . , yn) ∈ Dn

where r is the rate function. Hence, if X has constant rate α,

hn(y1, y2, . . . , yn) = αnF (yn), (y1, y2, . . . , yn) ∈ Dn

Proposition 51. Yn has probability density function gn given by

gn(y) = αnλn−1(y)F (y), y ∈ S
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Proof. From Corollary 10, Yn has probability density function gn given by

gn(y) = f(y)
∫
Dn−1[y]

r(y1)r(y2) · · · r(yn−1)dλn−1(y1, y2, . . . yn−1), y ∈ S

Hence, if X has constant rate α,

gn(y) = αnλn−1(y)F (y), y ∈ S

Proposition 52. The conditional distribution of (Y1, Y2, . . . , Yn−1) given Yn =
y is uniform on Dn−1[y].

Proof. By Corollary 11, (Y1, Y2, . . . , Yn−1) given Yn = y has probability density
function given by

hn−1(y1, . . . , yn−1|y) =
1

Cn−1[y]
r(y1) · · · r(yn−1), (y1, . . . , yn−1) ∈ Dn−1[y]

where Cn−1[y] is the normalizing constant. Hence, if X has constant rate,
hn−1(·|y) is constant on Dn−1[y] (and then of course the constant is 1/λn−1(y)).

We will refer to the distribution with density gn as the gamma distribution of
order n associated with the given constant rate distribution. When X is an IID
sequence with constant rate α, the sequence of ladder variables Y is analogous
to the arrival times in the ordinary Poisson process. By Proposition 52, this
process defines the most random way to put a sequence of ordered points in S.
The conversse of Proposition 52 is not quite true.

Example 12. Consider the poset (S,�) that consists of two parallel chains.
That is,

S = {a0, a1, . . .} ∪ {b0, b1, . . .}
where a0 ≺ a1 ≺ · · · , b0 ≺ b1 ≺ · · · , and ai ‖ bj for all i, j. Let f : S → (0, 1)
be defined by

f(an) = pα(1− α)n, f(bn) = (1− p)β(1− β)n; n ∈ N

where α, β, p ∈ (0, 1) and α 6= β. It’s easy to see that f is a PDF with corre-
sponding UPF given by

F (an) = p(1− α)n, F (bn) = (1− p)(1− β)n; n ∈ N

Hence the rate function r is

r(an) = α, r(bn) = β; n ∈ N

if X is an IID sequence with PDF f and Y the corresponding sequence of ladder
variables then from Proposition 52, the conditional distribution of (Y1, . . . , Yn−1)
given Yn = y is uniform for each y ∈ S, yet X does not (quite) have constant
rate.
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Proposition 53. Suppose that (S,� λ) is a standard, connected poset, and
that Y is the sequence of ladder variables associated with a sequence of IID
variables X. If the conditional distribution of Y1 given Y2 = y is uniform on
D[y], then X has a distribution with constant rate.

Proof. The conditional distribution of Y1 given Y2 = y is

h1(y1|y) =
1

C1[y]
r(y1), y1 ∈ D[y]

But this is constant in y1 ∈ D[y] and hence r is constant on D[y] for each y ∈ S.
Thus, it follows that r(x) = r(y) whenever x ⊥ y. Since S is connected, for
any x, y ∈ S, there exists a finite squence (x0, x1, . . . , xn) such that x = x0 ⊥
x1 · · · ⊥ xn = y. It then follows that r(x) = r(y).

Problem 14. Suppose that Y = (Y1, Y2, . . .) is an increasing sequence of
random variables in S with the property that the conditional distribution of
(Y1, Y2, . . . , Yn−1) given Yn = y is uniform on Dn−1[y] for every n ∈ N+ and
y ∈ S. What, if anything, can we say about the finite dimensional distributions
of Y ? In particular, under what additional conditions can we conclude that
Y is the sequence of ladder variables associated with an IID sequence X with
constant rate?

5.11 The point process

Let F be the upper probability function of a distribution with constant rate
α on a standard poset (S,�, λ). Let X = (X1, X2, . . .) be a sequence of in-
dependent random variables, each with the constant rate distribution, and let
Y = (Y1, Y2, . . .) be the corresponding sequence of ladder variables as in Section
5.10. Recall the basic notation and results from Section 4.8 on point processes.
Thus, for x ∈ S, let

Nx = #{n ∈ N+ : Yn � x}

That is, Nx is the number of random points in D[x]. Then Yn � x if and only if
Nx ≥ n for n ∈ N+ and x ∈ S. For n ∈ N+, let Gn denote the lower probability
function of Yn, so that

Gn(x) = P(Yn � x), x ∈ S

For x ∈ S,
P(Nx ≥ n) = P(Yn � x) = Gn(x), n ∈ N+

so that for fixed x ∈ S, n 7→ Gn(x) is the upper probability function of Nx.
Recall also that for x ∈ S:

P(Nx = n) = Gn(x)−Gn+1(x), n ∈ N

E(Nx) =
∞∑
n=1

Gn(x)
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Now, using the probability density function of Yn, we have

Gn(x) =
∫
D[x]

αnλn−1(t)F (t)dλ(t) =
∫
D[x]

αn−1λn−1(t)f(t)dλ(t)

= E[αn−1λn−1(X), X � x], n ∈ N+, x ∈ S

where X is a variable with the constant rate distribution (that is, X has prob-
ability density function f = αF ). Thus for fixed x ∈ S, the upper probability
function of Nx is given by

P(Nx ≥ 0) = 1

P(Nx ≥ n) = αn−1E[λn−1(X), X � x], n ∈ N+

while the probability density function is given by

P(Nx = 0) = 1− P(X � x)

P(Nx = n) = αn−1E[λn−1(X)− αλn(X), X � x], n ∈ N+

Also,

E(Nx) =
∞∑
n=1

E[αn−1λn−1(X), X � x]

E

[ ∞∑
n=1

αn−1λn−1(X), X � x

]
= E[Λ(X,α), X � x]

where, we recall, the generating function associated with λ is

Λ(x, t) =
∞∑
n=0

tnλn(x)

The function m : S → [0,∞) defined by

m(x) = E(Nx) =
∞∑
n=1

Gn(x) = E[Λ(X,α), X � x]

is the renewal function.
Our next topic is thinning the point process. As above, suppose that Y =

(Y1, Y2, . . .) is the sequence of gamma variables corresponding to a distribu-
tion with constant rate α and upper probability function F . Let N have the
geometric distribution on N+ with rate parameter r ∈ (0, 1) so that

P(N = n) = r(1− r)n−1, n ∈ N+

Moreover, we assume that N and Y are independent. The basic idea is that we
accept a point with probability r and reject the point with probability 1− r, so
that YN is the first point accepted. We are interested in the distribution of YN .
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Theorem 17. The probability denstiy function g of YN is is given by

g(x) = rαΛ[x, α(1− r)]F (x), x ∈ S

where again, Λ is the generating function associated with (λn : n ∈ N).

Proof. For x ∈ S,

g(x) = E[fN (x)] =
∞∑
n=1

r(1− r)n−1fn(x)

=
∞∑
n=1

r(1− r)n−1αnλn−1(x)F (x)

= αrF (x)
∞∑
n=1

[α(1− r)]n−1λn−1(x)

= αrF (x)Λ[x, α(1− r)]

In general, YN does not have constant rate.

6 Memoryless and Exponential Distributions

In this chapter, we assume that (S, ·, λ) is a standard positive semigroup. Be-
cause of the algebraic, topological, and measure-theoretic assumptions, this is
the natural home for exponential properties, aging properties, and related con-
cepts.

6.1 Basic definitions

Suppose that X is a random variable taking values in S. Most characterizations
of the exponential distribution (and its generalizations) in Euclidian spaces are
based on the equivalence of the residual distributions with the original distribu-
tion, in some sense. In the setting of a positive semigroup, such properties take
the form

P(x−1X ∈ A | X � x) = P(X ∈ A),

or equivalently,
P(X ∈ xA) = P(X � x)P(X ∈ A) (14)

for certain x ∈ S and A ∈ B(S).

Definition 37. We will say that X has an exponential distribution if (14) holds
for all x ∈ S and A ∈ B(S). We will say that X has a memoryless distribution
if (14) holds for all x ∈ S and all A of the form yS, y ∈ S.
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Note 35. Thus, if X has a memoryless distribution then

P(X � xy) = P(X � x)P(X � y), x, y ∈ S

Equivalently, if F is the upper probability function of X then

F (xy) = F (x)F (y), x, y ∈ S

A random variable with an exponential distribution has the property that the
conditional distribution of x−1X given X � x is the same as the distribution
of X. If X has only a memoryless distribution, then the conditional upper
probability function of x−1X given X � x is the same as the upper probability
function of X. An exponential distribution is necessarily memoryless, but as we
will see, a memoryless distribution may not be exponential. On the other hand,
if the distributional dimension of (S, ·) is 1, that is if the upper probability func-
tion of a distribution uniquely determines the distribution, then a memoryless
distribution is necessarily also an exponential distribution.

Note 36. Recall from Halmos [15] that a positive measure µ on a locally com-
pact topological group S is said to be relatively invariant if

µ(xA) = F (x)µ(A), x ∈ S, A ∈ B(S)

for some function F : S → (0, ∞). Suppose that we replace group with positive
semigroup in this definition, and let µ be a probability measure. Then letting
A = S gives F (x) = µ(xS), so that F is the upper probability function of the
distribution. Thus an exponential distribution is simply a relatively invariant
probability measure.

6.2 Invariant pairs

Definition 38. Suppose that X is a random variable taking values in S. If
x ∈ S and A ∈ B(S), we will call (x, A) an invariant pair forX if the exponential
property holds for (x,A):

P(X ∈ xA) = P(X � x)P(X ∈ A)

Definition 39. If X is a random variable taking values in S, let

SX = {x ∈ S : P(X ∈ xA) = P(X � x)P(X ∈ A) for all A ∈ B(S)}

That is, SX consists of all x ∈ S such that (x, A) is an invariant pair for X for
all A ∈ B(S).

Proposition 54. If X is a random variable taking values in S, then SX is a
complete sub-semigroup of S.
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Proof. Let x, y ∈ SX and let A ∈ B(S). Then

P[X ∈ (xy)A] = P[X ∈ x(yA)] = P(X � x)P(X ∈ yA)
= P(X � x)P(X � y)P(X ∈ A)

In particular, letting A = S we have

P(X � xy) = P(X � x)P(X � y)

Substituting back we have

P[X ∈ (xy)A] = P(X � xy)P(X ∈ A)

and hence xy ∈ SX . Now suppose that x, y ∈ SX and x � y. Let u = x−1y so
that xu = y. Let A ∈ B(S). Since x ∈ SX we have

P(X ∈ xuA) = P(X � x)P(X ∈ uA)

On the other hand, since y = xu ∈ SX we have

P(X ∈ xuA) = P(X � xu)P(X ∈ A)

Again, since x ∈ SX we have

P(X � xu) = P(X ∈ xuS) = P(X � x)P(X ∈ uS) = P(X � x)P(X � u)

Substituting we have

P(X � x)P(X ∈ uA) = P(X � x)P(X � u)P(X ∈ A)

Since P(X � x) > 0, we have

P(X ∈ uA) = P(X � u)P(X ∈ A)

and therefore u ∈ SX .

Note 37. If P(X ∈ SX) > 0, then the conditional distribution of X given
X ∈ SX is exponential on the positive semigroup (SX , ·). In particular, this
holds if (S, ·) is discrete. However, it may well happen that SX = {e}. For any
random variable X on a discrete positive semigroup, the conditional distribution
of X given X = e is exponential.

Definition 40. If X is a random variable taking values in S, let

BX(S) = {A ∈ B(S) : P(X ∈ xA) = P(X � x)P(X ∈ A) for all x ∈ S}

That is, BX(S) consists of all A ∈ B(S) such that (x, A) is an invariant pair for
X for all x ∈ S.

Proposition 55. BX(S) is closed under countable disjoint unions, proper dif-
ferences, countable increasing unions, and countable decreasing intersections
(and hence is a monotone class).
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Proof. Let (A1, A2, . . .) be a sequence of disjoint sets in BX(S) and let x ∈ S.
Then (xA1, xA2, . . .) is a disjoint sequence and

P

(
X ∈ x

∞⋃
i=1

Ai

)
= P

(
X ∈

∞⋃
i=1

xAi

)
=
∞∑
i=1

P (X ∈ xAi)

=
∞∑
i=1

P(X � x)P (X ∈ Ai)

= P(X � x)
∞∑
i=1

P (X ∈ Ai)

= P(X � x)P

(
X ∈

∞⋃
i=1

Ai

)
Hence

⋃∞
i=1Ai ∈ BX(S). Let A, B ∈ BX(S) with A ⊆ B and let x ∈ S. Then

xA ⊆ xB so

P[X ∈ x(B −A)] = P[X ∈ (xB − xA)] = P(X ∈ xB)− P(X ∈ xA)
= P(X � x)P(X ∈ A)− P(X � x)P(X ∈ B)
= P(X � x)[P(X ∈ B)− P(X ∈ A)]
= P(X � x)P[X ∈ (B −A)]

and hence B − A ∈ BX(S). Of course S ∈ BX(S) and hence the other results
follow.

Proposition 56. Suppose that X is a random variable taking values in S.
Then X has an exponential distribution on (S, ·) if and only if BX(S) contains
the open sets if and only if BX(S) contains the compact sets.

Proof. Of course if X has an exponential distribution, then by definition, BX(S)
contains all Borel sets. On the other hand, if BX(S) contains the open sets, then
it also contains the closed sets and hence the algebra of open and closed sets.
By the monotone class theorem, BX(S) = B(S).

Similarly, if X has an exponential distribution, then BX(S) contains the
compact sets. Conversely, if BX(S) contains the compact sets, then it contains
the algebra of compact sets and their complements. By the monotone class
theorem, BX(S) = B(S) .

6.3 Basic properties and characterizations

Proposition 57. Suppose that X takes values in S. Then X has an exponential
distribution on (S, ·) if and only if

E[ϕ(x−1X) | X � x] = E[ϕ(X)]

or equivalently
E[ϕ(x−1X), X � x] = P(X � x)E[ϕ(X)]

for every bounded, measurable ϕ : S → R.

73



Proof. Let ϕ = 1A where A ∈ B(S). Then

E[ϕ(x−1X | X � x] = P(x−1X ∈ A | X � x) = P(X ∈ A) = E[ϕ(X)]

That is, equation for the expected values is precisely the exponential property.
The general result now follows by the usual methods.

Corollary 14. Suppose that X has an exponential distribution on (S, ·) and
that ψ : S → R is bounded and measurable. Then

E[ψ(X), X ∈ xA] = P(X � x)E[ψ(xX), X ∈ A]

Proof. Let ϕ(z) = 1A(z)ψ(xz) and apply the previous theorem.

Lemma 2. Suppose that X has an exponential distribution on S with upper
probability function F . Then F is continuous.

Proof. Suppose that x, xn ∈ S for n ∈ N+ and xn → x as n → ∞. Let y,
z ∈ S satisfy x ≺ y ≺ z. Then [e, y] is a neighborhood of x so there exists
N ∈ N+ such that xn ∈ [e, y] for n ≥ N . Also yS is a neighborhood of z so
there exists a compact neighborhood K of z and an open neighborhood U of z
with K ⊆ U ⊆ yS. Since S is locally compact and Hausdorff, there exists a
continuous function ϕ : S → [0, 1] such that ϕ = 1 on K and ϕ = 0 on U c. It
follows that for n ≥ N ,

E[ϕ(X), X � xn] = E[ϕ(X), X � x] = E[ϕ(X), X ∈ U ]

Next note that for n ≥ N , E[ϕ(xnX)] > 0 and E[ϕ(xX)] > 0 since ϕ(xnt) = 1
for t ∈ x−1

n K, and ϕ(xt) = 1 for t ∈ x−1K and these sets have nonempty
interior. By continuity and bounded convergence,

E[ϕ(xnX)]→ E[ϕ(xX)] as n→∞

From the exponential property (see Corollary 1),

E[ϕ(X);X � x] = F (x)E[ϕ(xX)]

But as noted above, E[ϕ(X), X � x] = E[ϕ(X), X ∈ U ] and therefore we have

F (x) =
E[ϕ(X), X ∈ U ]
E[(ϕ(xX)]

Similarly,

F (xn) =
E[ϕ(X), X ∈ U ]
E[ϕ(xnX)]

Taking limits we have F (xn) → F (x) as n → ∞ and hence F is continuous.
Also, since xS has nonempty interior and X has support S, F (x) > 0 for each
x.
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Corollary 15. Suppose that X has an exponential distribution on S. Then
x 7→ P (X ∈ xA) is continuous on S for each A ∈ B(S).

Proof. This follows immediately from the previous lemma, since for fixed A ∈
B(S),

P (X ∈ xA) = F (x)P (X ∈ A), x ∈ S

Theorem 18. Suppose that X is a random variable taking values in S. Then X
has an exponential distribution if and only if X is memoryless and has constant
rate with respect to a left-invariant measure on S.

Proof. Let F denote the upper probability function of X. Suppose that X has
an exponential distribution. Then trivially, X is memoryless. Let µ be the
positive measure on S defined by

µ(A) = E
(

1
F (X)

, X ∈ A
)
, A ∈ B(S)

That is, µ has density function 1/F with respect to the distribution of X and
hence, since F is positive, X has probability density function F with respect to
µ. That is, X has constant rate 1 with respect to µ:

P(X ∈ A) =
∫
A

F (x)dµ(x), A ∈ B(S)

Let x ∈ S and A ∈ B(S). By the expected value version of the exponential
property and by the memoryless property,

µ(xA) = E
(

1
F (X)

, X ∈ xA
)

= F (x)E
(

1
F (xX)

, X ∈ A
)

= F (x)E
(

1
F (x)F (X)

, X ∈ A
)

= E
(

1
F (X)

, X ∈ A
)

= µ(A)

Thus, µ is left-invariant.
Conversely, suppose that X is memoryless and has constant rate α with

respect to a left-invariant measure λ on S. Thus f = αF is a density function
of X with respect to λ. Let x ∈ S and A ∈ B(S). Then, using the memoryless
property and the integral version of left-invariance, we have

P(X ∈ xA) =
∫
xA

αF (y)dλ(y) =
∫
A

αF (xz)dλ(z)

= F (x)
∫
A

αF (z)dλ(z) = F (x)P(X ∈ A)

Hence X has an exponential distribution.
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Note 38. This proof is essentially the same as the characterization of relative
invariant measures in locally compact groups given in Halmos. Note also that
since S has a unique left-invariant measure, up to multiplication by positive
constants, the exponential distribution with a given upper probability function
is unique.

Theorem 19. Suppose that F : S → (0, 1] is measurable. Then F is the upper
probability function of an exponential distribution if and only if

F (xy) = F (x)F (y); x, y ∈ S (15)∫
S

F (x)dλ(x) <∞ (16)

in which case the rate constant is the reciprocal of the integral in (16).

Proof. Suppose that F is the upper probability function of an exponential dis-
tribution that has rate α. Then the distribution is memoryless so (15) holds,
and ∫

S

F (x)dλ(x) =
∫
S

1
α
f(x)dλ(x) =

1
α

Conversely, suppose that F : S → (0, 1] is measurable and that (15) and (16)
hold. Let f = αF where α is the reciprocal of the integral in (16). Then f is a
probability density function by (16). Suppose that X is a random variable with
this distribution. For x ∈ S and A ∈ B(S), using (15) and the integral version
of left-invariance, we have

P(X ∈ xA) =
∫
xA

f(y)dλ(y) =
∫
xA

αF (y)dλ(y) =
∫
A

αF (xz)dλ(z)

= F (x)
∫
A

αF (z)dλ(z) = F (x)
∫
A

f(z)dλ(z) = F (x)P(X ∈ A)

Letting A = S we see that F is the upper probability function of X, and hence
X has constant rate α with respect to λ. And then, of course, X is memoryless
by (15).

Note 39. Since S has a unique left-invariant measure, up to multiplication by
positive constants, this theorem gives a method for finding all exponential dis-
tributions on S. It also follows that the memoryless property almost implies the
constant rate property. More specifically, if F is an upper probability function
satisfying (15) and (16), then f = αF is the probability density function of
an exponential distribution (where again, α is the reciprocal of the integral in
(16)), but (if (S, ·, λ) does not have distributional dimension 1), then there may
be other PDFs with upper probability F that do not have constant rate. This
can happen, as we will see, in Section 11.2. The only other possiblity is given
in the follow problem.

Problem 15. Is it possible to have an upper probability function that satisfies
the memoryless property in (15), but for which the integral in (16) is infinite?
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Corollary 16. Suppose that X has an exponential distribution on S with upper
probability function F and constant rate α. Let r > 0. If

1
αr

:=
∫
S

F r(x)dλ(x) <∞

(in particular if r ≥ 1) then F r is the upper probability function of an expo-
nential distribution with rate αr.

Proof. Clearly F r(xy) = F r(x)F r(y) for x, y ∈ S. Thus the result follows
immediately from the previous theorem.

In particular, it follows that if a positive semigroup has an exponential dis-
tribution, then in fact it supports at least a one-parameter family of exponential
distributions.

Proposition 58. Suppose that f is a probability density function on S, and
that

f(x)f(y) = G(xy), x ∈ S, y ∈ S

for some measurable function G : S → [0,∞). Then f is the density of an
exponential distribution.

Proof. First we let y = e to conclude that G(x) = αf(x) where α = f(e) > 0.
Let F denote the upper probability function of f . Then

F (x) =
∫
xS

f(y)dλ(y) =
∫
xS

1
α
G(y)dλ(y) =

1
α

∫
S

G(xu)dλ(u)

=
1
α

∫
S

f(x)f(u)dλ(u) =
1
α
f(x), x ∈ S

Thus, the distribution has constant rate α with respect to λ. Finally,

F (xy) =
1
α
f(xy) =

1
α2
G(xy) =

1
α2
f(x)f(y) = F (x)F (y)

so the distribution is memoryless.

Suppose that the positive semigroups (S, ·) and (T, ·) are isomorphic, and
let Φ: S → T be an isomorphism. Recall that if λ is a left-invariant measure on
S, then the measure µ defined by

µ(B) = λ
(
Φ−1(B)

)
, B ∈ B(T )

is left-invariant on T .

Theorem 20. Suppose that X is a random variable taking values in S and let
Y = Φ(X). If X is exponential or memoryless or has constant rate with respect
to λ, then Y is exponential or memoryless or has constant rate with respect to
µ = λΦ−1, respectively.
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Proof. Suppose that X has an exponential distribution. For y ∈ T and B ∈
B(T ),

P(Y ∈ yB) = P(Φ(X) ∈ yB) = P
(
X ∈ Φ−1(yB)

)
= P

(
X ∈ Φ−1(y)Φ−1(B)

)
= P

(
X � Φ−1(y)

)
P
(
X ∈ Φ−1(B)

)
= P(Y � y)P(Y ∈ B)

Hence Y has an exponential distribution. Suppose that X has a memoryless
distribution. For y, z ∈ T ,

G(yz) = F
(
Φ−1(yz)

)
= F

(
Φ−1(y)Φ−1(z)

)
= F

(
Φ−1(y)

)
F
(
Φ−1(z)

)
= G(y)G(z)

Hence Y has a memoryless distribution. Suppose that X has constant rate
α > 0 with respect to λ. Then X has density function f = αF with respect to
λ and hence Y has density function g = (αF ) ◦ Φ−1 = α(F ◦ Φ−1) = αG with
respect to µ. Thus Y has constant rate α with respect to µ.

Note 40. Suppose that (S, ·) is a positive semigroup and that T is a topological
space which is homeomorphic to S. Let Φ: S → T be a homeomorphism. Define
the binary operation · on T by

uv = Φ[Φ−1(u)Φ−1(v)]

Recall that (T, ·) is a positive semigroup isomorphic to (S, ·). In particular, the
previous proposition holds.

6.4 Conditional distributions

Theorem 21. Suppose that X and Y are independent random variables taking
values in S. Suppose also that X has an exponential distribution with upper
probability function F and Y has a memoryless distribution with upper prob-
ability function G. Then the conditional distribution of X given X � Y is
exponential, with upper probability function FG.

Proof. First, since both distributions are memoryless, we have

(FG)(xy) = F (xy)G(xy) = F (x)F (y)G(x)G(y)
= F (x)G(x)F (y)G(y) = (FG)(x)(FG)(y), x, y ∈ S

Since X has an exponential distribution, it has constant rate α for some α > 0.
Since G : S → (0, 1] we have

1
γ

:=
∫
S

F (x)G(x)dλ(x) ≤
∫
S

F (x)dλ(x) =
1
α
<∞

Thus, from our Theorem 19, it follows that FG is the upper probability function
of an exponential distribution that has constant rate γ. It remains to show that
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this distribution is the conditional distribution of X given X � Y . Towards this
end, note that

P(X � Y ) = E[P(X � Y | X)] = E[G(X)]

=
∫
S

G(x)αF (x)dλ(x) = α

∫
S

G(x)F (x)dλ(x) =
α

γ

Next, if A ∈ B(S), then

P(X ∈ A,X � Y ) = E[P(X ∈ A,X � Y | X)]

= E[G(X), X ∈ A] =
∫
A

G(x)αF (x)dλ(x)

and therefore
P(X ∈ A | X � Y ) =

∫
A

γF (x)G(x)dλ(x)

so the conditional density of X given X � Y is γFG. In particular, the condi-
tional upper probability function is FG:

P(X � x | X � Y ) = γ

∫
xS

F (y)G(y)dλ(y) = γ

∫
S

F (xz)G(xz)dλ(z)

= γF (x)G(x)
∫
S

F (z)G(z)dλ(z) = F (x)G(x), x ∈ S

Note 41. Suppose that X and Y are independent variables with values in S,
and that each has an exponential distribution. Then the conditional distribution
of X given X � Y and the conditional distribution of Y given Y � X are the
same (both exponential with upper probability function FG).

