Chapter 5: Linear Systems: Direct Methods

Uri M. Ascher and Chen Greif
Department of Computer Science
The University of British Columbia
{ascher,greif}@cs.ubc.ca

Slides for the book
http://www.ec-securehost.com/SIAM/CS07.html
Goals of this chapter

- To learn practical methods to handle the most common problem in numerical computation;
- to get familiar (again) with the ancient method of Gaussian elimination in its modern form of LU decomposition, and develop pivoting methods for its stable computation;
- to consider LU decomposition in the very important special cases of symmetric positive definite and sparse matrices;
- to study the expected quality of the computed solution, introducing as we go the fundamental concept of a condition number.
Outline

- Gaussian elimination and backward substitution
- LU decomposition
- Pivoting strategies
- Efficient implementation
- Cholesky decomposition
- Sparse matrices
- Permutations and ordering strategies
- Estimating error and the condition number
In general

- Here and in Chapter 7 we consider the problem of finding x which solves

$$Ax = b,$$

where A is a given, real, nonsingular, $n \times n$ matrix, and b is a given, real vector.

- **Such problems are ubiquitous in applications!**

- Two solution approaches:
 - **Direct methods**: yield exact solution in absence of roundoff error.
 - Variations of **Gaussian elimination**.
 - Considered in this chapter
 - **Iterative methods**: iterate in a similar fashion to what we do for nonlinear problems.
 - Use only when direct methods are ineffective.
 - Considered in Chapter 7
Backward substitution

- Special case: A is an upper triangular matrix

\[A = \begin{pmatrix}
 a_{11} & a_{12} & \cdots & a_{1n} \\
 & a_{22} & \ddots & \vdots \\
 & & \ddots & \vdots \\
 & & & a_{nn}
\end{pmatrix}, \]

i.e., all elements below the main diagonal are zero: $a_{ij} = 0, \forall i > j$.

- The algorithm:

\[
\text{for } k = n : -1 : 1 \\
\quad x_k = \frac{b_k - \sum_{j=k+1}^{n} a_{kj} x_j}{a_{kk}} \\
\text{end}
\]
Example

\[
x_1 - 4x_2 + 3x_3 = -2 \\
5x_2 - 3x_3 = 7 \\
-2x_3 = -2
\]

In matrix form:

\[
\begin{pmatrix}
1 & -4 & 3 \\
0 & 5 & -3 \\
0 & 0 & -2
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
=
\begin{pmatrix}
-2 \\
7 \\
-2
\end{pmatrix}.
\]

Backward substitution: \(x_3 = \frac{-2}{-2} = 1 \), then \(x_2 = \frac{1}{5} (7 + 3 \cdot 1) = 2 \), then \(x_1 = -2 + 4 \cdot 2 - 3 \cdot 1 = 3 \).
Forward substitution

- Special case: \(A \) is a **lower triangular** matrix

\[
A = \begin{pmatrix}
a_{11} & a_{21} & a_{22} \\
a_{21} & a_{22} & & \ddots \\
& \ddots & \ddots & \ddots \\
& & a_{n1} & a_{n2} & \cdots & a_{nn}
\end{pmatrix},
\]

where all elements above the main diagonal are zero: \(a_{ij} = 0, \forall i < j \).

- The algorithm:

\[
\text{for } k = 1 : n \\
x_k = \frac{b_k - \sum_{j=1}^{k-1} a_{kj} x_j}{a_{kk}}
\]

end
Gaussian elimination

- Can multiply a row of $Ax = b$ by a scalar and add to another row: elementary transformation.
- Use this to transform A to upper triangular form:

$$MAx = Mb, \quad U = MA.$$

- Apply backward substitution to solve $Ux = Mb$.

![Gaussian elimination diagrams](image-url)
Gaussian elimination (basic)

for $k = 1 : n - 1$
 for $i = k + 1 : n$
 $l_{ik} = \frac{a_{ik}}{a_{kk}}$
 for $j = k + 1 : n$
 $a_{ij} = a_{ij} - l_{ik}a_{kj}$
 end
 $b_i = b_i - l_{ik}b_k$
 end
end

Then apply backward substitution.

Note: upper part of A is overwritten by U, lower part no longer of interest.
Cost (flop count)

- For the elimination:

\[
\approx 2 \sum_{k=1}^{n-1} (n - k)^2 = 2((n - 1)^2 + (n - 2)^2 + \cdots + 1^2) = \frac{2}{3} n^3 + \mathcal{O}(n^2).
\]

- For the backward substitution:

\[
\approx 2 \sum_{k=1}^{n-1} (n - k) = 2 \frac{(n - 1)n}{2} \approx n^2.
\]
Example

- Solve $Ax = b$ for

 $A = \begin{pmatrix} 1 & -4 & 3 \\ 1 & 1 & 0 \\ 3 & -2 & 1 \end{pmatrix}$, $b = \begin{pmatrix} -2 \\ 5 \\ 6 \end{pmatrix}$.