Proposition 59. Suppose that X and Y are independent random variables
taking values in S and that the distribution of Y is exponential with upper
probability function G. Then given X � Y , the variables X and X−1Y are
conditionally independent and X−1Y has the same distribution as Y . The
conditional distribution of X given X � Y is

P(X ∈ A | X � Y ) =
E[G(X), X ∈ A]

E[G(X)]
, A ∈ B(S)

Proof. As in the previous theorem, let

1
γ

= P(X � Y ) = E[P(X � Y | X)] = E[G(X)]
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Then for A, B ∈ B(S),

P(X ∈ A,X−1Y ∈ B | X � Y ) =
P(X ∈ A,X−1Y ∈ B,X � Y )

P(X � Y )
= γP(X ∈ A, Y ∈ XB)
= γE[P(X ∈ A, Y ∈ XB | X)]
= γE[P(Y ∈ XB | X), X ∈ A]
= γE[P(Y � X | X)P(Y ∈ B | X), X ∈ A]
= γE[G(X)P(Y ∈ B), X ∈ A]
= γP(Y ∈ B)E[G(X), X ∈ A]

It follows from the standard factorization theorem that X and X−1Y are con-
ditionally independent given X � Y . Letting A = S,

P(X−1Y ∈ B | X � Y ) = P(Y ∈ B)

Letting B = S,

P(X ∈ A | X � Y ) =
E[G(X), X ∈ A]

E[G(X)]

The following proposition gives a partial converse.

Proposition 60. Suppose that X and Y are independent random variables
taking values in S, and that X and X−1Y are conditionally independent given
X � Y . Suppose also that x 7→ P(Y ∈ xA) is continuous for each A ∈ B(S).
Then the distribution of Y is exponential.

Proof. Let A, B ∈ B(S). Form the independence assumptions, we have

P(X ∈ A, Y ∈ XB)P(X � Y ) = P(X ∈ A,X � Y )P(Y ∈ XB)

Let µ denote the distribution of Y , so that µ(A) = P(Y ∈ A) for A ∈ B(S).
Then the last equation can be written

E[1A(X)µ(XB)]E[µ(XS)] = E[1A(X)µ(XS)]E[µ(XB)]

or equivalently,

E (1A(X)µ(XB)E[µ(XS)]) = E (1A(X)µ(XS)E[µ(XB)])

This holds for all A ∈ B(S). Therefore for each B ∈ B(S),

P(µ(XB)E[µ(XS)] = µ(XS)E[µ(XB)]) = 1

Since X has support S and x 7→ µ(xS) and x 7→ µ(xB) are continuous, it follows
that

µ(xB)E[µ(XS)] = µ(xS)E[µ(XB)], x ∈ S, B ∈ B(S)
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Letting x = e we see that

µ(B) =
E[µ(XB)]
E[µ(XS)]

, B ∈ B(S)

Substituting back, we have

µ(xB) = µ(xS)µ(B), B ∈ B(S), x ∈ S, B ∈ B(S)

so µ is an exponential distribution on S.

The collection of homomorphisms from (S, ·) into ((0, 1], ·) forms a commu-
tative semigroup under pointwise multiplication. The identity element is the
mapping 1 given by

1(x) = 1, x ∈ S
Of course, many of these homomorphisms (such as 1) are not upper probability
functions for probability measures on S. Clearly this semigroup of homomor-
phisms has no nontrivial invertible elements and satisfies the left cancellation
law. Hence the collection of homomorphisms is a positive semigroup.

Note 42. Suppose that X and Y are independent random variables with upper
probability functions F and G, respectively. Suppose also that X is exponential
and Y is memoryless. We showed earlier that the conditional distribution of X
given X � Y is exponential, and has upper probability function FG. But from
Proposition 37, if (S,�) is a lower semi-lattice, X∧Y also has upper probability
function FG. If (S, ·) has distributional dimension 1, then it follows that the
distribution of X ∧ Y is the same as the conditional distribution of X given
X � Y , and in particular, that this distribution is exponential.

6.5 Joint distributions

Suppose that (S, ·) and (T, ·) are standard positive semigroups with identity
elements e and ε, and with left-invariant measures µ and ν, respectively. Recall
that the direct product (S × T, ·) is also a standard positive semigroup, where
S × T is given the product topology and where

(x, y)(u, v) = (xu, yv)

The measure λ = µ⊗ ν is left-invariant.
Suppose also that (X,Y ) is a random variable with values in S×T and upper

probability function H. Let F and G denote the upper probability functions of
X and Y , respectively.

Lemma 3. Suppose that X and Y are random variables taking values in S and
T respectively. If X and Y are independent, and (x,A) is an invariant pair for
X and (y,B) is an invariant pair for Y , then ((x, y), A×B) is an invariant pair
for (X,Y ). If ((x, ε), A × T ) is an invariant pair for (X,Y ) then (x,A) is an
invariant pair for X. If ((e, y), S×B) is an invariant pair for (X,Y ) then (y,B)
is an invariant pair for Y .
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Proof. Suppose that (x,A) and (y,B) are invariant pairs for X and Y respec-
tively. Then by independence,

P((X,Y ) ∈ (x, y)(A×B)) = P((X,Y ) ∈ xA× yB)
= P(X ∈ xA, Y ∈ yB) = P(X ∈ xA)P(Y ∈ yB)
= P(X � x)P(X ∈ A)P(Y � y)P(Y ∈ B)
= P(X � x, Y � y)P(X ∈ A, Y ∈ B)
= P((X,Y ) � (x, y))P((X,Y ) ∈ A×B)

Hence ((x, y), A×B) is an invariant pair for (X,Y ). Suppose that ((x, ε), A×T )
is an invariant pair for (X,Y ). Then

P(X ∈ xA) = P((X,Y ) ∈ (xA)× T ) = P((X,Y ) ∈ (x, ε)(A× T ))
= P((X,Y ) � (x, ε))P((X,Y ) ∈ A× T ) = P(X � x)P(X ∈ A)

Thus, (x,A) is an invariant pair for X. Note that independence of X and Y is
not required. By a symmetric argument, if ((e, y), S × B) is an invariant pair
for (X,Y ) then (y,B) is an invariant pair for Y .

Theorem 22. (X,Y ) is memoryless on (S×T, ·) if and only if X is memoryless
on (S, ·), Y is memoryless on (T, ·) and

H(x, y) = F (x)G(y), x ∈ S, y ∈ T (17)

Equation (17) is equivalent to the statement that {X �S x} and {Y �T y} are
independent for all x ∈ S, y ∈ T .

Proof. Suppose that (X,Y ) is memoryless on (S × T, ·). For each x, u ∈ S,

F (xu) = H(xu, ε) = H((x, ε)(u, ε)) = H(x, ε)H(u, ε) = F (x)F (u)

so X is memoryless. By a symmetric argument, Y is memoryless. Moreover,

H(x, y) = H((x, ε)(e, y)) = H(x, ε)H(e, y) = F (x)G(y)

Conversely, suppose that X and Y are memoryless and (17) holds. Then for
(x, y), (u, v) ∈ S × T ,

H((x, y)(u, v)) = H(xu, yv) = F (xu)G(yv) = F (x)F (u)G(y)G(v)
= [F (x)G(y)][F (u)G(v)] = H(x, y)H(u, v)

so (X,Y ) is memoryless.

Note 43. If (S×T, ·) has distributional dimension 1, then (X,Y ) is memoryless
on (S×T, ·) if and only if X and Y are memoryless on (S, ·) and (T, ·), respec-
tively, and X and Y are independent. However, not every positive semigroup
has the given property.
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Theorem 23. (X,Y ) is exponential on (S×T, ·) if and only if X is exponential
on (S, ·), Y is exponential on (T, ·), and X, Y are independent.

Proof. Suppose that X is exponential on (S, ·), Y is exponential on (Y, ·), and
X and Y are independent. From Lemma 3, for every x ∈ S, y ∈ T , A ∈ B(S),
and B(T ), ((x, y), A×B) is an invariant pair for (X,Y ). It follows that for fixed
(x, y) ∈ S × T , the probability measures on S × T

C 7→ P[(X,Y ) ∈ (x, y)C]
C 7→ P[(X,Y ) � (x, y)]P((X,Y ) ∈ C]

agree on the measurable rectangles A×B, where A ∈ B(S), B ∈ B(T ). It follows
that these measures must agree on all of B(S × T ). Conversely, suppose that
(X,Y ) is exponential on (S×T, ·). For every x ∈ S and A ∈ B(S), ((x, ε), A×T )
is an invariant pair for (X,Y ). From Lemma 3, (x,A) is an invariant pair for
X, and therefore X is exponential on (S, ·). By a symmetric argument, Y is
exponential on (T, ·). But by Theorem 22, the upper probability function H of
(X,Y ) factors into the upper probability functions F of X and G of Y . Since
(X,Y ) is exponential, it has constant rate with respect to λ = µ ⊗ ν. Thus
(X,Y ) has a probability density function h of the form

h(x, y) = γH(x, y) = γF (x)G(y), (x, y) ∈ S × T

where γ > 0 is the rate constant. From the standard factorization theorem, it
follows that X and Y are independent.

Note 44. The results of this section extend in an obvious way to the direct
product of a finite number of positive semigroups ((S1, ·), (S2, ·), . . . , (Sn, ·)).
If (Si, ·) is a discrete semigroup for i = 1, 2, . . ., then the results of this section
also extend in an obvious way to the semigroup

T = {(x1, x2, . . .) : xi ∈ Si and xi = ei for all but finitely many i}

Note 45. A generalized “exponential distribution” on a product space can
be defined by requiring certain invariant pairs. For example, in the positive
semigroup ([0, ∞)2, +), suppose that we require the following to be invariant
pairs for a random variable (X,Y ):

((x, x), C), ((x, 0), A× [0, ∞)), ((0, x), [0, ∞)×A))

for any x ∈ [0, ∞), C ∈ B([0, ∞)2) and A ∈ B([0, ∞)). Then (X,Y ) has a “bi-
variate exponential distribution” in the sense of Marshall and Olkin [19]. Note
that this is equivalent to requiring X and Y to have exponential distributions
individually, and for (X,Y ) to have the memoryless property at pairs of points
of the form (x, x) and (z, w):

P(X ≥ x+ z, Y ≥ x+ w) = P(X ≥ x, Y ≥ x)P(X ≥ z, Y ≥ w)
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6.6 Gamma distributions

As usual, we assume that (S, ·, λ) is a standard positive semigroup. Suppose that
X = (X1, X2, . . .) is an IID sequence in S, with a common eponential distribu-
tion with PDF f and UPF F . Let Y = (Y1, Y2, . . .) denote the corresponding
partial product sequence, so that Yn = X1X2 · · ·Xn.

Theorem 24. The distribution of (Y1, Y2, . . . , Yn) has probability density func-
tion hn given by

hn(y1, y2, . . . , yn) = αnF (yn), (y1, y2, . . . , yn) ∈ Dn

Proof. By Corollary 8,

hn(y1, y2, . . . , yn) = f(y1)f(y−1
1 y2) · · · f(y−1

n−1yn), (y1, y2, . . . , yn) ∈ Dn

But by the constant rate and memoryless properties,

hn(y1, y2, . . . , yn) = αnF (y1)F (y−1
1 y2) · · ·F (y−1

n−1yn) = αnF (yn)

It follows that the sequence of ladder variables associated with X and the
partial product sequence associated with X are equivalent (that is, the two
sequences have the same finite dimensional distributions).

Corollary 17. The partial product sequence Y is a homogeneous Markov chain
with transition probability density g given by

g(y, z) = f(y−1z) =
f(z)
F (y)

, y ∈ S, z ∈ I[y]

Corollary 18. Yn has the gamma distribution of order n. That is, Yn has
probability density function

f∗n = αnλn−1F

Corollary 19. The conditional distribution of (Y1, Y2, . . . , Yn) given Yn+1 = y
is uniform on Dn[y].

The condition in Corollary 19 characterizes the exponential distribution.

Theorem 25. Suppose that X and Y are independent, identically distributed
random variables taking values in S. If the conditional distribution of X given
XY = z is uniform on [e, z] for every z ∈ S then the common distribution is
exponential.

Proof. If A ⊆ S is measurable, then

P(X ∈ A) = E(P(X ∈ A|XY )) = E
(
λ(A ∩ [e,XY ]
λ[e,XY ]

)
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and therefore X is absolutely continuous with respect to λ. Let f denote a
density of X with respect to λ, so that f2 = f ∗ f is a density function of XY .
Then, with an appropriate choice of f ,

f(x)f(x−1z)
f2(z)

=
1

λ[e, z]
, x � z

for each x � e. Equivalently,

f(x)f(y) =
f2(xy)
λ[e, xy]

, x ∈ S, y ∈ S, xy � e

It now follows from the characterization in Proposition 58 that f is the density
of an exponential distribution.

The equivalence of the sequence of ladder variables and the sequence of
partial products also characterizes the exponential distribution.

Proposition 61. Suppose that X = (X1, X2, . . .) is an IID sequence taking
values in S. Let Y denote the sequence of ladder variables and Z the sequence
of partial products. If Y and Z are equivalent then the distribution of X is
exponential.

Proof. As usual, let f denote the probability density function of X and F the
upper probability function. Since Y1 = Z1 = X1, the equivalence of Y and Z
means that the two Markov chains have the same transition probability density.
Thus,

f(z)
F (y)

= f(y−1z), y ∈ S, z ∈ I[y]

Equivalently,
f(xu) = F (x)f(u), x, u ∈ S

Letting u = e we have f(x) = f(e)F (x), so the distribution has constant rate
α = f(e). But then we also have αF (xu) = F (x)αF (u), so F (xu) = F (x)F (u),
and hence the distribution is memoryless as well.

Proposition 62. Suppose that F is the upper probability function of a mem-
oryless distribution on S. Then (λnF ) ∗ F = λn+1F .

Proof. Let x ∈ S. From the memoryless property,

[(λnF ) ∗ F ](x) =
∫

[e,x]

λn(t)F (t)F (t−1x)dλ(x)

= F (x)
∫

[e,x]

λn(t)dλ(t) = F (x)λn+1(x)

85



6.7 Compound Poisson distributions

As usual, suppose that (S, ·, λ) is a standard positive semigroup. A random
variable X taking values in S has a compound Poisson distribution if

X = U1U2 · · ·UN

where (U1, U2, . . .) are independent, identically distributed random variables on
S and where N is independent of (U1, U2, . . .) and has a Poisson distribution.

Proposition 63. Suppose that (X1, X2, . . .) is a sequence of independent, iden-
tically distributed variables whose common distribution is compound Poisson.
Then for n ∈ N, the partial product Yn = X1X2 · · ·Xn is compound Poisson.

Proof. For each i ∈ {1, 2, . . . , n} we have

Xi =
Ni∏
j=1

Uij

where (Ui1, Ui2, . . .) are independent and identically distributed, and where Ni is
independent of (Ui1, Ui2, . . .) and has a Poisson distribution. Since (X1, X2, . . .)
are independent and identically distributed, we can take Uij to be IID over all
i, j ∈ N+ and we can take (N1, N2, . . .) IID with common parameter λ, and
independent of (Uij : i, j ∈ N+). Hence we have

Yn =
n∏
i=1

Ni∏
j=1

Uij

But this representation is clearly equivalent to Yn =
∏M
k=1 Vk where (V1, V2, . . .)

are IID (with the same distribution as the Uij), and where M =
∑n
i=1Ni. But

M has the Poisson distribution with parameter nλ. Hence Yn has a compound
Poisson distribution.

We will see that exponential distributions are compound Poisson in many
special cases. Whenever this is true, the corresponding gamma distributions are
also compound Poisson.

Problem 16. Find conditions under which an exponential distribution on a
positive semigroup is compound Poisson.

6.8 Quotient spaces

As usual, we start with a standard positive semigroup (S, ·, λ). Suppose that T
is a standard sub-semigroup of S and that X is a random variable taking values
in S with P(X ∈ T ) > 0.
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Proposition 64. If X has an exponential distribution on (S, ·) then the con-
ditional distribution of X given X ∈ T is exponential on (T, ·), and the upper
probability function of X given X ∈ T is the restriction to T of the upper
probability function of X:

P(X �T x | X ∈ T ) = P(X � x), x ∈ T

Proof. For A ∈ B(T ) and x ∈ T ,

P(X ∈ xA | X ∈ T ) =
P(X ∈ xA)
P(X ∈ T )

=
P(X � x)P(X ∈ A)

P(X ∈ T )
= P(X � x)P(X ∈ A | X ∈ T )

In particular, letting A = T , we have P(X �T x | X ∈ T ) = P(X � x) and
therefore

P(X ∈ xA | X ∈ T ) = P(X �T x | X ∈ T )P(X ∈ A | X ∈ T )

We will generalize and extend this basic result. Consider the setting of
Section 3.8 and suppose that X is a random variable taking values in S. We
impose Assumption 1, so that X can be decomposed uniquely as X = YTZT
where Y = ϕT (X) takes values in T , and ZT = ψT (X) takes values in S/T .
Our goal is the study of the random variables YT and ZT . When T = St for
t ∈ S − {e}, we simplify the notation to Yt and Zt. Note that Yt = tNt where
Nt takes values in N. The following theorem is our first main result.

Theorem 26. Suppose that X has an exponential distribution on S. Then

1. YT has an exponential distribution on T .

2. The upper probability function of YT is the restriction to T of the upper
probability function of X.

3. YT and ZT are independent.

Proof. Let y ∈ T , A ∈ B(T ), and B ∈ B(S/T ). Then by the uniqueness of the
factorization and since X has an exponential distribution,

P(YT ∈ yA,ZT ∈ B) = P(X ∈ yAB) = P(X � y)P(X ∈ AB)
= P(X � y)P(YT ∈ A,ZT ∈ B). (18)

Substituting A = T and B = S/T in (18) gives

P(YT �T y) = P(X � y)
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so the upper probability function of Y is the restriction to T of the upper
probability function of X. Returning to (18) with general A and B = S/T we
have

P(YT ∈ yA) = P(YT �T y)P(YT ∈ A)

so YT has an exponential distribution on T . Finally, returning to (18) with
A = T and general B we have

P(YT �T y, ZT ∈ B) = P(YT �T y)P(ZT ∈ B)

so ZT and tail events of YT are independent. To get full independence, recall
that X has constant rate α with respect to λ, so X has density f with respect
to λ given by f(x) = αP(X � x) for x ∈ S. Similarly, YT has constant rate with
respect to µ on T . Thus the function g on S×S/T given by g(y, z) = f(yz) is a
density function of (YT , ZT ) with respect to µ⊗ν. By the memoryless property,

g(y, z) = f(yz) = αP(X � yz) = αP(X � y)P(X � z), y ∈ S, z ∈ S/T

and so by the standard factorization theorem, YT and ZT are independent.

Example 13. Consider the direct product of positive semigroups (S1, ·) and
(S2, ·) with the sub-semigroup and quotient space discussed previously. In this
case, Theorem 26 gives another proof of the characterization of exponential
distributions: (X1, X2) is exponential on S1×S2 if and only if X1 is exponential
on S1, X2 is exponential on S2, and X1, X2 are independent.

Proposition 65. Suppose that X is a random variable taking values in S.

1. If P(X ∈ T ) > 0 then the conditional distribution of X given X ∈ T is
the same as the distribution of YT if and only if YT and {ZT = e} are
independent.

2. If P(X ∈ S/T ) > 0 then the conditional distribution of X given X ∈ S/T
is the same as the distribution of ZT if and only if ZT and {YT = e} are
independent.

Proof. Suppose that A ∈ B(T ). Then {X ∈ A} = {YT ∈ A,ZT = e} and in
particular, {X ∈ T} = {ZT = e}. Thus,

P(X ∈ A|X ∈ T ) = P(YT ∈ A|ZT = e).

The proof of the second result is analogous.

Corollary 20. Suppose that X has an exponential distribution on S.

1. If P(X ∈ T ) > 0 then the conditional distribution of X given X ∈ T is
the same as the distribution of YT , and this distribution is exponential on
T .

2. If P(X ∈ S/T ) > 0 then the conditional distribution of X given X ∈ S/T
is the same as the distribution of ZT .
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Corollary 21. Suppose that X has an exponential distribution on S and t ∈
S − {e}. Then Nt has a geometric distribution on N with parameter pt =
1− P (X � t):

P(Nt = n) = pt(1− pt)n, n ∈ N.

Proof. By Theorem 26, Yt has an exponential distribution on St and therefore
Nt has a geometric distribution on N, since (St, ·) and (N, +) are isomorphic.
Next, Nt ≥ 1 if and only if Yt � t if and only if X � t. Thus, the rate (or success)
parameter of the geometric distribution is pt = 1−P(Nt ≥ 1) = 1−P(X � t).

The following theorem is our second main result, and gives a partial converse
to Theorem 26.

Theorem 27. Suppose X is a random variable taking values in S and that
for each t ∈ S − {e}, Yt and Zt are independent, and Yt has an exponential
distribution on St. Then X has an exponentially distribution on S.

Proof. Let px denote the parameter of the geometric distribution of Nx, so that

P(Nx = n) = px(1− px)n, n ∈ N.

Let x ∈ S and let A ∈ B(S). Because of the basic assumptions, we have
A = ∪∞n=0x

nBn where Bn ⊆ S/Sx for each n; the collection {xnBn : n ∈ N} is
disjoint. Similarly, xA = ∪∞n=0x

n+1Bn and the collection {xn+1Bn : n ∈ N} is
disjoint. From the hypotheses,

P(X ∈ xA) =
∞∑
n=0

P(X ∈ xn+1Bn) =
∞∑
n=0

P(Nx = n+ 1, Zx ∈ Bn)

=
∞∑
n=0

px(1− px)n+1P(Zx ∈ Bn).

But also 1− px = P(Nx ≥ 1) = P(Yx � x) = P(X � x) so

P(X � x)P(X ∈ A) = (1− px)
∞∑
n=0

P(X ∈ xnBn)

= (1− px)
∞∑
n=0

P(Nx = n,Zx ∈ Bn)

= (1− px)
∞∑
n=0

px(1− px)nP(Zx ∈ Bn).

If follows that P(X ∈ xA) = P(X � x)P(X ∈ A) and hence X has an exponen-
tial distribution on S.
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Part III

Examples and Applications

7 The positive semigroup ([0, ∞), +)

The pair ([0, ∞),+) with the ordinary topology is a positive semigroup; 0 is
the identity element. The corresponding partial order is the ordinary order
≤. Lebesgue measure λ is the only invariant measure, up to multiplication by
positive constants. The cumulative function of order n ∈ N associated with
Lebesgue measure λ is

λn(x) =
xn

n!
, x ∈ [0,∞)

Hence the generating function associated with (λn : n ∈ N+) is given by

Λ(x, t) =
∞∑
n=0

xn

n!
tn = etx

This semigroup has dimension 1 in every sense.

7.1 Exponential distributions

A distribution is memoryless if and only if it has constant rate with respect to
Lebesgue measure if and only if it is exponential. The exponential distribution
with constant rate α > 0 has upper probability function F (x) = e−αx and
probability density function f(x) = αe−αx.

Let X have the exponential distribution on ([0,∞),+) with rate parameter
α > 0 and upper probability function F , as given above. If Y is a random
variable taking values in [0,∞) then from our general discussion of entropy in
Section 4.9,

H(Y ) ≤ − ln(α)− E[ln(F (Y ))] = − ln(α)− αE(Y )

It follows that X maximizes entropy over all random variables with E(Y ) =
E(X) = 1/α; the maximum entropy is

H(X) = 1− ln(α)

7.2 Gamma distributions and the Point Process

Suppose that X = (X1, X2, . . .) is a sequence of independent variables, each
having the exponential distribution with rate α. Let Y = (Y1, Y2, . . .) denote
the partial sum process, or equivalently, the sequence of ladder variables. The
distribution of (Y1, Y2, . . . , Yn) has density

hn(y1, y2, . . . , yn) = αne−yn , 0 ≤ y1 ≤ y2 ≤ · · · ≤ yn
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The transition density of Y is

g(y, z) = αe−(y−z), 0 ≤ y ≤ z

Finally, Yn has the gamma distribution with rate constant α and order n, with
probability density function

fn(x) = αnλn−1(x)F (x) = αn
xn−1

(n− 1)!
e−αx, x ∈ [0,∞)

Of course, this is the standard gamma distribution.
The counting process {Nx : x ∈ [0,∞)}, of course is the standard Poisson

process. To check our results, we will compute the renewal function via the
formula derived in Section 5.11:

m(x) = E(Nx) = E[Λ(X,α), X ≤ x] = E(eαX , X ≤ x)

=
∫ x

0

eαtαe−αtdt = αx, x ∈ [0,∞)

We also check the thinning result from Section 5.11: The probability density
function of YN , the first accepted point is

g(x) = rαΛ[x, (1− r)α]F (x) = rαe(1−r)αe−αx = rαe−rαx, x ∈ [0,∞)

so YN has the exponential distribution with parameter rα.

7.3 Sub-semigroups and quotient spaces

For t ∈ (0,∞), the sub-semigroup generated by t is {nt : n ∈ N} and the corre-
sponding quotient space is [0, t). The assumptions in Section 3.8 are satisfied;
thus, x ∈ [0,∞) can be written uniquely as

x = tnt(x) + zt(x).

where nt(x) = bx/tc ∈ N and zt(x) = x− tnt(x) = x mod t ∈ [0, t).
Suppose that X has the exponential distribution on [0,∞) with rate param-

eter α. From Theorem 26,

1. Nt and Zt are independent.

2. Nt has the geometric distribution on N with rate parameter pt = 1−e−αt.

3. The distribution of Zt is the same as the conditional distribution of X
given X < t and has density function s 7→ αe−αs/(1− e−αt) on [0, t).

In this standard setting, we can do better than the general converse stated
in Section 3.8. Suppose that X is a random variable taking values in [0,∞).
Galambos & Kotz [8] (see also [1]) show that if Nt has a geometric distribution
for all t > 0 then X has an exponential distribution. We now explore a con-
verse based on independence properties of Nt and Zt. Suppose that X has a
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continuous distribution with density function f and distribution function F . If
Zt and {Nt = 0} are independent for each t > 0 then we can assume (by an
appropriate choice of the density function) that

f(s) = F (t)
∞∑
n=0

f(nt+ s). (19)

for t ∈ (0,∞) and s ∈ [0, t). However, it is easy to see that if X has an
exponential distribution, then (19) holds for all t > 0 and s ≥ 0. Thus, our
converse is best stated as follows:

Theorem 28. Suppose that (19) holds for s = 0 and for s = t, for all t > 0.
Then X has an exponential distribution.

Proof. The hypotheses are that

f(0) = F (t)
∞∑
n=0

f(nt), t ∈ (0,∞) (20)

f(t) = F (t)
∞∑
n=0

f((n+ 1)t), t ∈ (0,∞) (21)

Thus from (21) we have

f(t) = F (t)
∞∑
n=1

f(nt) = F (t)

( ∞∑
n=0

f(nt)− f(0)

)
.

Applying (20) gives f(t) = f(0) − F (t)f(0) for t ∈ (0,∞). It follows that f
is differentiable on (0,∞) and f ′(t) = −f(0)f(t) for s ∈ (0,∞). Therefore
f(t) = αe−αt for t ∈ (0,∞), where α = f(0), and hence X has an exponential
distribution on [0,∞).

Note 46. The quotient space here can also be viewed as a lexicographic product.
That is, ([0,∞),≤) is isomorphic to the lexicographic product of (tN,≤) with
([0, t),≤).

7.4 Compound Poisson distributions

Suppose that X has the exponential distribution on ([0,∞),+) with rate pa-
rameter α as above. Then it is well known that X has a compound Poisson
distribution.

8 The positive semigroup (N, +)

The pair (N,+) (with the discrete topology, of course) is a positive semigroup; 0
is the identity element. The corresponding partial order is the ordinary order ≤.
Since the space is discrete, counting measure # is the only invariant measure,
up to multiplication by positive constants.
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Proposition 66. The cumulative function of order n ∈ N for counting measure
is given by

#n(x) =
(
n+ x

x

)
, x ∈N+

Proof. The expression is correct when n = 0. Assume that the expression is
correct for a given value of n. Then

#n+1(x) =
x∑
z=0

#n(z) =
x∑
z=0

(
n+ z

x

)
=
(
n+ 1 + x

x

)
by a well-known combinatorial identity.

The generating function associated with (#n : n ∈ N) is

Λ(x, t) =
∞∑
n=0

(
n+ x

x

)
tn =

1
(1− t)x+1

, |t| < 1, x ∈ N

This semigroup has dimension 1 in every sense.

8.1 Exponential distributions

A distribution is memoryless if and only if it has constant rate with respect to
# if and only if it is exponential. The exponential distribution on (N,+) with
constant rate p ∈ (0, 1) has upper probability function F (x) = (1 − p)x and
probability mass function f(x) = p(1 − p)x. Of course, this distribution is the
geometric distribution with success parameter p. This distribution governs the
number of failures before the first success in a sequence of Bernoulli trials with
success parameter p.

Suppose that X has the exponential distribution on (N,+) with rate pa-
rameter p ∈ (0, 1) and upper probability function F as given above. If Y is a
random variable taking values in N then from our general discursion of entropy
in Section 4.9

H(Y ) ≤ − ln(p)− E[ln(F (Y ))] = − ln(p)− E(Y ) ln(1− p)

It follows that X maximizes entropy over all random variables Y with E(Y ) =
E(X) = (1− p)/p. The maximum entropy is

H(X) = − ln(p)− (1− p) ln(1− p)/p

8.2 Gamma distributions and the point process

Suppose that X = (X1, X2, . . .) is a sequence of independent variables, each with
the exponential distribution on (N,+) that has constant rate p (that is, an IID
sequence of geometric variables). Let Y = (Y1, Y2, . . .) denote the corresponding
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sequence of ladder variables, or equivalently, the sequence of partial sums. Then
(Y1, Y2, . . . , Yn) has PDF

hn(y1, y2, . . . , yn) = pn(1− p)yn , (y1, y2, . . . , yn) ∈ Dn

The transition probability density of Y is

g(y, z) = p(1− p)z−y, y, z ∈ N, y ≤ z

Finally, Yn has density function

fn(x) = pn#n−1(x)F (x) = pn
(
n+ x− 1

x

)
(1− p)x, x ∈ N

which of course we recognize as the negative binomial distribution with param-
eters n and p. This distribution governs the number of failures before the nth
success in a sequence of Bernoulli trials with success parameter p.

Consider next the counting process (Nx, x ∈ N) associated with Y . The
upper probability function of Nx is

Gn(x) =
x∑
k=0

pn
(
n+ k − 1

k

)
(1− p)k, n ∈ N+

This does not seem to reduce to a simple closed-form expression, so let’s compare
our point process to one that’s more familiar. The variable Zn = Yn + n is the
trial number of the nth success, in the usual Bernoulli trials formulation; Zn has
the alternative negative binomial distribution. For the corresponding counting
process,

Mx = #{k ∈ N+ : Zk ≤ x}

is the number of successes in the first x trials, and of course has the binomial
distribution with parameters x and p. For our point process we have

Nx = #{k ∈ N+ : Yk ≤ x} = #{k ∈ N+ : Zk − k ≤ x}

The renewal function of our point process, on the other hand, is easy to compute:

m(x) = E(Nx) =
x∑
t=0

1
(1− p)t+1

p(1− p)t =
p

1− p
(x+ 1), x ∈ N

For the thinned point process, the probability density function of the first ac-
cepted point YN is

g(x) = rpΛ[x, (1− r)p]F (x) = rp
1

[1− (1− r)p]x+1
(1− p)x

=
rp

1− p+ rp

(
1− p

1− p+ rp

)x
, x ∈ N

so YN has the exponential distribution with constant rate rp/(1− p+ rp).
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8.3 Compound Poisson distributions

Suppose that X has the exponential distribution on (N,+) with rate parameter
p, as above. It is well known that X has a compound Poisson distribution.
Specifically, X can be decomposed as

X = U1 + U2 + · · ·+ UN

where (U1, U2, . . .) are independent and identically distributed on N+ with a
logarithmic distribution:

P(U = n) = − (1− p)n

n ln(p)
, n ∈ N+

and where N is independent of (U1, U2, . . .) and has a Poisson distribution with
parameter − ln(p). From the general theory, if Y has the corresponding gamma
distribution on (N,+) with parameter n, then Y also has a compound Poisson
distribution. Specifically,

Y = U1 + U2 + · · ·+ UN

where the structure is the same, except that N has the Poisson distribution
with parameter −n ln(p). We will also need the following related result:

Proposition 67. Suppose that Xn has the Poisson distribution with parameter
λn = (1 − p)n/n for n ∈ N+ where p ∈ (0, 1). Then Y =

∑∞
n=1 nXn has the

geometric distribution with rate parameter p.

Proof. The probability generating function of Xn is

E
(
tXn
)

= exp(λn(t− 1)) = exp
(

(1− p)n

n
(t− 1)

)
Hence the probability generating function of Y is

E
(
tY
)

=
∞∏
n=1

E
(
tnXn

)
=
∞∏
n=1

exp
(

(1− p)n

n
(tn − 1)

)

= exp

( ∞∑
n=1

(1− p)n

n
(tn − 1)

)
= exp[− ln(1− (1− p)t) + ln(p)]

=
p

1− (1− p)t
, |t| < 1

1− p

But this is the probability generating function of the geometric distribution with
rate parameter p.
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8.4 Sub-semigroups and quotient spaces

For t ∈ N+, the sub-semigroup generated by t is {nt : n ∈ N} and the corre-
sponding quotient space is {0, . . . t − 1}. The assumptions in Section 3.8 hold.
Thus, x ∈ N can be written uniquely as

x = tnt(x) + zt(x)

where nt(x) = bx/tc ∈ N and zt(x) = x− yt(x) = x mod t ∈ {0, 1, . . . t− 1}.
Suppose that X has the geometric distribution on N with rate parameter p.

From Theorem 26,

1. Nt and Zt are independent.

2. Nt has the geometric distribution on N with rate parameter 1− (1− p)t,
and this is also the conditional distribution of X/t given X ∈ Tt.

3. Zt has probability density function k 7→ p(1 − p)k/(1 − (1 − p)t) on
{0, . . . , t − 1}, and this is the conditional distribution of X given X ∈
{0, 1, . . . , t− 1}.

As before, we are interested in a converse that is stronger than the general
converse in Section 3.8. Thus, suppose that X is a random variable taking
values in N, with density function f and (lower) distribution function F . Then
the independence of Zt and {Nt = 0} is equivalent to

f(k) = F (t− 1)
∞∑
n=0

f(nt+ k) (22)

for all t ∈ N+ and all k ∈ {0, . . . , t − 1}. However, as in the continuous case,
it is easy to see that if X has a geometric distribution, then (22) holds for all
k ∈ N, not just k ∈ {0, 1, . . . , t− 1}.

Theorem 29. Suppose that (22) holds for k = 0 and for k = t, for all t ∈ N+.
Then X has a geometric distribution.

Proof. The hypotheses are

f(0) = F (t− 1)
∞∑
n=0

f(nt), t ∈ N+ (23)

f(t) = F (t− 1)
∞∑
n=0

f((n+ 1)t), t ∈ N+ (24)

From (23) and (24), it follows that

f(t) = f(0)[1− F (t− 1)], t ∈ N+

and therefore F (t) = 1 − (1 − p)t for t ∈ N where p = f(0). Thus, X has a
geometric distribution.
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However, there are non-geometrically distributed variables for which Nt and
Zt are independent. The following result is easy to verify.

Theorem 30. . Suppose that the support of X is {0, 1} or {0, 2} or {c} for
some c ∈ N. Then Nt and Zt are independent for all t ∈ N+.

The following theorem gives a partial converse:

Theorem 31. Suppose that X takes values in a proper subset of N and that
Zt and {Nt = 0} are independent for all t. Then the support of X is one of the
sets in Theorem 30.

Proof. As usual, let f denote the density function and F the distribution func-
tion of X.

First, we will use induction on a ∈ N to show that if X takes values in
{0, 1, . . . , a}, then the support of X is one of the sets in Theorem 30. If a = 0
or a = 1, the result is trivially true. Suppose that the statement is true for a
given a, and suppose that X takes values in {0, 1, . . . , a + 1}. With t = a + 1,
(22) becomes

f(k) =
a∑
j=0

f(j)
∞∑
n=0

f(n(a+ 1) + k), k ∈ {0, . . . , a} (25)

But
∑a
j=0 f(j) = 1− f(a+ 1). Hence (25) gives

f(0) = [1− f(a+ 1)][f(0) + f(a+ 1)], (k = 0) (26)
f(k) = [1− f(a+ 1)]f(k), k ∈ {1, . . . , a} (27)

Suppose that f(k) > 0 for some k ∈ {1, . . . , a}. Then from (27), f(a + 1) = 0.
Hence X takes values in {0, . . . , a}, so by the induction hypothesis, the support
set of X is {0, 1}, {0, 2}, or {c} for some c. Suppose that f(k) = 0 for all
k ∈ {1, . . . , a}. Thus, X takes values in {0, a + 1}. But then (22) with t = a
and k = 0 gives f(0) = f(0)f(0). If f(0) = 0 then the support of X is {a+ 1}.
If f(0) = 1 then the support of X is {0}.

To complete the proof, suppose that X takes values in a proper subset of
N, so that f(k) = 0 for some k ∈ N. Then F (t − 1) > 0 for t sufficiently large
and hence by (22), f(t + k) = 0 for t sufficiently large. Thus X takes values
in {0, 1, . . . , a} for some a, and hence the support of X is one of the sets in
Theorem 30.

Problem 17. If X has support N and if Zt and {Nt = 0} are independent for
each t ∈ N+, does X have a geometric distribution?

9 Positive semigroups isomorphic to [0,∞), +)

9.1 The positive semigroup

Now let I be an interval of the form [a, b) where −∞ < a < b ≤ ∞ or of the
form (a, b] where −∞ ≤ a < b < ∞; I has the relative topology. Let Φ be a
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homeomorphism from I onto [0, ∞). If we define the operator ∗ on I by

x ∗ y = Φ−1[Φ(x) + Φ(y)], x, y ∈ I

then (I, ∗) is a positive semigroup isomorphic to ([0, ∞), +) and Φ is an iso-
morphism. The partial order � induced by ∗ on I is the ordinary order ≤ if
I = [a, b) (Φ must be strictly increasing) and is the reverse of the ordinary order
if I = (a, b] (Φ must be strictly decreasing). If x, y ∈ I and x � y then

x∗−1 ∗ y = Φ−1[Φ(y)− Φ(x)]

The rule for exponentiation under ∗ is x∗c = Φ−1[cΦ(x)] for x ∈ I and c ≥ 0.
A left-invariant measure µ for (I, ∗) (unique up to multiplication by positive

constants is given by
µ(A) = λ[Φ(A)], A ∈ B(I)

where λ is Lebesgue measure on [0,∞). If Φ is a smooth function with derivative
φ then

dµ(x) = |φ(x)|dλ(x)

9.2 Exponential distributions

Because the semigroups are isomorphic, a random variable X taking values in
I is exponential for the positive semigroup (I, ∗) if and only if Φ(X) is expo-
nential for the standard, positive semigroup ([0,∞),+) (that is, Φ(X) has an
exponential distribution in the ordinary sense). In particular, a distribution will
be exponential relative to (I, ∗) if and only if it is memoryless, if and only if it
has constant rate with respect to µ. It therefore follows that the exponential
distribution relative to (I, ∗) which has constant rate α > 0 with respect to µ
is the distribution with upper probability function

F (x) = exp[−αΦ(x)], x ∈ I

The probability density function of X relative to the left-invariant measure µ,
is of course,

f(x) = α exp[−αΦ(x)], x ∈ I

by the constant rate property. The probability density function of X relative
to Lebesgue measure λ is

g(x) = α exp[−αΦ(x)]|φ(x)|, x ∈ I

In particular, note that α|φ| is the rate function of X in the ordinary sense.
Suppose that X is a random variable taking values in I with a continuous

distribution (with support I of course). Then X is exponential with respect to
some semigroup (I, ∗) isomorphic to ([0, ∞), +). Specifically, if I = [a, b), let

Φ(x) = − ln[P(X ≥ x)], x ∈ [a, b)
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and if I = (a, b], let

Φ(x) = − ln[P(X ≤ x)], x ∈ (a, b]

This is essentially a restatement of the fact that Y = Φ(X) has a standard
exponential distribution. However the semigroup formulation provides some
additional insights.

Let X have the exponential distribution on (I, ∗) with rate parameter α and
upper probability function F given above. If Y is a random variable taking
values in I, then from our general discussion of entropy in Section 4.9,

H(Y ) ≤ − ln(α)− E[ln(F (Y ))] = − ln(α) + αE[Φ(Y )]

it follows that X maximizes entropy over all random variables with E[Φ(Y )] =
E[Φ(X)] = 1/α; the maximum entropy is 1− ln(α).

9.3 Gamma distributions

Similarly, a random variable Yn taking values in I has the gamma distribution
on (I, ∗) with rate α and order n if and only if Φ(Yn) has the gamma distribution
on [0,∞),+) with rate α and order n (that is, a gamma distribution in the usual
sense). It follows from the usual change of variables formula that the density of
Yn with respect to Lebesgue measure λ is

gn(x) = αn
Φn−1(x)
(n− 1)!

exp[−αΦ(x)]φ(x), x ∈ I

Hence, the density function of Yn with respect to the left-invariant measure µ
is

fn(x) = αn
Φn−1(x)
(n− 1)!

exp[−αΦ(x)], x ∈ I

Therefore, the cumulative function of order n ∈ N for µ is

µn(x) =
Φn(x)
n!

, x ∈ I

Of course, we could also derive this last result directly.
Our characterization of exponential distributions based on IID variables goes

like this: if X and Y are independent and identically distributed on I, then the
common distribution is exponential if and only if the conditional distribution
of X given X ∗ Y = z is uniform on [a, z] if I = [a, b) or uniform on [z, b] if
I = (a, b].

In the remainder of this chapter we explore a number of specific examples.

9.4 The positive semigroup ((0, 1], ·)
Let I = (0, 1] and let Φ(x) = − ln(x). Then Φ is a homeomorphism from I onto
[0,∞) and the associated operation ∗ is ordinary multiplication. The associated
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partial order is the reverse of the ordinary order. The invariant measure µ is
given by dµ(x) = (1/x)dλ(x). The exponential distribution with constant rate
α > 0 has density

f(x) = αxα, x ∈ (0, 1]

with respect to µ and density

g(x) = αxα−1, x ∈ (0, 1]

with respect to Lebesgue measure λ Note that this is the beta distribution with
parameters α and 1 and the special case α = 1 gives the uniform distribution
on (0, 1].

Suppose that X has the exponential distribution on ((0, 1], ·) with rate pa-
rameter α as given above. From our general discussion, X maximizes entropy
over all random variables Y taking values in (0, 1] with E[− ln(Y )] = 1/α.

The gamma distribution on ((0, 1], ·) with rate parameter α and order n has
density function

fn(x) = αn(−1)n−1 lnn−1(x)
(n− 1)!

xα, x ∈ (0, 1]

with respect to µ, and density

gn(x) = αn(−1)n−1 lnn−1(x)
(n− 1)!

xα−1, x ∈ (0, 1]

with respect to Lebesgue measure λ. The cumulative function of order n ∈ N
for µ is given by

µn(x) = (−1)n
lnn(x)
n!

, x ∈ (0, 1]

9.5 The positive semigroup ([1,∞), ·)
Let I = [1,∞) and let Φ(x) = ln(x). Then Φ is a homeomorphism from I
onto [0,∞) and the associated operation ∗ is ordinary multiplication. The
associated partial order is the ordinary order ≤. The invariant measure µ is
given by dµ(x) = (1/x)dλ(x), where λ is Lebesgue measure. The exponential
distribution with constant rate α > 0 has upper probability function

F (x) = x−α, x ∈ [1,∞)

The distribution has probability density function

f(x) = αx−α, x ∈ [1,∞)

with respect to µ and density

g(x) = αx−(α+1), x ∈ [1,∞)
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with respect to Lebesgue measure λ. This is the Pareto distribution with shape
parameter α.

Suppose that X has the exponential distribution on ([1,∞), ·) with rate
parameter α as given above. From our general discussion, X maximizes entropy
over all random variables Y taking values in [1,∞) with E[ln(Y )] = 1/α.

The gamma distribution on ([1,∞), ·) with rate parameter α and order n
has density function

fn(x) = αn
lnn−1(x)
(n− 1)!

xα, x ∈ [1,∞)

with respect to µ, and density

gn(x) = αn
lnn−1(x)
(n− 1)!

xα−1, x ∈ [1,∞)

with respect to Lebesgue measure λ. The cumulative function of order n ∈ N
for µ is

µn(x) =
lnn(x)
n!

, x ∈ [1,∞)

9.6 An application to Brownian functionals

Let I = [0, 1/2) and let Φ(x) = x/(1− 2x). Then Φ is a homeomorphism from
I onto [0,∞) and the corresponding semigroup operation ∗ is given by

x ∗ y =
x+ y − 4xy

1− 4xy
, x, y ∈ [0, 1/2)

The invariant measure µ is given by

dµ(x) =
1

(1− 2x)2
dλ(x)

where λ is Lebesgue measure, and the associated partial order is the ordinary
order ≤. The positive semigroup ([0, 1/2), ∗) occurs in the study of generalized
Brownian functionals [16]

The exponential distribution on ([0, 1/2), ∗) with rate α has upper probabil-
ity function

F (x) = exp
(
−α x

1− 2x

)
, x ∈ [0, 1/2)

Suppose that X has the exponential distribution on ([0, 1/2), ∗) with rate pa-
rameter α as given above. From our general discussion, X maximizes entropy
over all random variables Y taking values in [0, 1/2) with E[Y/(1− 2Y )] = 1/α.

The gamma distribution on ([0, 1/2), ∗) with rate α and order n has density
function

fn(x) =
αn

(n− 1)!

(
x

1− 2x

)n−1

exp
(
−α x

1− 2x

)
, x ∈ [0, 1/2)
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with respect to µ and has density

gn(x) =
αn

(n− 1)!
xn−1

(1− 2x)n+1
exp

(
−α x

1− 2x

)
, x ∈ [0, 1/2)

with respect to Lebesgue measure λ. The cumulative function of order n ∈ N
associated with µ is

µn(x) =
1
n!

(
x

1− 2x

)n
, x ∈ [0, 1/2)

9.7 Applications to reliability

The positive semigroup formulation provides a way to measure the relative aging
of one lifetime distribution relative to another. In this section, we fix an interval
I = [a, b) with −∞ < a < b ≤ ∞, and we consider only random variables with
continuous distributions on I. If X is such a random variable then the upper
probability function of X has the form

F (x) = P (X ≥ x) = e−R(x), x ∈ I

where R is a homeomorphism from I onto [0,∞). If X is interpreted as a random
lifetime, then F is called the reliability function and R is called the cumulative
failure rate function. (For a basic introduction to reliability, see [12].) As noted
in the last section, if we define

x ∗ y = R−1[R(x) +R(y)], x, y ∈ I

then (I, ∗) is a standard, positive semigroup isomorphic to ([0,∞),+), and X
has an exponential distribution on (I, ∗).

Suppose now that X and Y are random variables on I with cumulative
failure rate functions R and S, and semigroup operations • and ∗, respectively.
A natural way to study the relative aging of X relative to Y is to study the
aging of X on (I, ∗). Note that the cumulative failure rate function and the
reliability function of X are still R and e−R, respectively, when considered on
(I, ∗), because the associated partial order is just the ordinary order ≤. Thus,
these functions are invariants.

First we say that X is exponential relative to Y if X has an exponential
distribution on (I, ∗).

Theorem 32. X is exponential relative to Y if and only if • = ∗. The expo-
nential relation defines an equivalence relation on the collection of continuous
distributions on I.

Proof. Note that X is exponential relative to Y if and only if S = cR for some
positive constant c.
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Next we consider the increasing failure rate property, the strongest of the
basic aging properties. If R and S have positive derivatives on I, then the
density function of X relative to the invariant measure on (I, ∗) is

f(x) = e−R(x)R
′(x)

S′(x)
, x ∈ I

Thus, the failure rate function of X on (I, ∗) is obtained by dividing the density
function by the reliability function, and hence is R′/S′.

Lemma 4. Show that R′/S′ is increasing on I if and only if R is convex on
(I, ∗):

R(x ∗ h)−R(x) ≤ R(y ∗ h)−R(y), for every x, y, h ∈ I with x ≤ y

Thus, we will use the convexity condition for our definitions, since it is more
general by not requiring that R and S be differentiable. Specifically, we say
that X has increasing failure rate (IFR) relative to Y if R is convex on (I, ∗),
and X has decreasing failure rate (DFR) relative to Y if R is concave on (I, ∗).

Theorem 33. X has increasing failure rate relative to Y if and only if Y has
decreasing failure rate relative to X if and only if

(x ∗ h) • y ≤ (y ∗ h) • x for all x, y, h ∈ I with x ≤ y

The IFR relation defines a partial order on the collection of continuous distri-
butions on I, modulo the exponential equivalence in Theorem 32.

Proof. Note that X has increasing failure rate relative to Y if and only if the
distribution on [0,∞) with cumulative rate function R ◦ S−1 is IFR in the
ordinary sense.

Next, the failure rate average over [a, x) is the cumulative failure rate over
[a, x) divided by the length of this interval, as measured by the invariant mea-
sure on (I, ∗). This length is simply S(x), and hence the average failure rate
function of X on (I, ∗) is R/S. We say that X has increasing failure rate aver-
age (IFRA) relative to Y if R/S is increasing on I and decreasing failure rate
average (DFRA) relative to Y if R/S is decreasing on I.

Theorem 34. X has increasing failure rate average relative to Y if and only if
Y has decreasing failure rate average relative to X if and only if

x•α ≤ x∗α for all x ∈ I and α ≥ 1

The IFRA relation defines a partial order on the collection of continuous distri-
butions on I, modulo the exponential equivalence in Theorem 32.

Proof. Note that X has increasing failure rate relative to Y if and only if the
distribution on [0,∞) with cumulative rate function R ◦ S−1 is IFRA in the
ordinary sense.
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Next, X is new better than used (NBU) relative to Y if the conditional
reliability function of x∗(−1) ∗ X given X ≥ x is dominated by the reliability
function of X, equivalently

P(X ≥ x ∗ y) ≤ P(X ≥ x)P(X ≥ y), x, y ∈ [a, b) (28)

Similarly, X is new worse than used (NWU) relative to Y if the inequality in
(28) is reversed.

Theorem 35. X is new better than used relative to Y is and only if Y is new
worst than used relative to X if and only if

x • y ≤ x ∗ y for x, y ∈ I

The NBU relation defines a partial order on the collection of continuous distri-
butions on I, modulo the exponential equivalence in Theorem 32.

Proof. X is new better than used relative to Y if and only if the distribution on
[0,∞) with cumulative rate function R ◦S−1 is NBU in the ordinary sense.

Theorem 36. The relative aging properties for distributions on [a, b) are related
as follows:

IFR⇒ IFRA⇒ NBU

Equivalently, the NBU partial order extends the IFRA partial order, which in
turn extends the IFR partial order.

Proof. It’s well known that the standard aging properties on [0,∞) are related
as stated.

9.8 More examples

We consider several two-parameter families of distributions. In each case, α is
the exponential parameter while β is an “aging parameter” that determines the
relative aging.

Example 14. Let I = [0,∞) and for fixed β > 0, let R be given by R(x) = xβ .
The corresponding semigroup operator ∗ is given by

x ∗ y = (xβ + yβ)1/β , x, y ∈ [0,∞)

The exponential distribution on (I, ∗) with rate α > 0 has reliability function

F (x) = exp(−αxβ), x ∈ [0,∞)

Of course, this is a Weibull distribution with shape parameter β. In the usual
formulation, the rate parameter α is written as α = R(c) = cβ where c > 0 is
the scale parameter.

In the ordinary sense, the Weibull distribution has decreasing failure rate if
0 < β < 1, is exponential if β = 1, and has increasing failure rate if β > 1. A
stronger statement, from Theorem 33 is that the Weibull distribution with shape
parameter β1 is IFR relative to the Weibull distribution with shape parameter
β2 if and only if β1 ≤ β2.

104



Example 15. Let I = [0,∞) and for fixed β > 0, let R be given by R(x) =
eβx − 1. The corresponding semigroup operator ∗ is given by

x ∗ y =
1
β

ln(eβx + eβy − 1), x, y ∈ [0,∞)

The exponential distribution on (I, ∗) with rate α > 0 has reliability function

F (x) = exp[−α(eβx − 1)], x ∈ [0,∞)

This is the modified extreme value distribution with parameters α and β.
In the ordinary sense, these distributions are IFR for all parameter values.

On the other hand, a distribution with parameter β1 is IFR with respect to a
distribution with parameter β2 if and only if β1 ≤ β2.

Example 16. Let I = [0,∞) and for fixed β > 0, let R be given by R(x) =
ln(x+ β)− ln(β). The corresponding semigroup operator ∗ is given by

x ∗ y = x+ y +
xy

β
, x, y ∈ [0,∞)

The exponential distribution on (I, ∗) with rate α > 0 has reliability function

F (x) =
(

β

x+ β

)α
, x ∈ [0,∞)

This is a two-parameter family of Pareto distribution.
In the ordinary sense, these distributions are DFR for all parameter values.

On the other hand, a distribution with parameter β1 is DFR with respect to a
distribution with parameter β2 if and only if β1 ≤ β2.

Example 17. Let I = [0, 1) and for fixed β > 0, let R be given by R(x) =
− ln(1− x−β). The corresponding semigroup operator ∗ is given by

x ∗ y = (xβ + yβ − xβyβ)1/β , x, y ∈ [0, 1)

The exponential distribution on (I, ∗) with rate α > 0 has reliability function

F (x) =
(
1− xβ

)α
, x ∈ [0, 1)

Note that if α = 1 or β = 1, the distribution is beta; if α = β = 1, the
distribution is uniform.

In the ordinary sense, these distributions are IFR if β ≥ 1, but are neither
NBU nor NWU if 0 < β < 1. On the other hand, a distribution with parameter
β1 is DFR with respect to a distribution with parameter β2 if and only if β1 ≤ β2.
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9.9 Strong aging properties

Consider an “aging property”, and the corresponding improvement property,
for continuous distributions in the standard semigroup ([0,∞),+). We are in-
terested in characterizing those aging properties that can be extended to rela-
tive aging properties for continuous distributions on an arbitrary interval [a, b).
Moreover, we want the relative aging property to define a partial order on the
distributions, modulo the exponential equivalence in Theorem 32, just as the
IFR, IFRA, and NBU properties do. Such a characterization would seem to
describe “strong” aging properties.

Definition 41. A strong aging property satisfies the following conditions:

1. A distribution both ages and improves if and only if the distribution is
exponential.

2. The distribution with cumulative rate R ages if and only if the distribution
with cumulative rate R−1 improves.

3. If the distributions with cumulative rates R and S age, then the distribu-
tion with cumulative rate R ◦ S ages.

4. If a distribution is IFR then the distribution ages.

The last condition is to ensure that the property does capture some idea
of aging, and to incorporate the fact that the IFR condition is presumably the
strongest aging property.

Suppose now that X and Y are random variables with continuous distribu-
tions on [a, b) having cumulative rate functions R and S, respectively. We say
that X ages (improves) relative to Y if the distribution on [0,∞) with cumula-
tive rate function R ◦ S−1 ages (improves).

Theorem 37. Consider a strong aging property. The corresponding aging re-
lation defines a partial order on the equivalence class of continuous distributions
on [a, b), modulo the exponential equivalence.

Proof. The proof is straightforward.

Theorem 38. The IFR, IFRA, and NBU properties are strong aging properties.

Proof. This follows from our previous theorems on IFR, IFRA, and NBU..

From our point of view, the conditions in Definition 41 are natural for a
strong aging property. Conditions 1 and 4 are often used in the literature to
justify aging properties, but Conditions 2 and 3 seem to have been overlooked,
even though they are essential for the partial order result in Theorem 37.

Not all of the common aging properties are strong. A random variable X
with a continuous distribution on [0,∞) is new better than used in expectation
(NBUE) if

E(X − t | X ≥ t) ≤ E(X), t ∈ [0,∞)
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and of course is new worse than used in expectation (NWUE) if the inequality
is reversed.

Proposition 68. NBUE is not a strong aging property.

Proof. Define R : [0,∞)→ [0,∞) by

R(t) =


at, 0 ≤ t < 1
a+ b(t− 1), 1 ≤ t < 2
a+ b(t− 1) + c(t− 2), t ≥ 2

Positive constants a, b, and c can be chosen such that the distribution with
cumulative rate function R is NBUE, but the distribution with cumulative rate
function R−1 is not NWUE.

9.10 Minimums of exponential distributions

If X and Y are independent variables which are exponential in ([0, ∞), ∗) and
have failure rates α and β with respect to λ, then X ∧ Y is exponential in
([0, ∞), ∗) and has failure rate α+β. If α = Φ(a), β = Φ(b) then α+β = Φ(a∗b).

Proof. The variables X and Y have upper probability functions F and G given
by

F (x) = exp[−αΦ(x)] G(x) = exp[−βΦ(x)]

Hence X ∧ Y has upper probability function FG which can be written

F (x)G(x) = exp[−(α+ β)Φ(x)]

and hence X ∧ Y is exponential in ([0, ∞), ∗) with failure rate α+ β. The last
statement follows from the definition of ∗.

10 The positive semigroup (N+, ·)
10.1 Definitions

The pair (N+, ·) where · is ordinary multiplication is a discrete positive semi-
group. The corresponding partial order is the division partial order

x � y ⇔ x divides y

and the identity element is 1. Of course, we use counting measure as the invari-
ant measure.

Let I denote the set of prime numbers; these are the irreducible elements of
(N+, ·). Each x ∈ N+ has the canonical prime factorization

x =
∏
i∈I

ini
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where ni ∈ N for each i ∈ I and ni = 0 for all but finitely many i. Thus, (N+ ·)
is isomorphic to the semigroup (M,+) where

M = {n = (ni : i ∈ I) : ni ∈ N for i ∈ I, ni = 0 eventually in i} (29)

and where + is componentwise addition. An isomorphism is

(ni : i ∈ I) 7→
∏
i∈I

ini

Proposition 69. dim(N+, ·) is ∞.

Proof. By Proposition 7, dim(N+, ·) ≤ #(I) = ∞. Suppose that C ⊂ N+ is
finite. Let D denote the set of all primes in the prime factorings of the elements
of C. Of course, D is also finite. Define ϕ(i) = 0 for i ∈ D and ϕ(i) = 1 for
i ∈ I −D. Extend ϕ to N+ by

ϕ(i1i2 · · · in) = ϕ(i1) + ϕ(i2) + · · ·+ ϕ(in), ii, i2, . . . in ∈ I

This definition is consistent, since the factoring of x over I is unique, except for
the ordering of the factors. Thus ϕ is a homomorphism from (N+, ·) into (R,+),
ϕ(x) = 0 for x ∈ C, but ϕ is not identically 0.

On the other hand, since (N+,�) is an upper semilattice, the distributional
dimension is 1. That is, a distribtion on N+ is uniquely determined by its upper
probability function.

For J ⊂ I, let NJ denote the sub-semigroup generated by J . The elements of
NJ are positive integers whose prime factors are in J . Then (N, ·) is isomorphic
to the direct product of (NJ , ·) and (NI−J , ·).

Recall that the cumulative function of order k at x ∈ N+ gives the number
of k + 1 factorings of x. This is an important function in number theory, so
we deviate from our standard notation and denote it by τk instead of #k. In
particular, τ1(x) = #{u ∈ N+ : u � x} is the number of divisors of x. In terms
of the canonical factorization,

τk

(∏
i∈I

ini

)
=
∏
i∈I

(
k + ni
k

)
, (ni : i ∈ I) ∈M

It’s well known [23] that τ1 is multiplicative, that is τ1(xy) = τ1(x)τ1(y) if x and
y are relatively prime . It follows that τk is multiplicative for each k ∈ N.

Problem 18. Find a closed form expression for the generating function

Λ(x, t) =
∞∑
n=0

τn(x)tn

If X is a random variable taking values in N+ then from Theorem 5 we have
the interesting result

∞∑
x=1

τk(x)P (X � x) = E[τk+1(X)]
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10.2 Exponential distributions

We will first characterize the exponential distributions in terms of the prime
factorization.

Theorem 39. A distribution is exponential on (N+, ·) if and only if it has a
upper probability function of the form

F

(∏
i∈I

ini

)
=
∏
i∈I

(1− pi)ni , (ni : i ∈ I) ∈M

where pi ∈ (0, 1) for each i ∈ I and
∏
i∈I pi > 0. This product is the rate

constant.

Proof. The memoryless property for a upper probability function F is

F (xy) = F (x)F (y) for x, y ∈ N+

In the language of number theory, F is completely multiplicative. It follows that

F

(∏
i∈I

ini

)
=
∏
i∈I

[F (i)]ni , n ∈M

Let F (i) = 1− pi where pi ∈ (0, 1) for each i ∈ I. Then

F

(∏
i∈I

ini

)
=
∏
i∈I

(1− pi)ni , n ∈M

Next note that∑
x∈N+

F (x) =
∑

n∈M
F

(∏
i∈I

ini

)
=
∑

n∈M

∏
i∈I

(1− pi)ni

=
∏
i∈I

∞∑
n=0

(1− pi)n =
∏
i∈I

1
pi

Thus, the result follows from Theorem 26. The probability density function of
this distribution is

f

(∏
i∈I

ini

)
=
∏
i∈I

pi(1− pi)ni , (ni : i ∈ I) ∈M

The exponential distribution given in Theorem 39 corresponds to indepen-
dent, geometric distributions on the prime exponents. That is, if X is a random
variable with this distribution then

X =
∏
i∈I

iNi (30)
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where (Ni : i ∈ I) are independent random variables and Ni has the geometric
distribution with rate parameter pi for each i ∈ I. This characterization of
the exponential distributions could also be obtained from Section 6.5 and the
identification of (N+, ·) with the semigroup (M,+) in (29).

The strong exponential property has the following interpretation: The condi-
tional distribution of X/x given that x divides X is the same as the distribution
of X. Thus, knowledge of one divisor of X does not help in finding other divisors
of X. This property may have some practical applications.

Note 47. That X is a well defined random variable also follows from the Borel-
Cantelli lemma. With probability 1, Ni = 0 for all but finitely many i ∈ I.

We will now give a different characterization of the exponential distributions.
First recall that a Dirichlet series is a series of the form

A(s) =
∞∑
x=1

a(x)
xs

where a : N+ → [0,∞) is an arithmetic function. If the Dirichlet series converges
for some s > 0, then the series converges (absolutely) for s in an interval of the
form (s0,∞). If the coefficient function a is completely multiplicative, then the
function A also has a product expansion:

A(s) =
∏
i∈I

1
1− a(i)i−s

, s > s0

There is a one-to-one correspondence between the coefficient function a and the
series function A. Given a, we compute A, of course, as the infinite series in the
definition. Conversely, given A defined on (s0,∞), we can recover the coefficient
function a (see [11]).

Given the coefficient function a (or equivalently the series function A), we can
define a one-parameter family of probability distributions on N+, parameterized
by s > s0. This family is called the Dirichlet family of probability distributions
corresponding to a. The probability density function of the distribution with
parameter s > s0 is proportional to a(x)/xs; of course the proportionality con-
stant must then be A(s). Thus, X has the Dirichlet distribution corresponding
to a with parameter s if

P(X = x) =
a(x)x−s

A(s)
, x ∈ N+

The most famous special case occurs when a(x) = 1 for all x ∈ N+ (note that
a is completely multiplicative); then the Dirichlet series gives the Riemann zeta
function:

ζ(s) =
∞∑
x=1

1
xs

=
∏
i∈I

1
1− i−s

, s > 1
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The corresponding one-parameter family of probability distribution on N+ is
the zeta family of distribution:

P(X = x) =
x−s

ζ(s)
, x ∈ N+

Theorem 40. A distribution on (N+, ·) is exponential if and only if it is a
member of a Dirichlet family of distributions with a strictly positive, completely
multiplicative coefficient function.

Proof. Suppose that a is strictly positive and completely multiplicative and that
X has the Dirichlet distribution corresponding to a with parameter s. Then

P(X � x) =
∑
y�x

a(y)y−s

A(s)
=
∞∑
z=1

a(xz)(xz)−s

A(s)

=
∞∑
z=1

a(x)a(z)x−sz−s

A(s)
=
a(x)x−s

A(s)

∞∑
z=1

a(z)z−s

=
a(x)x−s

A(s)
A(s) = a(x)x−s, x ∈ N+

Hence X has constant rate. Also, X is memoryless, since a is completely mul-
tiplicative:

P(X � xy) = a(xy)(xy)−s = a(x)a(y)x−sy−s = P(X � x)P(X � y)

Therefore X has an exponential distribution.
In a sense, the converse is trivially true. Suppose that X has an exponential

distribution with upper probability function F . For fixed t > 0, let a(x) =
xtF (x) for x ∈ N+, and let A(s) =

∑∞
x=1 a(x)x−s. Then a is completely

multiplicative and A is the corresponding series function. Moreover, t is in the
interval of convergence. The probability density function of X is

P(X = x) =
a(x)x−t

A(t)
, x ∈ N+

and so X has the Dirichlet distribution corresponding to a with parameter t.
Note that since a is completely multiplicative, all members of this Dirichlet
family are exponential, from the first part of the theorem.

Thus, a Dirichlet distribution with completely multiplicative coefficient func-
tion (in particular, the zeta distribution) has the representation given in (30).
The geometric parameters for the random prime exponents are given by

1− pi = P(X � i) =
a(i)
is

, i ∈ I

This result was considered surprising by Lin and Hu [18], but is quite natural
in the context of positive semigroups.
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We give yet another representation in terms of independent Poisson vari-
ables. This was also obtained in [18], but we give an alternate derivation based
on the exponential distribution.

Proposition 70. Suppose that X has the exponential distribution with pa-
rameter vector (pi : i ∈ I). For x ∈ {2, 3, . . .}, let λx = (1− pi)n/n if x = in for
some i ∈ I and n ∈ N+, and let λx = 0 otherwise. Then X can be written in
the form

X =
∞∏
x=2

xVx

where Vx has the Poisson distribution with parameter λx, and (V2, V3 . . .) are
independent.

Proof. We start with the representation (30). By Proposition 67, we can write

Ni =
∞∑
n=1

nVin

where {Vin : i ∈ I, n ∈ N+} are independent and Vin has the Poisson distribu-
tion with parameter (1− pi)n/n. Substituting we have

X =
∏
i∈I

∞∏
n=1

inVin =
∏
i∈I

∞∏
n=1

(in)Vin

Now, for x ∈ {2, 3, . . .}, let Vx = Vin if x = in for some i ∈ I and n ∈ N+, and
let Vx = 0 otherwise. Then (V2, V3, , . . .) are independent, Vx has the Poisson
distribution with parameter λx given in the proposition, and

X =
∞∏
x=2

xVx

The following corollary restates Proposition 70 in the language of Dirichlet
distributions. Recall that the Mangoldt function Λ : N+ → (0,∞) is defined as
follows:

Λ(x) =

{
ln(i) if x = in for some i ∈ I and n ∈ N+

0 otherwise

Corollary 22. Suppose that X has the Dirichlet distribution with completely
multiplicative coefficient function a and parameter s. Then X can be decom-
posed as

X =
∞∏
x=2

xVx

where (V2, V3, . . .) are independent and Vx has the Poisson distribution with
parameter

λx =
a(x)Λ(x)
ln(x)xs
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10.3 Constant rate distributions

New constant rate distributions for (N+,�) can be constructed by mixing ex-
ponential distributions with the same rate. In general, these distributions will
not be memoryless and hence not exponential.

To illustrate the simplest possible case, suppose that X1 has the exponen-
tial distribution with parameter vector (pi : i ∈ I), X2 has the exponential
distribution with parameter vector (qi : i ∈ I), and that∏

i∈I
pi =

∏
i∈I

qi (31)

so that the rate constants of X1 and X2 agree. Of course, one way that (31)
could happen would be for (qi : i ∈ I) to be a permutation of (pi : i ∈ I).
We will let α denote the common product in (31). Now let X be the random
variable whose distribuiton is the mixture of the distributions of X1 and X2,
with mixing parameter r ∈ (0, 1). By Theorem 13, X also has constant rate α
and upper probability function

F (x) = r
∏
i∈I

(1− pi)ni + (1− r)
∏
i∈I

(1− qi)ni

Of course, F will not in general be completely multiplicative (memoryless).

Problem 19. Are all constant rate distributions on (N+,�) mixtures of expo-
nential distributions on (N+, ·)?

10.4 Moments

In this section, we assume that X has an exponential distribution on (N+, ·).
Thus, X can be characterized in terms of its geometric parameters (pi : i ∈ I), as
in Theorem 39, or in terms of a Dirichlet series A with completely multiplicative
coefficient function a, interval of convergence (s0,∞), and a parameter s > s0,
as in Theorem 40.

From Proposition 8, the expected number of divisors of X is

E[τ1(X)] =
∏
i∈I

1
pi

= A(s)

In the special case that X has a zeta distribution with parameter s, the expected
number of divisors of X is

ζ(s) = E[τ1(X)]

From Theorem 10, X maximizes entropy over all random variables

Y =
∏
i∈I

iUi ∈ N+
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with E(Ui) = (1− pi)/pi for each i ∈ I, The maximum entropy is

H(X) = −
∑
i∈I

(
ln(pi) + ln(1− pi)

1− pi
pi

)
Equivalently, X maximizes entropy over all random variables Y ∈ N+ with
E[ln(Y )] = E[ln(X)] and E[ln(a(Y ))] = E[ln(a(X))]. But from [11],

E[ln(X)] =
1

A(s)

∞∑
x=1

ln(x)a(x)x−s =
A′(s)
A(s)

Note 48. If pi < 1/in for all i ∈ I then

E(Xn) =
∏
i∈I

1− pi
1− inpi

Equivalently, if s > s0 + n then

E(Xn) =
A(s− n)
A(s)

For the special case of the zeta distribution with parameter s we have the
standard result

E(Xn) =
ζ(s− n)
ζ(s)

if s > n+ 1

Next we obtain a result from [18]. Our proof is better because it takes
advantage of the general theory of positive semigroups.

Proposition 71. Suppose that b : N+ → [0,∞) is a nonnegative arithmetic
function, not identically zero. Let B be the corresponding Dirichlet function,
which we assume converges for t > t0, and recall that L(b)(x) =

∑
y�x b(y)

for x ∈ N+. Suppose that X has the zeta distribution with parameter s >
max{t0, 1}. Then

E[L(b)(X)] = B(s)

Proof. It follows immediately from Proposition 8 that

E[L(b)(X)] = ζ(s)E[b(X)]

since 1/ζ(s) is the rate constant of the exponential distribution of X. But

ζ(s)E[b(X)] = ζ(s)
∞∑
x=1

b(x)
xsζ(s)

=
∞∑
x=1

b(x)
xs

= B(s)
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10.5 Gamma distributions

Now suppose that Xn, n ∈ N+ are independent variables, each with the ex-
ponential distribution with parameters (pi : i ∈ I) as in Theorem 39. Let
Yn = X1 · · ·Xn be the corresponding gamma variable of order n. It follows
immediately that

Yn =
∏
i∈I

iUni

where Uni has the negative binomial distribution with parameters n and pi, and
where Uni, i ∈ I are independent. Hence

P

(
Yn =

∏
i∈I

iki

)
=
∞∏
i∈I

(
n+ ki − 1

ki

)
(1− pi)kipni , (ki : i ∈ I) ∈M

Of course, the density function of the gamma variable Yn is a special case of
Proposition 51

P(Yn = x) =

(∏
i∈I

pni

)
τn−1(x)F (x), x ∈ N+

where F is the upper probability function of the exponential distribution.
We can reformulate these results in the notation of the Dirichlet distribu-

tions. Specifically, suppose that X has the Dirichlet distribution corresponding
to the completely multiplicative coefficient function a, Dirichlet function A, and
parameter s. Let X = (X1, X2, . . .) be an IID sequence with the same distri-
bution as X. Let Y = (Y1, Y2, . . .) denote the corresponding sequence of ladder
variables, or equivalently, the corresponding sequence of partial products. Then
(Y1, Y2, . . . , Yn) has PDF hn given by

hn(y1, y2, . . . , yn) =
a(yn)
An(s)ysn

, (y1, y2, . . . , yn) ∈ Dn

The Markov chain Y has transition density function g given by

g(y, yz) = f(z) =
a(z)
A(s)zs

, y, z ∈ N+

Finally, Yn has PDF gn given by

gn(y) =
τn−1(y)a(y)
An(s)ys

, y ∈ N+

Thus, Yn also has a Dirichlet distribution, but corresponding to a multiplicative
coefficient function instead of a completely multiplicative coefficient function. It
follows that

∞∑
x=1

τn−1(x)a(x)
xs

= An(s)
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In the special case of the zeta distribution with parameter s, we have

gn(y) =
τn−1(y)
ζn(s)ys

, y ∈ N+

so it follows that
∞∑
x=1

τn−1(x)
xs

= ζn(s), n ∈ N+, s > 1

10.6 Compound Poisson distributions

Suppose that X has the exponential distribution on (N+, ·) with parameter vec-
tor (pi : i ∈ I). According to Gut [11], X has a compound Poisson distribution.
In our notation, X can be decomposed as

X = V1V2 · · ·VN

where (V1, V2, . . .) are independent and identically distributed on the set of prime
powers {in : i ∈ I, n ∈ N+}, with common probability density function

P(V = in) =
pni

n ln(E(τ(X)))
, i ∈ I, n ∈ N+

The random index N is independent of (V1, V2, . . .) and has the Poisson distri-
bution with parameter ln(E(τ(X))).

Problem 20. Interpret this result in the context of positive semigroups.

11 Lexicographic Sums

For n ∈ N, let An be set with kn points, where kn ∈ N+ for n ∈ N+. Now
let (S,�) be the lexicographic sum of the anti-chains {(An,=) : n ∈ N} over
(N,≤). Thus, for (n, a) ∈ S, (m, b) ∈ S. we have (n, a) ≺ (m, b) if and only
if n < m. The elements of {0} × A0 are minimal, and in particular if n0 = 1,
the element (0, e) is the minimum element (where A0 = {e}). Note also that
the equivalence classes under the upper equivalence relation are {n} × An for
n ∈ N.

11.1 Constant rate distributions

Now let f be a probability density function on S and F the corresponding upper
probability function. Then

F (n, a) = f(n, a) +
∞∑

m=n+1

∑
b∈Am

f(m, b)
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Equivalently,

F (n, a)− f(n, a) =
∞∑

m=n+1

∑
b∈Am

f(m, b)

Suppose now that the distribution has constant rate α. Then f = αF and
F (n, a) is constant over a ∈ An; let pn denote this constant value. Then we
have

pn − αpn =
∞∑

m=n+1

∑
b∈Am

αpm =
∞∑

m=n+1

αkmpm

Solving we have

pn =
α

1− α

∞∑
m=n+1

kmpm

It then follows that pn = α
1−αkn+1pn+1 + pn+1 or equivalently

pn+1 =
1− α

αkn+1 + 1− α
pn, n ∈ N (32)

Solving (32) gives

pn =
(1− α)n

(1− α+ αk1)(1− α+ αk2) · · · (1− α+ αkn)
p0, n ∈ N

Now fix a ∈ A0. Then

F (0, a) +
∑

b∈A0−{a}

f(0, b) = 1

But F (0, a) = p0 and f(0, b) = αp0 for a, b ∈ A0. Therefore p0+(k0−1)αp0 = 1.
Hence

p0 =
1

1− α+ k0α

Thus, the upper probability function and probability density function of the
distribution with constant rate α are

F (n, a) =
(1− α)n

(1− α+ αk0)(1− α+ αk1) · · · (1− α+ αkn)
, (n, a) ∈ S

f(n, a) =
α(1− α)n

(1− α+ αk0)(1− α+ αk1) · · · (1− α+ αkn)
, (n, a) ∈ S

Now suppose that (X,Y ) is a random variable taking values in S with this
constant rate distribution. The probability density function of X is

g(n) =
∑
a∈An

f(n, a)

g(n) =
α(1− α)nkn

(1− α+ αk0)(1− α+ αk1) · · · (1− α+ αkn)
, n ∈ N (33)
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On the other hand, the conditional density of Y given X = n has density
function

h(a|n) =
f(n, a)
g(n)

=
1
kn
, a ∈ An, n ∈ N

so given X = n, Y is uniformly distributed on An
We can verify directly that g in (33) is a probability density function on N.

Writing αkn in the numerator of g(n) as 1− α+ αkn − (1− α) and expanding
we have

g(n) =
(1− α)n

(1− α+ αk0) · · · (1− α+ αkn−1)
− (1− α)n+1

(1− α+ αk0) · · · (1− α+ αkn)

so
∑∞
n=0 g(n) is a collapsing sum that reduces to 1. It then also follows that

the upper probability function of X on N is

G(n) =
(1− α)n

(1− α+ αk0) · · · (1− α+ αkn−1)
, n ∈ N

Hence the rate function is

g(n)
G(n)

=
αkn

1− α+ αkn
, n ∈ N

If kn is increasing in n, decreasing in n, or constant in n, then X has increasing
rate, decreasing rate, or constant rate, respectively. In the latter case, of course,
X has a geometric distribution. In the decreasing case, kn must eventually be
constant in n

Equation (33) defines an interesting class of distributions on N. Here are
some special cases:

Example 18. If kn = k for all n ∈ N, then (as noted above)X has the geometric
distribution with rate parameter αk/(1 − α + αk). In particular, if k = 1, X
has the geometric distribution with parameter α.

Example 19. If kn = n+ 1 for n ∈ N we get

g(n) =
α(1− α)n(n+ 1)

(1)(1 + α)(1 + 2α) · · · (1 + nα)
=
α(1− α)n(n+ 1)

[1, α]n+1
, n ∈ N

G(n) =
(1− α)n

(1)(1 + α) · · · [1 + (n− 1)α]
=

(1− α)n

[1, α]n
, n ∈ N

where we are using the generalized permutation noation:

[a, s]j = a(a+ s) · · · (a+ (j − 1)s)

for a, s ∈ R and j ∈ N. It’s easy to see that g(n+ 1) ≥ g(n) if and only if n ≤√
(1− α)/α and hence the distribution is unimodal with mode at b

√
(1− α)/αc.
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Example 20. If α = 1/2 we get

g(n) =
kn

(1 + k0)(1 + k1) · · · (1 + kn)
, n ∈ N

G(n) =
1

(1 + k0) · · · (1 + kn−1)
, n ∈ N

Example 21. If both kn = n+ 1 and α = 1/2 we get

g(n) =
n+ 1

(n+ 2)!
=

1
(n+ 1)!

− 1
(n+ 2)!

, n ∈ N

G(n) =
1

(n+ 1)!
, n ∈ N

An easy computation shows that the probability generating function is

E(tX) =
tet − et + 1

t2

11.2 Positive semigroups

In the general lexicographic construction considered in this section, only one
case corresponds to a positive semigroup. Let k0 = 1 and kn = k (constant)
for all n ∈ N+. Thus, we can take An = A for all n ∈ N+ where A is a
fixed set with k elements. In this case, (S,�) has the self-similarity property
that characterizes a positive semigroup. The correct semigroup operation is
(n, a)(m, b) = (n + m, b) for n, m ∈ N+ and a, b ∈ A. Of course, (0, e) is the
identity where A0 = {e}. Note that we are in the setting of Example 3.

The memoryless property for a upper probability function F is

F (n, a)F (m, b) = F (n+m, b), (n, a) ∈ S, (m, b) ∈ S − {(0, e)}

In particular, for each a ∈ A,

F (n, a)F (m, a) = F (n+m, a), n, m ∈ N+

It follows that for each a ∈ A, there exists qa ∈ (0, 1) such that F (x, a) =
qxa , x ∈ N+. But then another application of the memoryless condition gives
qna q

m
b = qn+m

b for any n,m ∈ N+ and a, b ∈ A and therefore qa = qb for all a, b.
We will denote the common value by q so that F (n, a) = qn for any n ∈ N+

and any a ∈ A.
Let f be a probability mass function associated with this upper probability

function. For a, b ∈ A,

F (n, a) = f(n, a) +
∞∑

m=n+1

∑
u∈A

f(m,u)

F (n, b) = f(n, b) +
∞∑

m=n+1

∑
u∈A

f(m,u)
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Since F (n, a) = F (n, b), if follows that f(n, a) = f(n, b) for n ∈ N+ and a, b ∈ A.
Thus, let ϕ(n) denote the common value of f(n, a) for any a ∈ A and let
ϕ(0) = f(0, e). It follows that

qn = ϕ(n) + k

∞∑
m=n+1

ϕ(m)

for any n ∈ N. Subtracting gives

(1− q)qn = ϕ(n) + (k − 1)ϕ(n+ 1)

Using this result recursively gives an explicit formula for the probability mass
function of a memoryless distribution:

f(n, a) =
(1− q)qn

1− q + kq
+

(−1)n

(k − 1)n

[
−(1− q)

1− q + kq
+ f(0, e)

]
, (n, a) ∈ S

If we pick f(0, 0) = (1− q)/(1− q + kq) then

f(n, a) =
(1− q)qn

1− q + kq
, n ∈ N+, a ∈ A

This is the probability mass function of the distribution with constant failure
α = (1− q)/(q − q + kq).

The choice of f(0, e) above is not the only possible one. Indeed, any choice
of f(0, e) such that f(n, a) ≥ 0 for all (n, a) ∈ S will lead to a probability mass
function whose corresponding upper probability function is F (n, a) = qn. In
particular, the upper probability function does not uniquely specify the prob-
ability mass function, even for a countable, locally finite semigroup like this
one.

For example, suppose that k = 4 and that q = 1/2. The memoryless proba-
bility mass function

f(n, a) =
1
5

[(
1
2

)n
+
(
−1
3

)n]
, (n, a) ∈ S

has upper probability function

F (n, a) =
(

1
2

)n
for (n, a) ∈ S

On the other hand, the exponential probability mass function

g(n, a) =
1
5

(
1
2

)n
, (n, a) ∈ S

has the same upper probability function F .
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Suppose that F is the upper probability function of a distribution which has
constant rate α ∈ (0, 1). Then

F (n, a) =
(1− α)n

(1)(1− α+ αk)n
=
(

1− α
1− α+ αk

)n
, (n, a) ∈ S

Hence the distribution is memoryless as well, and hence exponential. Thus,
every distribution with constant rate is memoryless (and hence exponential),
but conversely, there are memoryless distributions that do not have constant
rate.

This example shows that a semigroup satisfying the basic assumptions but
which cannot be embedded in a group may still have exponential distributions.

Of course, if k = 1 then (S, ·) is isomorphic to (N,+) and the distribution
defined by g in (33) is the geometric distribution with rate α.

12 Trees

In this section we consider a standard discrete poset (S,�) whose covering graph
is an ordered tree. Our interest will mostly be in the special case where S has a
minimum element e, so that the covering graph is a rooted tree with root e. In
this case, B(x) has a single element, which we will denote by x− for each x 6= e.
On the other hand, A(x) can be empty (if x is a leaf), nonempty and finite,
or countably infinite. There is a unique path from e to x for each x ∈ S, and
more generally, a unique path from x to y whenever x � y. We let d(x) denote
the distance from the root e to x, and more generally, we let d(x, y) denote the
distance from x to y when x � y. Using results from Section 8, The cumulative
function of order n ∈ N for a rooted tree is

#n(x) =
(
n+ d(x)
d(x)

)
=
(
n+ d(x)

n

)
, x ∈ S

The corresponding generating function is

Λ(x, t) =
1

(1− t)d(x)+1
, x ∈ S, |t| < 1

Recall also some other standard notation from the Section 3.7 on uniform
posets: For x ∈ S and n ∈ N,

An(x) = {y ∈ S : x � y, d(x, y) = n}

Thus, A0(x) = {x}, and {An(x) : n ∈ N} partitions I[x] = {y ∈ S : x � y}.
When x = e, we write An instead of An(e).

12.1 Upper Probability Functions

Suppose again that (S,�) is a rooted tree with root e. Let X be a random
variable with values in S having probability density function f and upper prob-
ability function F . Then of course

F (x) = P(X � x) = P(X = x) + P(X � x)
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But {X � x} =
⋃
y∈A(x){X � y}, and the events {X � y} are disjoint over

y ∈ A(x). Hence

F (x) = P(X = x) +
∑

y∈A(x)

P(Y � y) = f(x) +
∑

y∈A(x)

F (y)

It follows that
f(x) = F (x)−

∑
y∈A(x)

F (y), x ∈ S

In particular, F uniquely determines f , and so the distributional dimension of S
is 1. Moreover, we can charaterize upper probability functions mathematically.

Proposition 72. Suppose that F : S → [0, 1]. Then F is the upper probability
function of a probability distribution on S if and only if

1. F (e) = 1

2. F (x) ≥
∑
y∈A(x) F (y) for every x ∈ S.

3.
∑
x∈An

F (x)→ 0 as n→∞.

Proof. Suppose first that F is the upper probability function of a random vari-
able X taking values in S. Then trivially F (e) = 1, and as above,

F (x)−
∑

y∈A(x)

F (y) = P(X = x) ≥ 0

Next, d(X) ≥ n if and only if X � x for some x ∈ An. Moreover the events
{X � x} are disjoint over x ∈ An. Thus

P[d(X) ≥ n] =
∑
x∈An

F (x)

But by local finiteness, the random variable d(X) (taking values in N) has a
proper (non-defective) distribution, so P[d(X) ≥ n]→ 0 as n→∞).

Conversely, suppose that F : S → [0, 1] satisfies conditions (1)–(3) above.
Define f on S by

f(x) = F (x)−
∑

y∈A(x)

F (y), x ∈ S
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Then f(x) ≥ 0 for x ∈ S by (2). Suppose x ∈ S and let m = d(x). Then

n−1∑
k=0

∑
y∈Ak(x)

f(y) =
n−1∑
k=0

∑
y∈Ak(x)

F (y)−
∑

z∈A(y)

F (z)


=
n−1∑
k=0

 ∑
y∈Ak(x)

F (y)−
∑

y∈Ak(x)

∑
z∈A(y)

F (z)


=
n−1∑
k=0

 ∑
y∈Ak(x)

F (y)−
∑

y∈Ak+1(x)

F (y)


= F (x)−

∑
y∈An(x)

F (y)

since A0(x) = {x} and since the sum collapses. But

0 ≤
∑

y∈An(x)

F (y) ≤
∑

y∈Am+n

F (y)→ 0 as n→∞

Thus letting n→∞ we have∑
y∈I[x]

f(y) = F (x), x ∈ S

Letting x = e we see that
∑
y∈S f(y) = 1 so f is a probability density function

on S. Then we also see that F is the upper probability function of f .

Note 49. To characterize upper probability functions F with support S, we
require that F : S → (0, 1] and we replace the weak inequality in (2) with strong
inequality.

Note 50. Recall that (S,�) is a lower semi-lattice. Hence if X and Y are
independent random variables with values in S, with upper probability functions
F and G, repsectivley, then X ∧ Y has upper probability function FG.

Lemma 5. Suppose that F : S → [0, 1] satisfies the decreasing property (2) in
Proposition 72. Then for x ∈ S and k ∈ N,∑

y∈Ak(x)

F (y) ≤ F (x) (34)

In particular,
∑
x∈An

F (x) ≤ F (e) for n ∈ N.

Proof. The proof is by induction on k. Trivially, (34) holds for k = 0, and by
assumption for k = 1. Assume that (34) holds for a given k ∈ N. Then∑

y∈Ak+1(x)

F (y) =
∑

t∈Ak(x)

∑
y∈A(t)

F (y) ≤
∑

t∈Ak(x)

F (t) ≤ F (x)

where the last step holds by the induction hypothesis.
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Corollary 23. Suppose that F : S → [0, 1] satisfies conditions (1) and (2) of
Proposition 72 and let p ∈ (0, 1). Then G : S → [0, 1] defined by

G(x) = pd(x)F (x), x ∈ S

is an upper probability function on S. In particular, if F is an upper probability
function on S with probablitiy density function f , then G is an upper probability
function with probability density function g given by

g(x) = pd(x)f(x) + pd(x)(1− p)
∑

y∈A(x)

F (y), x ∈ S

Proof. First, G(e) = p0F (e) = 1. Next, for x ∈ S,∑
y∈A(x)

G(y) =
∑

y∈A(x)

pd(y)F (y) = pd(x)+1
∑

y∈A(x)

F (x)

≤ pd(x)+1F (x) ≤ pd(x)F (x) = G(x)

Finally,∑
x∈An

G(x) =
∑
x∈An

pd(x)F (x) = pn
∑
x∈An

F (x) ≤ pnF (e)→ 0 as n→∞

so it follows from Proposition 72 that G is an upper probability function.
Suppose now that F is an upper probability function with probability density

function f , and let g denote the probability density function corresponding to
G. Then

g(x) = G(x)−
∑

y∈A(x)

G(y) = pd(x)F (x)−
∑

y∈A(x)

pd(y)F (y)

= pd(x)F (x)− pd(x)+1
∑

y∈A(x)

F (y)

= pd(x)F (x)− pd(x)
∑

y∈A(x)

F (y) + pd(x)
∑

y∈A(x)

F (y)− pd(x)+1
∑

y∈A(x)

F (y)

= pd(x)f(x) + pd(x)(1− p)
∑

y∈A(x)

F (y)

Note that x 7→ pd(x) is not itself an upper probability function, unless the
tree is a path, since properties 2 and 3 will fail in general. Thus, we cannot
view G simply as the product of two UPFs in general. However, We can give
a probabilisitc interpretation of the construction in Corrolary 23. Suppose that
X is a random variable taking values in S with UPF F and PDF f . Moreover,
suppose that each edge in the tree (S,�), independently of the other edges, is
either working with probability p or failed with probability 1− p. Define U by

U = max{u � X : the path from e to u is working}
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Corollary 24. Random variable U has UPF G and PDF g given in Corollary
23.

Proof. First, P(U = u|X = u) = pd(u), since the path from e to u must be
working. For u ≺ x, P(U = u|X = x) = pd(u)(1− p) since the path from e to u
must be working, but the first edge on the path from u to x must have failed.
Let g denoting the PDF of U , and f and F denote the PDF and UPF of X,
Conditioning on X we get

g(u) = pd(uf(u) +
∑
x�u

f(x)pd(u)(1− p)

= pd(u)f(u) + pd(u)(1− p)
∑

y∈A(u)

F (y), u ∈ S

12.2 Rate Functions

Next we are interested in characterizing rate functions of distributions that
have support S. If r is such a function, then as noted earlier, 0 < r(x) ≤ 1
and r(x) = 1 if and only if x is a leaf. Moreover, if F is the upper probability
function, then

1. F (e) = 1

2.
∑
y∈A(x) F (y) = [1− r(x)]F (x)

Conversely, these conditions give a prescription for constructing an upper prob-
ability function corresponding to a given rate function. Specifically, suppose
that r : S → (0, 1] and that r(x) = 1 for every leaf x ∈ S. First, we define
F (e) = 1. Then if F (x) has been defined for some x ∈ S and x is not a leaf,
then we define F (y) for y ∈ A(x) arbitrarily, subject only to the requirement
that F (y) > 0 and that condition (2) holds. Note that F satisfies the first two
conditions in Proposition 72. Hence if F satisfies the third condition, then F
is the upper probability function of a distribution with support S and with the
given rate function r. It seems complicated, and probably not worthwhile, to
completely characterize functions r for which the third condition in Proposi-
tion 72 is satisfied. However, the following proposition gives a simple sufficient
condition.

Proposition 73. Suppose that r : S → [0, 1) and that r(x) = 1 for each leaf
x ∈ S. If there exists α > 0 such that r(x) ≥ α for all x ∈ S, then r is the rate
function of a distribution with support S.

Proof. Let F : S → (0, 1] be any function constructed according to the pre-
scription above. Then as noted above, F satisfies the first two conditions in
Proposition 72, so we just need to verify the third condition. We show by
induction that ∑

x∈An

F (x) ≤ (1− α)n, n ∈ N (35)
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Inequality (35) holds trivially if n = 0. Suppose that (35) holds for a given
n ∈ N. Then ∑

x∈An+1

F (x) =
∑
t∈An

∑
x∈A(t)

F (x) =
∑
t∈An

[1− r(t)]F (t)

≤
∑
t∈An

(1− α)F (t) = (1− α)n+1

Note 51. Condition (35) means that the distribution of d(X) is stochastically
smaller than the geometric distribution with rate constant α.

Note 52. If (S,�) is not a path, then the rate function does not uniquely
determine the distribution. Indeed, if x has two or more children, then there
are infinitely many ways to perform step 2 in the prescription above.

Example 22. Suppose that F is an upper probability function on S, with
corresponding rate function r. Let G denote the upper probability function
constructed in Corollary 23, and let ρ denote the corresponding rate function.
Then

ρ(x) = r(x) +
1− p
F (x)

∑
y∈A(x)

F (y), x ∈ S

12.3 Constant rate distributions

If (S,�) has leaves, then the only constant rate distribution has rate constant
1, and then the distribution must be point mass at the root e.

Corollary 25. Suppose that (S,�) has no leaves. Then F : S → (0, 1] is the
upper probability function of a distribution with constant rate α if and only if
F (e) = 1 and ∑

y∈A(x)

F (y) = (1− α)F (x), x ∈ S (36)

Proof. This follows immediately from Proposition 73

Corollary 26. Suppose that X has constant rate α on (S,�). Then d(X) has
the geometric distribution on N with rate α.

Proof. For n ∈ N,

P[d(X) ≥ n] =
∑
x∈An

P(X � x) =
∑
x∈An

F (x) = (1− α)n

So P[d(X) = n] = α(1− α)n.

As a special case of our previous comment, we can construct the upper
probability functions of constant rate distributions on (S,�) recursively.
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1. Start with F (e) = 1.

2. If F (x) is defined for a given x ∈ S, then define F (y) for y ∈ A(x)
arbitrarily, subject only to the conditions F (y) > 0 and that (36) holds.

Equivalently, we can realize the distributions with constant rate as the in-
variant distributions of certain upward run chains on (S,�). Thus, let X =
(X0, X1, . . .) be an upward run chain on (S,�) with transition probability func-
tion P . Suppose that X has the property that P (x, e) = α ∈ (0, 1) for each
x ∈ S. Let F (x) = Pe(Tx ≤ Te), where as usual, Tz is the first return time to z
for z ∈ S. Note that F (x) = Pn(e, x) if x ∈ An. Thus, for x ∈ An,∑

y∈A(x)

F (y) =
∑

y∈A(x)

Pn+1(e, y) =
∑

y∈A(x)

Pn(e, x)P (x, y)

= Pn(e, x)
∑

y∈A(x)

P (x, y) = (1− α)Pn(e, x) = (1− α)F (x)

Hence (36) holds, so F is the upper probability function of a distribution with
constant rate α. Moreover, f = αF is the invariant distribution of the chain X.

12.4 Gamma distributions and the point process

Again, let (S,�) be a rooted tree with root e. Let F be the upper probability
function of a distribution with constant rate α, so that F satisfies the conditions
in Corollary 26. The gamma distribution of order n ∈ N+ has probability density
function

fn(x) = αn
(
n+ d(x)− 1

d(x)

)
F (x), x ∈ S

Note that if x ∈ S and y ∈ A(x) then d(y) = d(x) + 1. It then follows from (36)
that ∑

y∈A(x)

fn(y) =
∑

y∈A(x)

αn
(
n+ d(y)− 1

d(y)

)
F (y)

= αn
(
n+ d(x)
d(x) + 1

) ∑
y∈A(x)

F (y) = αn(1− α)
(
d(x) + n

d(x) + 1

)
F (x)

Consider now the thinned point process associated with (Y1, Y2, . . .), where
a point is accepted with probability r and rejected with probability 1 − r, in-
dependently from point to point. The probability density function of the first
accepted point is

g(x) = rαΛ(x, (1− r)α)F (x) = rα
1

[1− (1− r)α]d(x)+1
F (x)

=
rα

1− α+ rα

F (x)
(1− α+ rα)d(x)

, x ∈ S
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Consider the function G : S → (0, 1] given by

G(x) =
F (x)

(1− α+ rα)d(x)
, x ∈ S

Note that G(e) = 1 and for x ∈ S∑
y∈A(x)

G(y) =
∑

y∈A(x)

F (y)
(1− α+ rα)d(y)

=
1

(1− α+ rα)d(x)+1

∑
y∈A(x)

F (y)

=
1− α

(1− α+ rα)d(x)+1
F (x)

=
1− α

1− α+ rα
G(x)

Hence, the distribution of the first accepted point has constant rate

rα

1− α+ rα

Note 53. The UPF F is related to the UPF G by the construction in Corollay
23 (so the notation is reversed). That is, suppose Y denotes the first accepted
point in the thinned process. Then the basic random variable X that we started
with can be constructed as

X = max{x � Y : there is a working path from e to x}

where each edge is working, independently, with probability 1− α+ rα.

12.5 General trees

Corollary 27. Every ordered tree without maximal elements supports a con-
stant rate distribution.

Proof. Suppose that (S,�) is a standard discrete poset without maximal ele-
ments, whose covering graph is a tree. Then (S,�) can be constructed from a
rooted tree by successively adding points, as in Theorem 14 and joining other
trees, as in Section 5.5. Thus, the result follows from Theorems 25, 14, and
13.

13 The Free Semigroup

13.1 Definitions

Let I be a countable alphabet of letters, and let S denote the set of all finite
length words using letters from I. In particular, e denotes the empty word of
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length 0. Let · denote the usual concatenation operation on elements of S: if
x = x1 · · ·xm ∈ S and y = y1 · · · yn ∈ S, then

xy = x1 · · ·xmy1 · · · yn
Clearly (S, ·) is a discrete, positive semigroup, and is known as the free semi-
group generated by I. For the associated partial order, x � y if and only if x
is a prefix of y, and then x−1y is the corresponding suffix. The digraph of the
partially ordered set is a regular tree rooted at e in which each element x has
distinct successors xi, i ∈ I. In particular, if #(I) = k, then the digraph is a
regular k-tree. Specializing further, when k = 2 and I = {0, 1}, the elements of
S are bit strings and the corresponding digraph is the binary tree. The elements
in I are the irreducible elements of S.

For x ∈ S and i ∈ I, let Ni(x) denote the number of times that letter i
occurs in x, and let N(x) =

∑
i∈I Ni(x) denote the length of x. Note that

Ni(x) = 0 for all but finitely many i ∈ I. Note also that N(x) is the distance
from e to x, denoted d(x) earlier for uniform posets. Let

M =

{
(ni : i ∈ I) : ni ∈ N for i ∈ I and

∑
i∈I

ni <∞

}

Mn =

{
(ni : i ∈ I) : ni ∈ N for i ∈ I and

∑
i∈I

ni = n

}
, n ∈ N

Thus, {Mn : n ∈ N} partitions M . We define the multinomial coefficients by

C(ni : i ∈ I) = # {x ∈ S : Ni(x) = ni for i ∈ I}

=

(∑
i∈I ni

)
!∏

i∈I ni!
, (ni : i ∈ I) ∈M

The free semigroup has the property that the elements of [e, x] are totally
ordered for each x. Moreover, it is the only discrete positive semigroup with
this property.

Theorem 41. Suppose that (S, ·) is a discrete positive semigroup with the
property that [e, x] is totally ordered for each x ∈ S. Then (S, ·) is isomorphic
to a free semigroup on an alphabet.

Proof. Let I denote the set of irreducible elements of (S, ·). If x ∈ S−{e} then
i1 � x for some i1 ∈ I and hence x = i1y for some y ∈ S. If y � e then we
can repeat the argument to write y = i2z for some i2 ∈ I and z ∈ S. Note
that x = i1i2z and hence i1i2 � x. Moreover, i1 and i1i2 are distinct. Since the
semigroup is locally finite, [e, x] is finite and hence the process must terminate.
Thus, we can write x in the form x = i1i2 · · · in for some n ∈ N+ and some
i1, i2, . . . , in ∈ I. Finally, we show that the factorization is unique. Suppose
that x = i1i2 · · · in = j1j2 · · · jm where i1, . . . , in ∈ I and j1, . . . , jm ∈ I. Then
i1 � x and j1 � x. Since the elements of [e, x] are totally ordered, we must have
i1 = j1. Using left cancellation we have i2 · · · in = j2 · · · jm. Continuing in this
fashion we see that m = n and i1 = j2, i2 = j2, . . . in = jn
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Proposition 74. Suppose that (S, ·) is a discrete positive semigroup with the
property that every x ∈ S has a unique finite factoring over the set of irreducible
elements I. Then (S, ·) is isomporphic to the free semigroup on I.

Proof. Form Proposition 6, every x ∈ S has a finite factoring over I, so that
x = i1i2 · · · in. If this factoring is unique, then clearly (i1, i2, . . . in) 7→ i1i2 · · · in
is an isomorphism from the free semigroup (I∗, ·) onto (S, ·).

From Theorem 41 and our discussion in Section 8, it follows that the cumu-
lative function of order n associated with counting measure # is given by

#n(x) =
(
N(x) + n

n

)
, x ∈ S

If X is a random variable with values in S then from Theorem 5,∑
x∈S

(
N(x) + n

n

)
P(X � x) = E

[(
N(X) + n+ 1

n+ 1

)]
Since the digraph of the free semigroup is a tree, there is a unique distribution

with a given upper probability function The probability density function f of a
distribution is related to its upper probability function F as follows:

f(x) = F (x)−
∑
j∈I

F (xj) (37)

Thus, the distributional dimension of the free semigroup is 1. On the other
hand, the semigroup dimension is the number of letters.

Theorem 42. dim(S, ·) = #(I).

Proof. Note first that a homomorphism φ from (S, ·) into (R,+) can uniquely
be specified by defining φ(i) for all i ∈ I and then defining

φ(i1i2 · · · in) = φ(i1) + φ(i2) + · · ·φ(in)

Thus, if φ is a such a homomorphism and φ(i) = 0 for all i ∈ I, then φ(x) = 0
for all x ∈ S. Now suppose that B ⊆ S and #(B) < #(I). We will show that
there exists a nonzero homomorphism from (S, ·) into (R,+) with φ(x) = 0 for
all x ∈ B. Let IB denote the set of letters contained in the words in B. Suppose
first that IB if a proper subset of I (and note that this must be the case if I
is infinte). Define a homomorphism φ by φ(i) = 0 for i ∈ IB and φ(i) = 1 for
i ∈ I − IB . Then φ(x) = 0 for x ∈ B, but φ is not the zero homomorphism.
Suppose next that IB = I. Thus I is finite, so let k = #(B) and n = #(I),
with k < n. Denote the words in B by

ij1ij2 · · · ijmj , j = 1, 2, . . . , k

The set of linear, homogeneous equations

φ(ij1) + φ(ij2) + · · ·φ(ijmj
) = 0, j = 1, 2, . . . , k

has n unkowns, namely φ(i) for i ∈ I, but only k equations. Hence there exists
a non-trivial solution. The homomorphism so constructed satisfies φ(x) = 0 for
x ∈ B.
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13.2 Exponential distributions

Theorem 43. An exponential distribution on (S, ·) has upper probability func-
tion F of the form

F (x) = (1− α)N(x)
∏
i∈I

p
Ni(x)
i , x ∈ S

where α ∈ (0, 1) is the rate constant, and where pi ∈ (0, 1) for each i ∈ I with∑
i∈I pi = 1.

Proof. We apply Theorem 26. Let F (i) = βi for i ∈ I. Then βi > 0 for each
i ∈ I and the memoryless condition requires that

F (x) =
∏
i∈I

β
Ni(x)
i , x ∈ S

The constant rate property requires that
∑
x∈S F (x) < ∞ (and the reciprocal

of this sum is the rate parameter). But from the multinomial theorem

∑
x∈S

F (x) =
∞∑
n=0

∑{
C(ni : i ∈ I)

∏
i∈I

βni
i : (ni : i ∈ I) ∈Mn

}
=
∞∑
n=0

βn

where β =
∑
i∈I βi. Hence we must have β ∈ (0, 1) and the rate constant is

1− β. Finally, we re-define the parameters: let α = 1− β and let pi = βi/β for
i ∈ I.

The probability density function f of the exponential distribution in Theo-
rem 43 is

f(x) = α(1− α)N(x)
∏
i∈I

p
Ni(x)
i , x ∈ S (38)

We could also obtain (38) directly from (37). In particular, in the free
semigroup, every memoryless distribution has constant rate and hence is expo-
nential. There is a simple interpretation of the exponential distribution in terms
of multinomial trials.

Corollary 28. Consider a sequence of IID variables (X1, X2, . . .) taking values
in I with P(Xn = i) = pi for n ∈ N+ and i ∈ I. where 0 < pi < 1 for each i
and

∑
i∈I pi = 1. Let L be independent of (X1, X2, . . .) and have a geometric

distribution with rate parameter α ∈ (0, 1). Let X be the random variable in
S defined by X = X1 · · ·XL. Then X has the exponential distribution with
parameters α and (pi : i ∈ I).

Proof. Let x ∈ S. Then

P(X = x) =
∞∑
n=0

P(X = x | L = n)P(L = n)
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The conditional probability is 0 unless n = N(x) so we have

P(X = x) = P[X1 · · ·XN(x) = x | L = N(x)]α(1− α)N(x)

= P(X1 · · ·XN(x) = x)α(1− α)N(x)

= P(X1 = x1) · · ·P(XN(x) = xN(x))α(1− α)N(x)

= α(1− α)N(x)
∏
i∈I

p
Ni(x)
i

In the following corollaries, suppose that X has the exponential distribution
on (S, ·). with parameters α and (pi : i ∈ I).

Corollary 29. The joint distribution of (Ni(X) : i ∈ I) given N(X) = n ∈ N
is multinomial with parameters n and (pi : i ∈ I):

Corollary 30. The distribution of Ni(X) is geometric with rate parameter
α/[α+ (1− α)pi] for each i ∈ I.

Corollary 31. Random variable X maximizes entropy over all random vari-
ables Y ∈ S with

E[Ni(Y )] = E[Ni(X)] =
1− α
α

pi, i ∈ I

13.3 Gamma distribution

From Corollary 28, it’s easy to construct the gamma variables corresponding to
the exponential distribution in Theorem 43. Let (X1, X2, . . .) be IID variables
in I with P(Xj = i) = pi for i ∈ I. Let (J1, J2, . . .) be IID variables each with
the geometric distribution on N with rate α, and with (J1, J2, . . .) independent
of (Y1, Y2, . . .). Thus Kn =

∑n
i=1 Ji has the negative binomial distribution with

parameters α and n. Then Yn = X1 · · ·XKn has the gamma distribution of
order n. The probability density function is

P(Yn = y) =
(
N(y) + n− 1

n− 1

)
αn(1− α)N(y)

∏
i∈I

p
Ni(y)
i , y ∈ S

Of course, this also follows from Proposition 51.

Corollary 32. The conditional distribution of [Ni(Yn) : i ∈ I] given N(Yn) =
m ∈ N is multinomial with parameters m and (pi : i ∈ I):

Corollary 33. The distribution of Ni(Yn) is negative binomial with parameters
α/[α+ (1− α)pi] and n for each i ∈ I.
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13.4 Distributions with constant rate

Corollary 34. Suppose that F : S → (0, 1] and 0 < α < 1. The F is the upper
probability function of a distribution which has constant rate α if and only if
F (e) = 1 and

(1− α)F (x) =
∑
i∈I

F (xi), x ∈ S (39)

Proof. This follows directly from Theorem 26

Using the characterization in Corollary 34, F (x) can be defined recursively
for x ∈ S to produce many constant failure rate distributions other than the
exponential ones.

Example 23. Suppose that I = {0, 1}, so that S consists of bit strings. Let
a > 0, b > 0, a 6= b, and a+ b < 1. Define F : S → (0, 1] as follows:

F (e) = 1, F (0x) = aN1(x)+1bN0(x), F (1x) = aN1(x)bN0(x)+1, x ∈ S

Then F is a upper probability function for a distribution with constant rate
1−a−b but this distribution is not exponential or even a mixture of exponential
distributions.

In summary, every distribution on the free semigroup which is memoryless
has constant rate (and hence is exponential), but there are distributions with
constant rate that are not memoryless (and hence not exponential).

13.5 Compound Poisson distributions

Proposition 75. Suppose that X has the exponential distribution on (S, ·)
with parameters α and (pi : i ∈ I) as above. Then X has a compound Poisson
distribution.

Proof. Recall from Corollary 28 that X can be decomposed as

X = X1X2 · · ·XL

where (X1, X2, . . .) are independent and identically distributed on the alphabet
I, with probability density function (pi : i ∈ I), and where L is independent of
(X1, X2, . . .) and has the geometric distribution on N with rate parameter α.
But from Section 8, L has a compound Poisson distribution and can be written
in the form

L = M1 +M2 + · · ·+MK

where (M1,M2, . . .) are independent and identically distributed on N+ with the
logarithmic distribution

P(M = n) = − (1− α)n

n ln(α)
, n ∈ N+
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and where K is independent of (M1,M2, . . .) and has the Poisson distribution
with parameter − ln(α). It follows that we can take (X1, X2, . . .), (M1,M2, . . .),
and K mutually independent, and thus

X = U1U2 · · ·UK

where Ui = XMi−1+1 · · ·XMi . Note that (U1, U2, . . .) are independent and iden-
tically distributed on S and thus X has a compound Poisson distribution.

14 Positive Semigroups with Two Generators

In this chapter we consider discrete, positive semigroups with two irreducible
elements a and b. In a sense, we start with the free semigroup on the alphabet
{a, b}, and impose “equations” that must hold.

Example 24. If we impose no conditions, we are left with the free semigroup
itself.

Example 25. If we impose the condition ab = ba (the commutative law), then
the resulting semigroup (S, ·) is isomporhic to the standard semigroup (N2,+).
To see this, note that by the commutative and associative laws, every element
in S can be written uniquely in the form ambn for some m, n ∈ N. With this
canonical representation, the semigroup operation is

(aibj) · (ambn) = ai+mbj+n

Thus, the mapping (m,n) 7→ ambn is an isomorphism from (N2,+) to (S, ·).

Example 26. Suppose we impose the equations ab = b2, ba = a2. Then the
resulting positive semigroup (S, ·) is isomporphic to the lexicographic semigroup
in Section 11.2, with k = 2. To see this, note that that every element in S can be
written as xn where x ∈ {a, b} and n ∈ N. With this canonical representation,
the semigroup operation (on non-identity elements) is

am · bn = bm+n, bn · am = am+n

Thus, the mapping that takes (0, e) to e and takes (n, x) to xn (where x ∈ {a, b}
and n ∈ N+) is an isomorphism from the lexicographic semigroup of Section 11.2
to (S, ·).

Example 27. Suppose that we impose the condition ba = a2 (but not the
complmentary condition ab = b2). It’s easy to see that every element in S can
be written uniquely in the form ambn for some m, n ∈ N. With this canonical
representation, the semigroup operation is

(aibj) · (ambn) = ai+j+mbn if m ∈ N+

(aibj) · (bn) = aibj+n
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It’s straightforward to verify directly that (S, ·) is a positive semigroup. More-
over, (S, ·) is clearly isomorphic to the semigroup (N2, ·) where

(i, j) · (m,n) = (i+ j +m,n) if m ∈ N+

(i, j) · (0, n) = (i, j + n)

The corresponding partial order is given by

aibj ≺ ambn if and only if i+ j < m or (i = m and j < n)

Note that the elements that cover ambn are am+n+1 and ambn+1.
Suppose now that F is the upper probability function of an exponential

distribution on (S, ·). Then from the defining condition of this semigroup we
have

F (b)F (a) = F (ba) = F (a2) = [F (a)]2

and therefore F (a) = F (b). Let p ∈ (0, 1) denote the common value. Then
F (ambn) = pm+n and∑

x∈S
F (x) =

∑
(m,n)∈N2

pm+n =
1

(1− p)2

Hence the corresponding probability density function f is given by

f(ambn) = (1− p)2pm+n, (m,n) ∈ N2

thus, a random variable U = aXbY has an exponential distribution on (S, ·)
with rate (1 − p)2 if and only if X and Y are IID geometric (i.e. exponential)
variables on (N,+) with rate 1− p.

Example 28. If we impose the condiiton ba2 = a2, then bman = an for every
m ∈ N and n ∈ {2, 3, . . .}. In particular, bna � a2 for every n ∈ N, so (S, ·) is
not locally finite.

15 Finite Subsets of N+

Let S denote the set of all finite subsets of N+. Clearly, (S,⊆) is a standard
discrete poset. Interestingly, this poset is associated with a standard discrete
semigroup as well.

15.1 Preliminaries

We identify a nonempty subset x of N+ with the function given by

x(i) = ith smallest element of x

with domain {1, 2, . . . ,#(x)} if x is finite and N+ if x is infinite. We will
sometimes refer to x(i) as the element of rank i in x. If x is nonempty and finite,
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max(x) denotes the maximum value of x; by convention we take max(∅) = 0
and max(x) = ∞ if x is infinite. Note that #(x) ≤ max(x) for every x. If x
and y are nonempty subsets of N+ with max(y) ≤ #(x), we let x ◦ y denote the
subset whose function is the composition of x and y:

(x ◦ y)(i) = x(y(i))

We also define x ◦ ∅ = ∅ for any x ⊆ N+. Note that x ◦ y is always defined when
x is infinite. The results in the following two propositions are simple:

Proposition 76. Suppose that x and y are subsets of N+ with max(y) ≤ #(x).
Then

1. x ◦ y ⊆ x

2. #(x ◦ y) = #(y)

3. if y is nonempty and finite then max(x ◦ y) = x(max(y))

4. if x is infinite then (x ◦ y)c = xc ∪ (x ◦ yc)

Proposition 77. Suppose that x, y, and z are subsets of N+. Assuming that
the operations are defined,

1. x ◦ (y ◦ z) = (x ◦ y) ◦ z.

2. x ◦ (y ∪ z) = (x ◦ y) ∪ (x ◦ z).

3. x ◦ (y ∩ z) = (x ◦ y) ∩ (x ◦ z).

4. If x ◦ y = x ◦ z then y = z.

Note that the right distributive laws cannot possibly hold; (x ∪ y) ◦ z and
(x ◦ z) ∪ (y ◦ z) do not even have the same cardinality in general, and neither
do (x∩ y) ◦ z and (x ◦ z)∩ (y ◦ z). Similarly, the right cancellation law does not
hold: if x ◦ z = y ◦ z, we cannot even conclude that #(x) = #(y), let alone that
x = y. Note that N+ is a left-identity: N+ ◦ x = x for any x ⊆ N+.

15.2 The positive semigroup

Recall that S denotes the collection of all finite subsets of N+ (represented as
functions as in Section 15.1). We define the binary operation · on S by

xy = x ∪ (xc ◦ y) = x ∪ {ith smallest element of xc : i ∈ y}

Note that the operation is well-defined since xc is infinite. Essentially, xy is
constructed by adding to x those elements of xc that are indexed by y (in a
sense those elements form a copy of y that is disjoint from x).

Theorem 44. (S, ·) is a positive semigroup with the subset partial order.
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Proof. The associative rule holds, and in fact

x(yz) = (xy)z = x ∪ (xc ◦ y) ∪ (xc ◦ yc ◦ z)

The empty set is the identity:

x∅ = x ∪ (xc ◦ ∅) = x ∪ ∅ = x

∅x = ∅ ∪ (N+ ◦ x) = ∅ ∪ x = x

The left cancellation law holds: Suppose that xy = xz. Then x ∪ (xc ◦ y) =
x ∪ (xc ◦ z) by definition and hence xc ◦ y = xc ◦ z since the pairs of sets in
each union are disjoint. But then y = z. There are no non-trivial inverses: if
xy = ∅ then x ∪ (xc ◦ y) = ∅. Hence we must have x = ∅ and therefore also
xc ◦ y = N+ ◦ y = y = ∅.

Finally, the associated partial order is the subset order. Suppose first that
xu = y. Then x ∪ (xc ◦ u) = y so x ⊆ y. Conversely, suppose that x ⊆ y. Let
u = {i ∈ N+ : xc(i) ∈ y}. Then x ∪ (xc ◦ u) = y so xu = y.

Note 54. The irreducible elements of (S, ·) are the singletons {i} where i ∈ N+.
Note also that

{i}{i} = {i, i+ 1} (40)
{i+ 1}{i} = {i, i+ 1} (41)
{i}{i+ 1} = {i, i+ 2} (42)

Comparing (41) and (42) we see that the semigroup is not commutative, and
comparing (40) and (41) we wee that the right cancellation law does not held.
Thus, (S, ·) just satisfies the minimal algebraic assumptions of a positive semi-
group; in particular, S cannot be embedded in a group. Finally, if i1 < i2 <
· · · < in then

{in}{in−1} · · · {i1} = {i1, i2, · · · , in}

Proposition 78. dim(S, ·) = 1

Proof. suppose that ϕ is a homomorphism from (S, ·) into (R,+) with ϕ({1}) =
0. Then using (40) and 41) it follows that ϕ({i}) = 0 for each i ∈ N+, and
then ϕ(x) = 0 for every x ∈ S. On the other hand, there do exist non-trivial
homomorphism—for example, the cardinality function #, as shown in the fol-
lowing proposition.

Proposition 79. For x, y ∈ S,

#(xy) = #(x) + #(y) (43)

max(xy) =

{
max(x), if max(y) ≤ max(x)−#(x)
max(y) + #(x), if max(y) > max(x)−#(x)

(44)
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Proof. #(xy) = #[x∪ (xc ◦y)] = #(x)+#(xc ◦y) since x and xc ◦y are disjoint.
But from Proposition 76, #(xc ◦ y) = #(y).

Equation 44 is trivial if x or y is the identity (∅), so we will assume that x
and y are nonempty. Note that, by definition,

max(xy) = max[x ∪ (xc ◦ y)] = max{max(x),max(xc ◦ y)}

Let i = #(x) and n = max(x). Then n ∈ x and the remaining i− 1 elements of
x are in {1, 2, . . . , n− 1}. Hence, xc contains n− i elements of {1, 2, . . . , n− 1},
together with all of the elements of {n+ 1, n+ 2, . . .}. If max(y) ≤ n− i, then
max(xc◦y) = xc(max(y)) ≤ n−1 so max(xy) = n = max(x). If max(y) > n−i,
then max(xy) = max(xc ◦ y) = xc(max(y))—the element of rank max(y) in xc.
Given the structure of xc noted above, this element is n+ (max(y)− (n− i)) =
max(y) + i.

Note 55. Since the cardinality function is a homomorphism, the poset (S,⊆)
is uniform. That is, if x ∈ S can be factored into singletons

x = u1u2 · · ·un

where #(ui) = 1 for each i, then n = #(x).

The following proposition explores the relationship between a probability
density function and the corresponding upper probability function. In particu-
lar, a upper probability function completely determines a distribution on S.

Proposition 80. Suppose that f is a probability density function on S, and
let F denote the corresponding upper probability function:

F (x) =
∑
y∈xS

f(y), x ∈ S

For x ∈ S and n ∈ N, let An(x) = {y ∈ S : y ⊇ x,#(y) = #(x) + n}. Then

f(x) =
∞∑
n=0

(−1)n
∑

y∈An(x)

F (y), x ∈ S

Proof. First note that
∞∑
n=0

(−1)n
∑

y∈An(x)

F (y) =
∞∑
n=0

(−1)n
∑

y∈An(x)

∑
z∈yS

f(z)

Now consider z ∈ S with z ⊃ x and #(z) = #(x) + k, where k > 0. For
i ∈ {0, 1, . . . , k}, there are

(
k
i

)
subsets y with x ⊆ y ⊆ z and #(y) = #(x) + i.

Hence the total contribution to the sum for the subset z is

(−1)#(x)f(z)
k∑
i=0

(
k

i

)
(−1)i = 0

Hence the only surviving term in the sum (corresponding to n = 0 and y = z =
x) is f(x).
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Proposition 81. The cumulative function of order n ∈ N for counting measure
# on (S, ·) is given by

#n(x) = (n+ 1)#(x), x ∈ S

Proof. The result is trivially true when n = 0, since #0(x) = 1 for x ∈ S. Thus,
assume the result holds for a given n. Using the binomial theorem,

#n+1(x) =
∑
t⊆x

#n(t) =
#(x)∑
k=0

∑
t⊆x,#(t)=k

(n+ 1)k

=
#(x)∑
k=0

(
#(x)
k

)
(n+ 1)k = (n+ 2)#(x), x ∈ S

When n = 1, we get the usual formula for the number of subsets of x:
#1(x) = 2#(x).

Proposition 82. the Möbius function is

m(x, y) = (−1)#(y)−#(x), x, y ∈ S, x ⊆ y (45)

Proof. The proof is by induction on #(y)−#(x). First, m(x, x) = 1 by defini-
tion. Suppose that (45) holds for x ⊆ y when #(y) = #(x) + n. Suppose that
x ⊆ y with #(y) ≤ #(x) + n+ 1. Then

m(x, y) = = −
∑
t∈[x,y)

m(x, t) = −
n∑
k=0

∑
{m(x, t) : t ∈ [x, y),#(t) = #(x) + k}

= −
n∑
k=0

∑
{(−1)k : t ∈ [x, y),#(t) = #(x) + k}

= −
n∑
k=0

(
n+ 1
k

)
(−1)k

= −
n+1∑
k=0

(
n+ 1
k

)
(−1)k + (−1)n+1 = 0 + (−1)n+1

We can now verify the Möbius inversion formula in this special case, with
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#n(x) = (n+ 1)#(x): For x ∈ S,∑
t∈D[x]

#n+1(t)m(t, x) =
∑
t∈D[x]

(n+ 2)#(t)(−1)#(x)−#(t)

=
#(x)∑
k=0

∑
{(n+ 2)#(t)(−1)#(x)−#(t) : t ⊆ x,#(t) = k}

=
#(x)∑
k=0

(
#(x)
k

)
(n+ 2)k(−1)#(x)−k

= (n+ 1)#(x) = #n(x)

15.3 The sub-semigroups

The semigroup (S, ·) has an interesting structure. In particular, it can be parti-
tioned into sub-semigroups where the difference between the maximum element
and the cardinality is constant.

Definition 42. For k ∈ N, let

Sk = {x ∈ S : max(x)−#(x) = k}
Tk = {∅} ∪ Sk

For (n, k) ∈ {(0, 0)} ∪ (N+ × N), let

Sn,k = {x ∈ S : #(x) = n,max(x) = n+ k} = {x ∈ Sk : #(x) = n}
Tn,k = {∅} ∪ Sn,k

Note 56. Of course, S0,0 = {∅}. If n ∈ N+ and k ∈ N, then

#(Sn,k) =
(
n+ k − 1
n− 1

)
(46)

since x ∈ Sn,k must contain the element n + k and n − 1 elements from
{1, 2, . . . , n+k−1}. If we interpret the binomial coefficient

(−1
−1

)
as 1, then (46)

is valid for n = k = 0 also. Suppose that x ∈ Sn,k and y ∈ Sm,j . If m + j ≤ k
(so that j ≤ k −m, then from our previous work, max(xy) = max(x) = n + k
and #(xy) = n+m. Therefore

max(xy)−#(xy) = (n+ k)− (n+m) = k −m (47)

so xy ∈ Sn+m,k−m. On the other hand, if m + j > k (so that j > k −m then
max(xy) = max(y)+#(x) = m+j+n and as before, #(xy) = n+m. Therefore

max(xy)−#(xy) = (m+ j + n)− (n+m) = j (48)

so xy ∈ Sn+m,j .
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Proposition 83. Tk is a complete sub-semigroup of S for each k ∈ N.

Proof. We first need to show that xy ∈ Tk for x, y ∈ Tk. The result is trivial
if x = ∅ or y = ∅, so we will assume that x and y are nonempty. Then
max(y) > max(x) − #(x), since the left-hand side is k + #(y) and the right-
hand side is k. By (44), max(xy) = max(y) + #(x). Hence

max(xy)−#(xy) = (max(y) + #(x))− (#(x) + #(y)) = max(y)−#(y) = k

Therefore xy ∈ Tk.
To show completeness, Suppose that x, y ∈ Tk and x ⊆ y so that xu = y

for some u ∈ S. If x = y then u = ∅ ∈ Tk and if x = ∅ then u = y ∈ Tk.
Thus, suppose that x is a proper subset of y (so that u 6= ∅). If max(u) ≤ k
then from (44), max(y) = max(x) and from (43), #(y) = #(x) + #(u), so
max(y)−#(y) = k−#(u) < k, a contradiction. Thus, max(u) > k. From (44),
max(u) = max(y) − #(x) and from (43), #(u) = #(y) − #(x), so max(u) −
#(u) = max(y)−#(y) = k. Thus, u ∈ Tk.

Note 57. Note that

S0 = {{1, 2, . . . ,m} : m ∈ N}

If y ∈ S with #(y) = n, then

{1, 2, . . . ,m}y = {1, 2, . . . ,m} ∪ {m+ y(1),m+ y(2), . . . ,m+ y(n)}

In particular,

{1, 2, . . . ,m}{1, 2, . . . , n} = {1, 2, . . . ,m+ n}

so (S0, ·) is isomorphic to (N,+) with isomorphism x 7→ #(x). Finally, note
that ∅ ∈ S0 so T0 = S0.

To characterize the exponential distributions on Tk, we must first character-
ize the minimal elements of Sk (which are the irreducible elements of Tk).

Proposition 84. The set of minimal element of Sk is

Mk = {x ∈ Sk : x(i) ≤ k for all i < #(x)}

There are 2k minimal elements.

Proof. First we show that if x ∈ Sk is not a minimal element of Sk then x /∈Mk.
Thus, suppose that x = uv where u, v ∈ Sk are nonempty. Then max(u) > k
and max(u) ∈ u ⊆ uv = x. Moreover, max(u) < max(x), so the rank of max(u)
in x is less than #(x) = #(u) + #(v). Therefore x /∈Mk.

Next we show that if x /∈Mk then x is not a minimal element of Sk. Thus,
suppose that x ∈ Sk and x(i) > k for some i < #(x). Construct u ∈ S as
follows: x(i) ∈ u and u contains x(i) − k − 1 elements of x that are smaller
than x(i). This can be done since x(i)− i ≤ k, and hence x(i)− k − 1 ≤ i− 1,
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and by definition, x contains i − 1 elements smaller than x(i). Now note that
max(u)−#(u) = x(i)−(x(i)−k) = k so u ∈ Sk. By construction, u ⊆ x so there
exists v ∈ S such that uv = x. Recall that v is the set of ranks of the elements of
x−u in uc. But uc contains k elements less than x(i) together with the elements
x(i) + 1, x(i) + 2, . . .. The largest element of x− u is max(x) = #(x) + k which
has rank greater than k in uc. Therefore max(v) > k = max(u) −#(u) so by
Proposition 79, max(x) = max(v) + #(u). Therefore

max(v)−#(v) = (max(x)−#(u))− (#(x)−#(u)) = max(x)−#(x) = k

so v ∈ Sk. Therefore x is not a minimal element of Sk.
Next, note that if x ∈ Sk and #(x) ≥ k + 2, then x /∈ Mk, since one of the

k+ 1 elements of x of rank less than #(x) must be at least k+ 1. For n ≤ k+ 1,
the number of elements x ∈ Mk with #(x) = n is

(
k

n−1

)
, since x must contain

n+ k and n− 1 elements in {1, 2, . . . , k}. Hence

#(Mk) =
k+1∑
n=1

(
k

n− 1

)
= 2k

Example 29. The minimal elements of S1 are {2} and {1, 3}. The minimal
elements of S2 are {3}, {1, 4}, {2, 4}, and {1, 2, 5}.

Example 30. The number of elements in a factoring of an element in Tk into
irreducible elements is not necessarily unique. For example, in T1 we have

{1, 3}{1, 3} = {2}{2}{1, 3} = {1, 2, 3, 5}

Thus, (Tk,⊆) is not a uniform poset.

Since (T0, ·) is isomorphic to (N,+), the cumulative function of order n ∈ N
on T0 corresponding to counting measure # is

#0,n(x) =
(

#(x) + n

n

)
, x ∈ T0

Problem 21. Find the cumulative functions for Tk, corresponding to counting
measure, when k ≥ 1.

15.4 Exponential distributions on Tk

Theorem 45. There are no memoryless distributions on S, and hence no ex-
ponential distributions.

Proof. Suppose that X is a random variable on S with a memoryless distribu-
tion. Thus, X is a random, finite subset of N+. By the memoryless property,

P({i}{i} ⊆ X) = P(i ∈ X)P(i ∈ X)
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P({i+ 1}{i} ⊆ X) = P(i+ 1 ∈ X)P(i ∈ X)

But {i}{i} = {i+ 1}{i} as noted above, so we must have

P(i+ 1 ∈ X) = P(i ∈ X)

for every i ∈ N+. Next, note that if i1 < i2 < · · · < in then by another
application of the memoryless property,

P(i1 ∈ X, i2 ∈ X, . . . , in ∈ X) = P({i1, i2, . . . , in} ⊆ X)
= P({in}{in−1} · · · {i1} ⊆ X)
= P(i1 ∈ X)P(i2 ∈ X) · · ·P(in ∈ X)

It therefore follows that the events {{i ∈ X} : i ∈ N+} are independent and
identically distributed. By the Borel-Cantelli lemma, infinitely many of the
events must occur with probability 1, so X is infinite—a contradiction.

Although there are no exponential distributions on S, each of the sub-
semigroups Tk has a one-parameter family of exponential distributions.

Theorem 46. A random variable X taking values in Tk has an exponential
distribution if and only if the upper probability function F and density function
f have the following form, for some α ∈ (0, 1):

F (x) = α#(x), x ∈ Tk (49)

f(x) =
(1− α)k+1

(1− α)k+1 + α
α#(x), x ∈ Tk (50)

Proof. The function F (x) = α#(x) takes values in (0, 1] and satisfies F (xy) =
F (x)F (y) for all x y ∈ Tk. Moreover

∑
x∈Tk

F (x) =
∞∑
n=0

∑
x∈Tk,n

F (x) =
∞∑
n=0

∑
x∈Tn,k

αn

= 1 +
∞∑
n=1

(
n+ k − 1
n− 1

)
αn =

(1− α)k+1 + α

(1− α)k+1

It follows that F and f as given above are the upper probability function and
density function, respectively, of an exponential distribution.

Conversely, suppose now that F is the upper probability function on Tk with
the memoryless property. T0, as noted earlier, is isomorphic to (N,+), with #
an isomorphism. Thus, if k = 0, F must have the form F (x) = α#(x) where
α = F ({1}) ∈ (0, 1). For general k, we will show by induction on #(x) that
F (x) = α#(x) where α = F ({k + 1}) ∈ (0, 1). The result is trivially true if
#(x) = 0, since x = ∅. The result is also trivially true if #(x) = 1, since the
only such x ∈ Tk is x = {k+ 1}. Suppose now that F (x) = α#(x) for all x ∈ Tk
with #(x) ≤ n. Let x ∈ Tk with #(x) = n+1. If x is not an irreducible element,
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then x = uv where u, v ∈ Tk, #(u) ≤ n, #(v) ≤ n, and #(u) + #(v) = #(x).
In this case,

F (x) = F (u)F (v) = α#(u)α#(v) = α#(x)

On the other hand, if x is irreducible, let j = min{i ∈ x : i + 1 /∈ x}. Note
that j < #(x) since max(x) = #(x) + k. Now let y ∈ Tk be obtained by from
x by replacing j with j + 1. Note that #(y) = #(x) and moreover, yc can be
obtained from xc by replacing j + 1 with j. We claim that xx = yx; that is,
x∪xcy = y∪ ycx. To see this, note first that if i 6= j and i 6= j+ 1, then i ∈ x if
and only if i ∈ y, and i ∈ xc if and only if i ∈ yc. On the other hand, j ∈ x and
j ∈ ycx since j = yc(x(1)) (by definition, there are x(1)− 1 elements less than
x(1) in yc; the next element in yc is j). Similarly, j + 1 ∈ y and j + 1 ∈ xcx
since j + 1 = xc(x(1)). Since xx = yx, it follows from the memoryless property
that F (x) = F (y). Continuing this process, we find that F (x) = F (y) for some
y ∈ Tk that is not irreducible, but with #(y) = #(x). It then follows that
F (x) = F (y) = α#(y) = α#(x) and the proof is complete.

Example 31. To illustrate the last part of the proof, let x = {3, 4, 5, 8, 15}, so
that x ∈ T10. Then j = 5, y = {3, 4, 6, 8, 15} and

xx = yx = {3, 4, 5, 6, 7, 8, 9, 12, 15, 20}

.

Note 58. Suppose that X has the exponential distribution on Tk given in
Theorem 46. From the general theory of exponential distributions, the expected
number of subsets ofX in Tk is the reciprocal of the rate parameter in the density
function. Thus,

E(#[∅, X]) = 1 +
α

(1− α)k+1

If k = 0 (recall that S0 = T0) note that

P(X = x) = (1− α)α#(x), x ∈ S0 (51)

On the other hand, suppose that k ∈ N+. Then

P(X ∈ Sk) = 1− P(X = ∅) = 1− g(0) =
α

(1− α)k+1 + α

Thus, the conditional distribution of X given X ∈ Sk has density function

P(X = x|X ∈ Sk) =
P(X = x)
P(X ∈ Sk)

= (1− α)k+1α#(x)−1, x ∈ Sk (52)

The density function of X depends on x ∈ Tk only through #(x), so it is
natural to study the distribution of #(X). Of course, by definition max(X) =
#(X) + k on Tk, so the distribution of #(X) determines the distribution of
max(X).
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Corollary 35. Suppose that X has the exponential distribution on Tk given in
Theorem 46, Then

P[#(X) = n] =
(1− α)k+1

(1− α)k+1 + α

(
n+ k − 1

k

)
αn, n ∈ N (53)

E[#(X)] =
α

1− α
α(1 + kα)

(1− α)k+1 + α
(54)

When k = 0, (53) gives P[#(X) = n] = (1− α)αn for n ∈ N, so #(X) has a
geometric distribution on N. In general, #(X) has a modified negative binomial
distribution.

Corollary 36. Given #(X) = n, X is uniformly distributed on Sn,k

Proof. Let x ∈ Sn,k. Using the probability density functions of X and #(X)
we have

P[X = x | #(X) = n] =
P(X = x)
P[#(X) = n]

=
1(

n+k−1
n−1

)
It is easy to see from (54) that for each k ∈ N, E[#(X)] is a strictly increasing

function of α and maps (0, 1) onto (0,∞). Thus, the exponential distribution on
Tk can be re-parameterized by expected cardinality. Moreover, the exponential
distribution maximizes entropy with respect to this parameter:

Corollary 37. The exponential distribution in Theorem 46 maximizes entropy
over all distributions on Tk with expected value given by 54.

Proof. We use the usual inequality for entropy: if f and g are probability density
functions of random variables X and Y , respectively, taking values in Tk, then

−
∑
x∈Tk

g(x) ln[g(x)] ≤ −
∑
x∈Tk

g(x) ln[f(x)] (55)

If X has the exponential distribution in Theorem 46, and E(#(Y )) = E(#(X))
then substituting into the right-hand side of equation 55 we see that the entropy
of Y is bounded above by

− ln(ck,α)− µk,α ln(α)

where ck,α is the rate parameter of the exponential density in equation 50 and
µk,α is the mean cardinality in equation 54. Of course, the entropy of X achieves
this upper bound.

Theorem 47. Suppose that X has the exponential distribution on Tk with
parameter α. If x ∈ Sj (x 6= ∅), then

P(X ⊇ x) =
α#(x)+1

(1− α)k+1 + α
, j < k

P(X ⊇ x) =
(1− α)k+1

(1− α)k+1 + α

(
j

j − k

)
α#(x)+j−k[1 + αH(j, k, α)], j > k
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where H(j, k, α) = hyper([1, 1 + j], [1 + j − k], α).

Proof. Let x ∈ S. Using the distribution of #(X) and the fact that X is
uniformly distributed on Sn,k, given #(X) = n, we have

P(X ⊇ x) =
∞∑
n=0

P(#(X) = n)P(X ⊇ x) | #(X) = n)

=
(1− α)k+1

(1− α)k+1 + α

∞∑
n=0

(
n+ k − 1

k

)
αn

#{y ∈ Sn,k : y ⊇ x}(
n+k−1

k

)
=

(1− α)k+1

(1− α)k+1 + α

∞∑
n=0

αn#{y ∈ Sn,k : y ⊇ x}

Suppose first that x ∈ Sm,j where j < k. Then {y ∈ Sn,k : y ⊇ x} = ∅ if
n ≤ m. Suppose n > m so that m + j < n + k To construct y ∈ Sn,k with
y ⊇ x, we must add the element n + k and then add n −m − 1 elements from
{1, . . . , n+ k − 1} − x. The number of such subsets is

(
n+k−1−m
n−m−1

)
. Therefore

P(X ⊇ x) =
(1− α)k+1

(1− α)k+1 + α

∞∑
n=m+1

αn
(
n+ k −m− 1
n−m− 1

)

=
(1− α)k+1

(1− α)k+1 + α
αm+1

∞∑
i=0

(
i+ k

i

)
αi

=
αm+1

(1− α)k+1 + α

Next, suppose that x ∈ Sm,j with j > k. If m+ j > n+ k then {y ∈ Sn,k :
y ⊇ x} = ∅. Suppose m + j = n + k. To construct y ∈ Sn,k with y ⊇ x, we
must add n−m elements from {1, . . . , n+ k− 1}− x. The number of such sets
is
(
n−m+k
n−m

)
=
(
j

j−k
)

Suppose m+ j < n− k. To construct y ∈ Sn,k with y ⊇ x,
we must add n + k and n −m − 1 elements from {1, . . . , n + k − 1} − x. The
number of such sets is

(
n−m+k−1
n−m−1

)
. Therefore

P(X ⊇ x) =
(1− α)k+1

(1− α)k+1 + α
×( j

j − k

)
αm+j−k +

∞∑
n=m+j−k+1

(
n−m− 1 + k

n−m− 1

)
αn


Simplifying,

P(X ⊇ x) =
(1− α)k+1

(1− α)k+1 + α

(
j

j − k

)
αm+j−k[1 + αH(j, k, α)]
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Problem 22. Find a closed form expression for the gamma density function
of order n on Tk. This is equivalent to the problem of finding the cumulative
function of order n− 1, corresponding to counting measure #.

Problem 23. Determine whether the exponential distributions of Tk are com-
pound Poisson (and therefore infinitely divisible relative to the semigroup op-
eration).

Problem 24. If X has an exponential distribution on Tk, compute the hitting
probability function on S. That is, compute P(X ∩ x 6= ∅) for x ∈ S.

15.5 Almost exponential distributions on S

There are no exponential distributions on S. However, we can define distribu-
tions that are “close” to exponential by forming mixtures of the distributions
in (51) and (52). Thus, suppose that X takes values in S with probability mass
function

P(X = x) =

{
β0(1− α0)α#(x)

0 , x ∈ S0

βk(1− αk)k+1α
#(x)−1
k , x ∈ Sk, k ∈ N+

(56)

where αk, βk ∈ (0, 1) for each k ∈ N and
∑∞
k=0 βk = 1. Thus, the conditional

distribution of X given X ∈ Sk is the same as the corresponding conditional
distribution of an exponential variable on Tk (with parameter αk). Note that
the conditional distribution of X on Tk itself is not exponential. Nor can we
construct a distribution on S by requiring that the conditional distributions on
Tk be exponential for each k, essentially because these semigroups share ∅ and
thus are not disjoint. The distribution of X is as close to exponential as possible,
in the sense that X is essentially exponential on each of the sub-semigroups Sk,
and these semigroups partition S.

The probability mass function in (56) is equivalent to

P(X = x) = ckα
#(x)
k , x ∈ S

where αk ∈ (0, 1) for each k ∈ N and where ck ∈ (0, 1), k ∈ N are chosen so that∑
x∈S ckα

#(x)
k = 1. Indeed, the equivalence is

c0 = (1− α0)β0

ck =
(1− αk)k+1

αk
, k ∈ N+

There is not much that we can say about the general distribution in (56).
In the remainder of this section we will study a special case with particularly
nice properties. For our first construction, we define a random variable X on
S by first selecting a geometrically distributed population size N , and then
selecting a sample from {1, 2, . . . , N} in an IID fashion. Of course, geometric
distributions are the exponential distributions for the positive semigroup (N,+).
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More precisely, let N be a random variable taking values in N, and having the
geometric distribution with parameter 1− r ∈ (0, 1):

P(N = n) = (1− r)rn, n ∈ N

Next, given N = n, X is distributed on the subsets of {1, 2, . . . , n} so that
i ∈ X, independently, with probability p for each i ∈ {1, 2, . . . , n}. Of course, if
N = 0, then X = ∅.

Theorem 48. For x ∈ S,

P(X = x) =
1− r

1− r + rp
(rp)#(x)[r(1− p)]max(x)−#(x) (57)

P(X ⊇ x) = p#(x)rmax(x) (58)

Proof. For x ∈ S,

P(X = x) =
∞∑
n=0

P(N = n)P(X = x|N = n)

If n < max(x) then x is not a subset of {1, 2, . . . , n}, so P(X = x|N = n) = 0.
If n ≥ max(x) then x is a subset of {1, 2, . . . , n} and by assumption, P(X =
x|N = n) = p#(x)(1− p)n−#(x). Substituting gives

P(X = x) =
∞∑

n=max(x)

(1− r)rnp#(x)(1− p)n−#(x)

which simplifies to (57). By a similar argument,

P(X ⊇ x) =
∞∑

n=max(x)

(1− r)rnp#(x)

which simplifies to (58).

Not surprisingly, the distribution of X depends on x ∈ S only through #(x)
and max(x)−#(x). As before, let U = #(X) and now let V = max(X)−#(X).
The following corollaries will explore the relationships between the distributions
of U , V , and X, and provide another way of constructing the distribution of X.

Corollary 38. For (n, k) ∈ {(0, 0)} ∪ (N+ × N),

P(U = n, V = k) = P(X ∈ Sn,k)

=
1− r

1− r + rp

(
n+ k − 1
n− 1

)
(rp)n[r(1− p)]k

Corollary 39. For (n, k) ∈ {(0, 0)} ∪ (N+ ×N), the conditional distribution of
X given U = n, V = k is uniform on Sn,k.
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Corollary 40. For n ∈ N, the conditional distribution of V given U = n is
negative binomial with parameters n and r(1− p):

P(V = k|U = n) =
(
n+ k − 1
n− 1

)
[r(1− p)]k(1− r + rp)n, k ∈ N (59)

Corollary 41. The distribution of U is geometric with parameter (1− r)/(1−
r + rp). Thus,

P(U = j) =
1− r

1− r + rp

(
rp

1− r + rp

)j
, j ∈ N

Of course, Corollaries 39, 40, and 41 determine the distribution of X. In fact
these results give an alternate way of constructing the distribution of X in the
first place: We first give U a geometric distribution with a parameter a ∈ (0, 1);
given U = n we give V a negative binomial distribution with parameters n and
b ∈ (0, 1); and finally, given U = n, V = k, we give X the uniform distribution
on Sn,k. Our original construction, although simple, is perhaps unsatisfactory
because the population variable N is hidden (not directly observable from X).
The alternate construction has no hidden variables, and moreover, the geometric
distribution of U and the conditional uniform distribution for X given U =
n, V = k are natural. On the other hand, the conditional negative binomial
distribution of V given U = n is somewhat obscure. The two constructions
are equivalent, since there is a one-to-one correspondence between the pairs of
parameters:

a =
rp

1− r + pr
b = r(1− p)

r = a(1− b) + b p =
a(1− b)

a(1− b) + b

Our next goal is to study the distribution of the random subset X on the
sub-semigroups Sk. First note that

P(X = x)
P(X ⊇ x)

=
1− r

1− r + rp
(1− p)max(x)−#(x)

Thus, for k ∈ N, X has constant rate 1−r
1−r+rp (1− p)k on the sub-semigroup Sk.

In particular, for x ∈ S0,

P(X = x) =
1− r

1− r + rp
(rp)#(x)

P(X ⊇ x) = (rp)#(x)

Hence, X has the memoryless property on S0 (in addition to the constant rate
property). That is, for x, y ∈ S0,

P(X ⊇ xy) = (rp)#(xy) = (rp)#(x)+#(y)

= (rp)#(x)(rp)#(y) = P(X ⊇ x)P(X ⊇ y)
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To find the conditional distribution of X given X ∈ Sk, we first need P(X ∈ Sk),
or equivalently, the probability density function of V .

Corollary 42. V has a modified geometric distribution:

P(X ∈ S0) = P(V = 0) =
1− r

(1− r + rp)(1− rp)

P(X ∈ Sk) = P(V = k) =
(1− r)rp

(1− r + rp)(1− rp)

(
r(1− p)
1− rp

)k
, k ∈ N+

Corollary 43. The conditional distributions of X on Sk are as follows:

P(X = x|X ∈ S0) = (1− rp)(rp)#(x), x ∈ S0 (60)

P(X = x|X ∈ Sk) = (1− rp)k+1(rp)#(x)−1, x ∈ Sk, k ∈ N+ (61)

Thus, X has an almost exponential distribution in the sense of (56), with
αk = 1−rp for each k ∈ N, and with the mixing probabilities given in Corollary
42.

Recall that by Theorem 45, no exponential distribution on S exists because
the events {{i ∈ X} : i ∈ N+} would have to be independent with a common
probability. The next corollary explores these events for the random variable in
Theorem 48.

Corollary 44. Suppose that X has the distribution in Theorem 48.

1. P(i ∈ X) = pri for i ∈ N+.

2. If i1, i2, . . . , in ∈ N+ with i1 < i2 < · · · < in then

P(in ∈ X|i1 ∈ X, . . . , in−1 ∈ X) = P(in ∈ X|in−1 ∈ X)

= P(in − in−1 ∈ X) = prin−in−1

3. For j ∈ N+, the events {1 ∈ X}, {2 ∈ X}, . . . , {j − 1 ∈ X} are condition-
ally independent given {j ∈ X} with P(i ∈ X|j ∈ X) = p for i < j.

Property 3 in Corollary 44 is clearly a result of the original construction of
X. Property 2 is reminiscent of a Markov property. This property implies that
the events {{i ∈ X} : i ∈ N+} are positively correlated, but asymptotically
uncorrelated. In fact the correlation decays exponentially since

P(i+ j ∈ X|i ∈ X) = P(j ∈ X) = prj → 0 as j →∞

Problem 25. Characterize all random subsets of N+ that satisfy the “partial
Markov property” above.

From Corollaries 41 and 40, we can compute the expected value of U = #(X)
and W = max(X) = U + V :

E(U) =
rp

1− r
(62)

E(W ) =
rp

(1− r)(1− r + rp)
(63)
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It is easy to see from (62) and (63) that (E(U),E(W )), as a function of (r, p)
maps (0, 1)2 one-to-one and onto {(c, d) : 0 < c < d < ∞}. Thus, the dis-
tribution of X can be re-parameterized by expected cardinality and expected
maximum. Explicitly, if 0 < c < d, then the values of r and p that yield
E(U) = c and E(W ) = d are

r = 1− c

d(1 + c)
, p =

c2

d+ cd− c

Moreover, the distribution of X maximizes entropy with respect to these pa-
rameters. The proof of the following corollary is essentially the same as the
proof of Corollary 37

Corollary 45. The distribution in Theorem 48 maximizes entropy among all
distributions on S with expected cardinality given by (62) and expected maxi-
mum given by (63).

Proposition 85. Let Z = min(X) if X 6= ∅, and let Z = 0 if X = ∅. Then Z
has a modified geometric distribution on N:

P(Z = 0) =
1− r

1− r + rp

P(Z = k) = rp[r(1− p)]k−1, k ∈ N+

Of fundamental importance in the general theory of random sets (see Math-
eron [20]) is the hitting probability function G:

G(x) = P(X ∩ x 6= ∅), x ⊆ N+

This function completely determines the distribution of a random set. Note
that G is defined for all subsets of the positive integers, not just finite subsets.

Theorem 49. Suppose that X has the almost exponential distribution with
parameters p and r. Then

G(x) =
#(x)∑
i=1

p(1− p)i−1rx(i), x ⊆ N+

where as usual, x(i) is the i’th smallest element of x.

Proof. Suppose first that x is finite (so that x ∈ S). From the standard
inclusion-exclusion formula (or from [20]),

G(x) =
#(x)∑
k=1

(−1)k−1
∑

y⊆x,#(y)=k

F (y)
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Hence, substituting the formula for F (y) we have

G(x) =
#(x)∑
k=1

(−1)k−1
∑

y⊆x,#(y)=k

p#(y)rmax(y)

=
#(x)∑
k=1

(−1)k−1pk
#(x)∑
i=k

∑
y⊆x,#(y)=k,max(y)=x(i)

rx(i)

=
#(x)∑
k=1

(−1)k−1pk
#(x)∑
i=k

(
i− 1
k − 1

)
rx(i)

=
#(x)∑
i=1

rx(i)
i∑

k=1

(
i− 1
k − 1

)
(−1)k−1pk

=
#(x)∑
i=1

p(1− p)i−1rx(i)

For infinite x, the formula holds by the continuity theorem.

Example 32. An easy computation from Theorem 49 gives

G({n, n+ 1, . . .}) =
prn

1− r + rp
, n ∈ N+

This is also P(max(X) ≥ n), and agrees with our earlier results. In particular,
letting n = 1, we get G(N+) = P(X 6= ∅):

G(N+) =
rp

1− r + rp

This agrees with 1 − P(X = ∅) using the probability density function. The
probability that X contains an even integer is

G({2, 4, . . .}) =
pr2

1− r2 + pr2

The probability that X contains an odd integer is

G({1, 3, . . .}) =
rp

1− r2 + pr2

Example 33. The following list gives 10 simulations of X with r = 0.95 and
p = 0.65, corresponding to E(U) = 12.35 and E(W ) = 18.5.

1. X = {1, 2, 3}, U = 3, W = 3

2. X = {1, 2, 3, 4, 5, 6, 9, 10, 11, 12, 16, 17, 18, 19, 20, 21, 22, 25, 26, 27, 32},
U = 21, W = 32

3. X = {2, 3, 5}, U = 3, W = 5
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4. X = {1, 4, 5, 9, 10, 11, 12}, U = 7, W = 12

5. X = {2, 5, 6, 7, 8, 12, 13, 15, 17, 18, 20, 23, 24, 25, 26, 27, 29, 30, 31, 32, 35,
37, 38, 40, 41}, U = 25, W = 41

6. X = {1, 2, 6, 8, 10, 12, 15, 16, 17, 18, 20, 23, 25, 28, 29, 30, 31, 32, 34},
U = 19, W = 34

7. X = {1, 2, 3}, U = 3, W = 3

8. X = {1, 3, 4, 7, 10, 11, 12, 13, 14, 21, 30, 32, 33, 34, 35, 37, 38, 40, 41, 42, 45,
46, 47, 49, 50, 51, 52, 53}, U = 28, W = 53

9. X = {1, 4, 5, 6, 9}, U = 5, W = 9

10. X = {5, 7}, U = 2, W = 7

Problem 26. Determine how the random sets in this section relate to the
random closed sets studied by Matheron [20] and others.

Problem 27. Compute the convolution powers of the probability density func-
tion of the almost exponential distribution with parameters r and p. That is, if
X1, X2, . . . are IID variables with this distribution, find the density function of
Yn = X1X2 · · ·Xn.

15.6 Constant rate distributions on S

Recall that the standard poset (S,⊆) is a uniform; in the notation of Section
3.7, if x ⊆ y then d(x, y) = #(y)−#(x). Let

An = {x ∈ S : #(x) = n}
An(x) = {y ∈ S : x ⊆ y, #(y) = #(x) + n}

So {An : n ∈ N} is a partition of S and {An(x) : n ∈ N} is a partition of I[x].
Recall that (S, ·) does not have any exponential distributions. But does

(S,�) have constant rate distributions? We give some examples of distributions
that are not constant rate. These models are not mutually exclusive.

Example 34 (Independent elements). Suppose that X is a random variable
with values in S and the property that i ∈ X with probability pi, independently
over i ∈ N. We must have

∏
i∈N+

pi = 0 so that X is finite with probability 1.
For x ∈ S,

P(X = x) =
∏
i∈x

pi
∏
i∈xc

(1− pi)

while
P(X ⊇ x) =

∏
i∈x

pi

Hence X cannot have constant rate.
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Example 35 (Sampling models). Suppose that we pick a random population
size N ∈ N with probability density function g and upper probability function
G. Given N = n, we put i ∈ X independently with probability p for i ∈ 1, . . . , n.
Then for x ∈ S,

P(X ⊇ x) =
∞∑

n=max(x)

P(N = n)P(X ⊇ x|N = n)

=
∞∑

n=max(x)

g(n)p#(x) = G(max(x))p#(x)

whereas

P(X = x) =
∞∑

n=max(x)

P(N = n)P(X = x|N = n)

=
∞∑

n=max(x)

g(n)p#(x)(1− p)n−#(x)

= p#(x)
∞∑

n=max(x)

g(n)(1− p)n−#(x)

So X does not have constant rate. If we generalize this model so that, given
N = n, i ∈ X with probability pi independently for i ∈ {1, . . . , n} then

P(X ⊇ x) = G(max(x))
∏
i∈x

pi

whereas

P(X = x) =
∏
i∈x

pi

∞∑
n=max(x)

g(n)
∏

i∈{1,...n}−x

(1− pi)

so again, it would seem impossible for X to have constant rate.

Example 36 (Conditionally independent elements). Suppose that X is a ran-
dom variable taking values in S, satisfying a generalization of the last con-
dition in Corollary 44. Specifically, for j ∈ N+ the events {1 ∈ X}, {2 ∈
X}, . . . , {j − 1 ∈ X} are conditionally independent with

P(i ∈ X|j ∈ X) = pij , i ∈ {1, . . . j − 1}

Let g(i) = P(i ∈ X) for i ∈ N+. Then for x ∈ S,

P(X ⊇ x) = g(max(x))
∏
i∈a(x)

pi,max(x)

P(x = x) = g(max(x))
∏
i∈a(x)

pi,max(x)

∏
j∈b(x)

(1− pi,max(x))

where a(x) = x − {max(x)} and b(x) = {1, . . .max(x) − 1} − a(x). Again, it’s
hard to see how X could have constant rate.
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Suppose that X has probability density function f and upper probabiltiy
function F . Recall that the upper probability function F determines the density
function f :

f(x) =
∞∑
n=0

(−1)n
∑

y∈An(x)

F (y), x ∈ S (64)

Thus, if Xhas constant rate α then

f(x) =
1
α

∞∑
n=0

(−1)n
∑

y∈An(x)

f(y), x ∈ S (65)

15.7 The cardinality of a constant rate variable

Suppose that X takes values in S, and that X has constant rate α on the poset
(S,⊆) (although of course, we do not know that such variables exist). Our goal
in this subsection is to study the distribution of U = #(X).

Lemma 6. The distribution of U satisfies

αP(U = k) = E
[
(−1)U+k

(
U

k

)]
, k ∈ N (66)

Proof. Let f denote the probability density function of X, as above. From (65)

P(U = k) =
∑
x∈Ak

f(x) =
1
α

∞∑
n=0

(−1)n
∑
x∈Ak

∑
y∈An(x)

f(y)

The last two sums are over all x, y ∈ S with #(y) = n + k, and x ⊆ y. Inter-
changing the order of summation gives

P(U = k) =
1
α

∞∑
n=0

(−1)n
∑

y∈An+k

∑
{f(y) : x ∈ Ak, x ⊆ y}

=
1
α

∞∑
n=0

(−1)n
∑

y∈An+k

(
n+ k

k

)
f(y)

=
1
α

∞∑
n=0

(−1)n
(
n+ k

k

)
P(U = n+ k)

Equivalently (with the substitution j = n+ k),

αP(U = k) =
∞∑
j=k

(−1)j−k
(
j

k

)
P(U = j)

With the usual convention on binomial coefficients, that is
(
a
b

)
= 0 if b < 0 or

b > a, we have

αP(U = k) =
∞∑
j=0

(−1)j+k
(
j

k

)
P(U = j) = E

[
(−1)k+U

(
U

k

)]
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In particular, when k = 0, (66) gives

αP(U = 0) = E[(−1)U ] = P(U is even)− P(U is odd) = 2P(U is even)− 1

But also, P(U = 0) = f(∅) = αF (∅) = α. Thus, letting h denote the probability
density function of U , we have the curious property that

h2(0) = 2
∞∑
n=0

h(2n)− 1

Now let G denote the probability generating function of U .

Lemma 7. The distribution of U satisfies (66) if and only if

G(t− 1) = αG(t) = G(0)G(t), t ∈ R (67)

Proof. Assume that (66) holds. Then

αh(k)tk = E
[
(−1)U+k

(
U

k

)
tk
]
, t ∈ R

and hence

α

∞∑
k=0

h(k)tk = E

[
(−1)U

∞∑
k=0

(−1)k
(
U

k

)
tk

]
(68)

The sum on the right converges for all t ∈ R and

αE(tU ) = E

[
(−1)U

U∑
k=0

(−t)k
(
U

k

)]
(69)

= E[(−1)U (1− t)U ] = E[(t− 1)U ] (70)

But also, α = h(0) = G(0) so (67) holds. Conversely, suppose that G satisfies
(67). Then (70), (69), and (68) hold with α = G(0). Equating coefficients give
(66).

Corollary 46. The distribution of U satisfies (67) if and only if

G(t− n) = αnG(t) = Gn(0)G(t), t ∈ R, n ∈ Z (71)

Proof. Suppose that G satisfies (67). Let t ∈ R. By a simple induction, G(t −
n) = αnG(t) for n ∈ N. But then for n ∈ N,

G(t) = G(t+ n− n) = αnG(t+ n)

or equivalently, G(t+ n) = α−nG(t). Conversely, (71) clearly implies (67).
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Lemma 8. The distribution of U satisfies (67) if and only if

P(U = n) = αE
[(
U

n

)]
, n ∈ N (72)

Proof. Suppose that (67) holds. Then αG(n)(t) = G(n)(t − 1) for n ∈ N and
hence αG(n)(1) = G(n)(0) for n ∈ N. But G(n)(1) = E[(U)n] and G(n)(0) =
n!P(U = n). Hence we have

P(U = n) = α
E[(U)n]
n!

= αE
[(
U

n

)]
Conversely suppose that (72) holds and let G denote the probability generating
function of U . Then we have αG(n)(1) = G(n)(0) for n ∈ N. Let H(t) =
G(0)G(t + 1) = αG(t + 1). Then H(n)(0) = G(n)(0) for n ∈ N, so G = H.
Equivalently, G(t− 1) = αG(t) for t ∈ R.

Combining Lemmas 6 and 8 we have the curious property that

(−1)nE
[
(−1)U

(
U

n

)]
= α2E

[(
U

n

)]
if U satisfies any of the equivalent conditions in Lemmas 6, 7, and 8. Let

µ(n) = E
[(
U

n

)]
= E

[
(U)n
n!

]
This is the binomial moment of order n. Thus, the probability density function
h of U and the binomial moment function µ are related by

h(n) = h(0)µ(n), n ∈ N

Theorem 50. The Poisson distribution with parameter λ > 0 satisfies the
equivalent conditions in Lemmas 6, 7 and 8 with α = e−λ. Conversely, the
Poisson distribution is the only distribution that satisfies these conditions.

Proof. Suppose that U has the Poisson distribution with parameter λ > 0 and
α = e−λ, recall that

G(t) = eλ(t−1), t ∈ R

so clearly
G(t− 1) = eλ(t−2) = e−λeλ(t−1) = e−λG(t)

Conversely, it’s easy to show that the equivalent conditions are in turn equivalent
to the famous Rao-Rubin characterization of the Poisson distribution [26].
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15.8 Constant rate distirbutions on S, continued

Now let gk denote the conditional probability density function of X given that
U = k, so that

gk(x) = P(X = x|U = k), x ∈ Ak
and suppose that U has the Poisson distribution with parameter λ. Then con-
dition (65) for X to have constant rate e−λ is

e−2λλ
k

k!
gk(x) =

∞∑
n=0

(−1)n
∑

y∈An(x)

e−λ
λn+k

(n+ k)!
gn+k(y), x ∈ Ak

or equivalently,

e−λ
gk(x)
k!

=
∞∑
n=0

(−λ)n

(n+ k)!

∑
y∈An(x)

gn+k(y), x ∈ Ak (73)

Lemma 9. Condition (73) holds if∑
y∈An(x)

gn+k(y) =
(
n+ k

k

)
gk(x), x ∈ Ak, k, n ∈ N (74)

Proof. Suppose that (74) holds. Then for x ∈ Ak,
∞∑
n=0

(−λ)n

(n+ k)!

∑
y∈An(x)

gn+k(y) =
∞∑
n=0

(−λ)n

(n+ k)!
(n+ k)!
n!k!

gk(x)

=
gk(x)
k!

∞∑
n=0

(−λ)n

n!
= e−λ

gk(x)
k!

and thus (73) holds.

Condition (74) is equivalent to

gk(x) =
1(
n
k

) ∑
y∈Bn(x)

gn(y), k ∈ N, n ∈ N, k ≤ n, x ∈ Bk (75)

where Bk = {x ∈ S : #(x) = k} and Bn(x) = {y ∈ S : #(y) = n, x ⊆ y}.
Condition (75) has the following interpretation:

Proposition 86. Suppose that Y is a random variable taking values in Bn
with probability density function gn. Let X be a randomly chosen subset of Y
of size k ≤ n. Then the density function gk of X satisfies (75).

Proof. The precise meaning of the hypothesis is that given Y = y, y ∈ Bn, the
conditional distribution of X is uniform on the collection of subsets of y of size
k. Thus, for x ∈ Bk,

gk(x) = P(X = x) =
∑

y∈Bn(x)

P(y = y)P(X = x|Y = y) =
1(
n
k

) ∑
y∈Bn(x)

gn(y)
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Note 59. In particular, (75) is consistent. If gn is a probability density function
on Bn, for a given n ∈ N, then we could define gk by (75) for k = 0, . . . , n− 1;
these would also be probability density functions.

Proposition 87. No sequence of probability density functions (gn : n ∈ N)
satisfying (75) exists.

Proof. Suppose that such a sequence does exist. Fix k ∈ N and x ∈ Bk and
then let n→∞ in (75). Since ∑

y∈Bn(x)

gn(y) ≤ 1

we must have gk(x) = 0.

16 A Positive Sub-semigroup of (C, ·)
16.1 Definitions

Let C denote the set of complex numbers z = x + iy with the topology of R2,
and let · denote ordinary complex multiplication. Let C0 = C− {0} and let

S = {z ∈ C : | z |> 1} ∪ {1}

both with the relative topology.

Proposition 88. (S, ·) is a positive sub-semigroup of the abelian group (C0, ·),
The induced partial order is given by

z ≺ w if and only if |z| < |w|

Proof. z ≺ w if and only if there exists u ∈ S, u 6= 1, such that zu = w. But
this occurs if and only if |u| = |w/z| = |w|/|z| > 1.

Proposition 89. The measure λ defined by

dλ(z) =
1
|z|2

dxdy =
1

x2 + y2
dxdy

is left-invariant on the group (C−{0}, ·). Hence λ restricted to S is left-invariant
on S.

Proof. Let f : S → R be measurable. It suffices to show that for w ∈ C0,∫
C0

f(wz)dλ(z) =
∫

C0

f(z)dλ(z)

Let z = reiθ where (r, θ) denote ordinary polar coordinates in C, 0 ≤ θ < 2π.
Then

dλ(z) =
1
r2
dxdy =

1
r2
rdrdθ =

1
r
drdθ
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Let w = ρeiφ. Then∫
C0

f(wz)dλ(z) =
∫ 2π

0

∫ ∞
0

f(rρei(θ+φ))
1
r
drdθ

Now let r̂ = rρ, θ̂ = θ + φ. Then dr = (1/ρ)dr̂ and dθ = dθ̂ so∫
C0

f(wz)dλ(z) =
∫ 2π

0

∫ ∞
0

f
(
r̂eiθ̂

) 1
r̂
dr̂dθ =

∫
C0

f(z)dλ(z)

16.2 Exponential distributions

Theorem 51. F : S → (0, 1] is the upper probability function of an expo-
nential distribution on (S, ·) if and only if F (z) = |z|−β for some β > 0. The
corresponding density function (with respect to µ) is

f(z) =
β

2π
|z|−β , z ∈ S

Proof. Suppose that F : S → (0, 1] satisfies F (zw) = F (z)F (w) for z, w ∈ S. If
x, y ∈ [1, ∞) then F (xy) = F (x)F (y); that is, F is a homomorphism restricted
to the multiplicative semigroup [1, ∞). Hence there exists β > 0 such that
F (x) = x−β for x ∈ [1, ∞). If x > 1 then [F (−x)]2 = F (x2) = x−2β so
F (−x) = x−β and therefore F (x) = |x|−β for x ∈ (−∞, 1) ∪ [1, ∞). Next, if
r > 1, m ∈ N and n ∈ N+ then

[F (reiπm/n)]n = F [(reiπm/n)n] = F (rneimπ) = r−nβ

Hence F (reimπ/n) = r−β . By continuity, F (reiθ) = r−β for r > 1 and any θ.
Next note that∫

S

F (z) dλ(z) =
∫
S

|z|−β 1
|z|2

dx dy

=
∫ 2π

0

∫ ∞
1

r−(β+2)r dr dθ =
∫ 2π

0

∫ ∞
1

r−(β+1) dr dθ =
2π
β

From the basic existence theorem, F is the upper probability function of an
exponential distribution on (S, ·) and that f given above is the corresponding
density function (with respect to the left-invariant measure λ).

Note 60. Suppose that Z has the exponential distribution on (S, ·) with pa-
rameter β > 0, as specified in the previous theorem. Then the density function
with respect to Lebesgue measure is

z 7→ β

2π
|z|−(β+2)
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In terms of polar coordinates, the density is

(r, θ) 7→ β

2π
r−(β+1)

It follows that Z = ReiΘ where R > 1 and 0 < Θ < 2π; R has density
r 7→ βr−(β+1) (with respect to Lebesgue measure); Θ is uniformly distributed
on (0, 2π); and R and Θ are independent.

17 Positive Sub-semigroups of GL(2)

17.1 Definitions

Recall the general linear group GL(n) of invertible matrices in Rn×n under the
operation of matrix multiplication and with the relative topology. A subgroup
of GL(2) is

G =
{[
x y
0 1

]
: x > 0, y ∈ R

}
Clearly G can be identified with (0,∞)× R, with the operation given by

(x, y)(u, v) = (xu, xv + y)

In this notation, identity is e = (1, 0) and the inverse of (x, y) is (1/x,−y/x).
According to Halmos [15], the left-invariant measure of G (unique up to multi-
plication by positive constants) is given by

dλ(x, y) =
1
x2
dxdy

Let T = {(x, y) : x ≥ 1, y ≥ 0}.

Lemma 10. T is a sub-semigroup of G. Moreover, T is a positive semigroup.

Proof. Clearly T is closed: If (x, y) ∈ T and (u, v) ∈ T ) then (x, y)(u, v) =
(xu, xv+ y) ∈ T . The identity element e ∈ T . If x ∈ T but x 6= e then x−1 /∈ T
so T has no non-trivial inverses. The other properties are inherited.

Lemma 11. The partial order associated with (T, ·) is the ordinary product
order:

(x, y) � (z, w) if and only if x ≤ z, y ≤ w

Proof. Suppose that (x, y) � (z, w). Then there exists (s, t) ∈ T such that
(x, y)(s, t) = (z, w). That is, xs = z and xt + y = w. But s ≥ 1 so x ≤ z and
xt ≥ 0 so y ≤ w. Conversely, suppose that (x, y) ∈ T , (z, w) ∈ T and that x ≤ z
and y ≤ w. Let s = z/x and t = (w − y)/x. Then s ≥ 1, t ≥ 0 and xs = z,
xt+ y = w. Thus (s, t) ∈ T and (x, y)(s, t) = (z, w), so (x, y) � (z, w).
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Thus, the poset (T,�) is associated with two very different positive semi-
groups. One is the direct product of ([1,∞), ·) and ([0,∞),+), that is,

(x, y)(u, v) = (xu, y + v)

The other is the semigroup considered in this chapter, corresponding to matrix
multiplication

(x, y)(u, v) = (xu, xv + y)

17.2 Exponential distributions

Proposition 90. T has no memoryless distributions and hence no exponential
distributions.

Proof. Note that (1, k) ≺ (1, k + 1) for k ∈ N and hence

(1, k)T ↓ ∅ as k →∞

To see this, note that if (x, y) ∈ (1, k)T for all k ∈ N then y < k for all k ∈ N.
Now suppose that F is a nontrivial continuous homomorphisms from (T, ·) into
((0, 1], ·). Then F must satisfy

F (xu, xv + y) = F (x, y)F (u, v), (x, y) ∈ T, (u, v) ∈ T (76)

Letting x = u = 1 we have F (1, y + v) = F (1, y)F (1, u) for y ≥ 0, v ≥ 0 so
there exists β > 0 such that F (1, y) = e−βy for y ≥ 0. Next letting v = y = 0
we have F (xu, 0) = F (x, 0)F (u, 0) for x ≥ 1, u ≥ 1 so there exists α > 0 such
that F (x, 0) = x−α for x ≥ 1. But then (x, y) = (1, y)(x, 0) so

F (x, y) = F (1, y)F (x, 0) = x−αe−β , x ≥ 1, y ≥ 0

But then one more application of the general homomorphism condition (76)
gives

(xu)−αe−β(xv+y) = [x−αe−βy][u−αe−βv] = (xu)−αe−β(y+v)

and this forces β = 0. Therefore F (x, y) = x−α for (x, y) ∈ T . In particular,
F (1, k) = 1 But in order for F to be the upper probability function for a measure
on T we would have to have F (1, k) → 0 as k → ∞ Therefore, there are no
memoryless, and hence no exponential distributions in S.

Any positive semigroup of GL(2) that contains T as a sub-semigroup will
also fail to have memoryless and hence exponential distributions. For example,
let

S =
{[
x y
0 z

]
: x ≥ 1, xz ≥ 1

}
Then S is a positive sub-semigroup (with nonempty interior) of the subgroup of
upper triangular nonsingular matrices. This subgroup has left-invariant measure
given by

dλ

[
x y
0 z

]
=

1
x2z

dx dy dz
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However, S has no memoryless distributions. Next let

S =
{[

x y
w z

]
: x ≥ 1, xz − wy ≥ 1

}
Then S satisfies the basic assumptions and is a sub-semigroup (with nonempty
interior) of the group GL(2) itself. This group has left-invariant measure given
by

dλ

[
x y
w z

]
=

1
(xz − wy)2

dx dy dw dz

However, S has no memoryless distributions.

Theorem 52. T has no constant rate distributions. (I think)

Proof. Let F denote the upper probabiliy function of a distribution with con-
stant rate α. Then the density function relative to Lebesuge measure is given
by f(x, y) = ∂2

∂x∂yF (x, y). Hence the density function relative to λ is g(x, y) =
x2f(x, y). Hence F must satisfy

∂2F

∂x∂y
F (x, y) =

α

x2
F (x, y), x > 1, y > 0

with boundary conditions F (1, 0) = 1, F (x, y) → 0 as x → ∞ or as y → ∞. I
don’t think there are any solutions.

17.3 Discrete positive semigroups

Now let T = N+ × N with the same operation as before:

(x, y)(u, v) = (xu, xv + y)

As before this corresponds to matrix multiplication if we identify (x, y) ∈ T

with the matrix
[
x y
0 1

]
. So, we have matrices with integer entries. For future

reference, note that

(x, 0)(y, 0) = (y, 0)(x, 0) = (xy, 0), x, y ∈ N+

(1, x)(1, y) = (1, y)(1, x) = (1, x+ y), x, y ∈ N
(1, 1)(x, y) = (x, y + 1), (x, y)(1, 1) = (x, x+ y), x ∈ N+, y ∈ N
(n, 0)(x, y) = (nx, ny), (x, y)(n, 0) = (nx, y), n, x ∈ N+; y ∈ N

Theorem 53. (T, ·) is a discrete positive semigroup. The associated partial
order is

(x, y) � (z, w) if and only if x|z, y ≤ w, x|(w − y)

The minimum element is (1, 0) and the set of irreducible elements is

I = {(1, 1)} ∪ {(n, 0) : n is prime }
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18 Trees

There are a variety of semigroup operations that can be imposed on trees and
other graphs.

18.1 Merging trees

Consider the collection S of finite, rooted trees. The merge operation is defined
on S as follows: for x, y ∈ S let x + y be the new tree obtained by merging
(identifying) the roots of x and y; this merged vertex is the root of the new tree.

Proposition 91. (S,+) is a commutative positive semigroup.

Proof. Clearly the operation is associative and commutative. The (degenerate)
tree e which consists of a single vertex is the identity. The left-cancellation law
holds: if x, y, and z are rooted trees and the merged trees x+y and x+z are the
same, then y and z must be the same. Finally, there are no non-trivial inverses:
if x merged with y produces the single vertex e then clearly x = y = e.

Let m(x) denote the number of edges in x ∈ S, so that m(x)+1 is the number
of vertices. Clearly, m is additive with respect to the semigroup operation:

m(x+ y) = m(x) +m(y)

To understand the associated partial order, suppose that x, y ∈ S and x 6= e.
Then x � y if and only if x is a subtree of y, with the same root, and the root
of y has degree at least 2.

Thus, the irreducible elements of (S, +) are the trees whose roots have degree
1. There are lots of these; in fact clearly, the set of irreducible trees can be put
into one-to-one correspondence with S itself. We can associate with x ∈ S a
unique irreducible tree x̂ by adding a new vertex to the root of x by a new edge.
The new vertex is the root of x̂.

19 Other Examples

We briefly describe related models that are not positive semigroups.

19.1 Equivalence relations and partitions

Consider a countably infinite set, which might as well be N+, the set of positive
integers. Consider the set S of equivalence relations on N+, or equivalently,
the collection of partitions of S. We can identify elements of S with functions
x : N+ × N+ → {0, 1} that have the properties

1. x(i, i) = 1 for each i ∈ N+ (reflexive property).

2. x(i, j) = x(j, i) for all i, j ∈ N+ (symmetric property).
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3. x(i, j) = 1 and x(j, k) = 1 imply x(i, k) = 1 for all i, j, k ∈ N+ (transitive
property).

The equivalence relation associated with x is i ∼ j if and only if x(i, j) = 1.
Equivalently, x(i, ·) is the indicator function of the equivalence class generated
by i.

A natural operation on S is

(xy)(i, j) = x(i, j)y(i, j) = min{x(i, j), y(i, j)}, i, j ∈ N+

If we view x as a partition (that is, a collection of non-empty, disjoint subsets
whose union is N+, then

xy = {a ∩ b : a ∈ x, b ∈ y, a ∩ b 6= ∅}

In terms of equivalence relations on N+,

i ∼xy j if and only if i ∼x j and i ∼y j

Clearly the operation makes S a commutative semigroup. There is an identity
e given by e(i, j) = 1 for all i, j; This corresponds to a partition with just one
element—the set N+; as an equivalence relation, all elements are equivalent.
There are no non-trivial invertible elements, since xy = e clearly implies x =
y = e. However, the left-cancellation law does not hold. In particular, x2 = x
for any x ∈ S.

A natural partial order on S is refinement: x � y if and only if y refines x;
that is, y(i, j) = 1 implies x(i, j) = 1 or equivalently, if b ∈ y then there exists
a ∈ x with b ⊆ a. The partial order is compatible with the semigroup operation
in the sense of a previous proposition: x � y if and only if xy = x.

Also, S has a maximum element m defined by m(i, j) = 1 if and only if i = j;
m corresponds to the equality relation = and partitions N+ into singletons.

In summary, (S, ·,�) has some of the properties of a positive semigroup, but
not all. Clearly, no sub-semigroup of S could be a positive semigroup either.
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[13] G Högnäs and A Mukherjea, Probability Measures on Semigroups, Plenum
Press (1995).

[14] AG Hawkes. “A bivariate exponential distribution with applications to reli-
ability”. Journal of the Royal Statistical Society, Series B, 34 (1972), 129—
131.

[15] PR Halmos. Measure Theory. Springer-Verlag, Berlin, 1974.

[16] T Hida and H Kuo. “Semigroups associated with generalized Brownian
functionals”. Semigroup Forum, 45, 261—263.

[17] T Kamae and U Krengel. “Stochastic Partial Ordering”. The Annals of
Probability, 6 (1978), 1044—1049.

[18] GD Lin and CY Hu, “The Riemann zeta distribution”, Bernoulli 7 (2001),
817—828

[19] AW Marshall and I Olkin. “A multivariate exponential distribution”. Jour-
nal of the American Statistical Association, 62 (1967), 30—44.

[20] G Matheron. Random Sets and Integral Geometry, Wiley, 1975.

[21] A Mukherjea and NA Tserpes. Measures on Topological Semigroups. Lec-
ture Notes in Mathematics 547, Springer-Verlag, Berlin, 1976.

[22] L Nachbin. Topology and Order. Van Nostrand, 1965.

[23] I Niven, HS Zuckerman, and HL Montgomery. An Introduction to the The-
ory of Numbers, 5th edition, Wiley 1991.

166



[24] M Pendergrass, private communication

[25] PS Puri and H Rubin. “On a characterization of the family of distribu-
tions with constant multivariate failure rates”. The Annals of Probability,
2 (1974), 738—740.

[26] CR Rao and H Rubin, “On a characterization of the Poisson distribution”
Sankhya, Ser. A, 41 (1964), 295—298.

[27] GH Rowell. Probability Distributions on temporal Semigroups, PhD Disser-
tation, University of Alabama in Huntsville, 1995.

[28] GH Rowell and K Siegrist. “Relative aging of distributions”, Probability in
the Engineering and Informational Sciences 12 (1998), 469—478.

[29] D Roy. “A characterization of Gumbel’s bivariate exponential and Lind-
ley and Singpurwalla’s bivariate Lomax distributions”. Journal of Applied
Probability, 27 (1989), 886—891.
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