- Gaussian elimination: $(A \mid b) \Rightarrow$

 $\begin{pmatrix} 1 & -4 & 3 & -2 \\ 0 & 5 & -3 & 7 \\ 0 & 10 & -8 & 12 \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & -4 & 3 & -2 \\ 0 & 5 & -3 & 7 \\ 0 & 0 & -2 & -2 \end{pmatrix}$.

- Backward substitution: $x_3 = \frac{-2}{-2} = 1$, then $x_2 = \frac{1}{5}(7 + 3 \cdot 1) = 2$, then $x_1 = -2 + 4 \cdot 2 - 3 \cdot 1 = 3$.
What if we have many right hand side vectors, or we don’t know b right away?

Note that determining transformation M such that $MA = U$ does not depend on b.

$M = M^{(n-1)} \ldots M^{(2)} M^{(1)}$, where $M^{(k)}$ is the transformation of the kth outer loop step. These are elementary lower triangular matrices, e.g.,

\[
M^{(2)} = \begin{pmatrix}
1 & 1 \\
 & 1 \\
 & -l_{32} & \ddots \\
 & & \ddots & \ddots \\
 & & & -l_{n2} & 1
\end{pmatrix}.
\]
The matrix M is unit lower triangular.

The matrix $L = M^{-1}$ is also unit lower triangular:

$$A = LU, \quad L = \begin{pmatrix}
1 & & & \\
l_{21} & 1 & & \\
l_{31} & l_{32} & 1 & \\
\vdots & \vdots & \ddots & \ddots \\
l_{n1} & l_{n2} & \cdots & l_{n,n-1} & 1
\end{pmatrix}.$$
So, Gaussian elimination is equivalent to:

1. decompose $A = LU$.

 Now for a given b we have to solve $L(Ux) = b$.

2. use forward substitution to solve $Ly = b$;

3. use backward substitution to solve $Ux = y$.
Example

\[A = \begin{pmatrix} 1 & -4 & 3 \\ 1 & 1 & 0 \\ 3 & -2 & 1 \end{pmatrix}. \]

Obtain

1. \(l_{21} = \frac{1}{1} = 1, \ l_{31} = \frac{3}{1} = 3, \) so

\[
M^{(1)} = \begin{pmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix}, \quad A^{(1)} = M^{(1)}A = \begin{pmatrix} 1 & -4 & 3 \\ 0 & 5 & -3 \\ 0 & 10 & -8 \end{pmatrix}.
\]

2. \(l_{32} = \frac{10}{5} = 2, \) so

\[
M^{(2)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 & 1 \end{pmatrix}, \quad A^{(2)} = M^{(2)}A^{(1)} = \begin{pmatrix} 1 & -4 & 3 \\ 0 & 5 & -3 \\ 0 & 0 & -2 \end{pmatrix}.
\]
Example (cont.)

- We thus obtain

\[U = A^{(2)} = M^{(2)} A^{(1)} = \begin{pmatrix} 1 & -4 & 3 \\ 0 & 5 & -3 \\ 0 & 0 & -2 \end{pmatrix}, \]

and collect the multipliers \(l_{21}, l_{31} \) and \(l_{32} \) into the unit lower triangular matrix

\[L = \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix}. \]

- Indeed, \(A = LU \):

\[\begin{pmatrix} 1 & -4 & 3 \\ 1 & 1 & 0 \\ 3 & -2 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 3 & 2 & 1 \end{pmatrix} \begin{pmatrix} 1 & -4 & 3 \\ 0 & 5 & -3 \\ 0 & 0 & -2 \end{pmatrix}. \]
Examples where the LU decomposition is useful

- When we have multiple right-hand sides, form once the LU decomposition (which costs $O(n^3)$ flops); then for each right-hand side only apply forward/backward substitutions (which are computationally cheap at $O(n^2)$ flops each).

- Can compute A^{-1} by decomposing $A = LU$ once, and then solving $LUx = e_k$ for each column e_k of the unit matrix. These are n right hand sides, so the cost is approximately $\frac{2}{3}n^3 + n \cdot 2n^2 = \frac{8}{3}n^3$ flops.
 (However, typically we try to avoid computing the inverse A^{-1}; the need to compute it explicitly is rare.)

- Compute determinant of A by

 \[
 \det(A) = \det(L) \det(U) = \prod_{k=1}^{n} u_{kk}.
 \]
Example: need for pivoting

- First step of Gaussian elimination:

\[
\begin{pmatrix}
1 & 1 & 1 & | & 1 \\
1 & 1 & 2 & | & 2 \\
1 & 2 & 2 & | & 3
\end{pmatrix} \Rightarrow \begin{pmatrix}
1 & 1 & 1 & | & 1 \\
0 & 0 & 1 & | & 1 \\
0 & 1 & 1 & | & 2
\end{pmatrix}.
\]

- Second step: Now $a_{22}^{(1)} = 0$ and we’re stuck.
- Simple remedy: exchange rows 2 and 3:

\[
\begin{pmatrix}
1 & 1 & 1 & | & 1 \\
1 & 2 & 2 & | & 3 \\
1 & 1 & 2 & | & 2
\end{pmatrix} \Rightarrow \begin{pmatrix}
1 & 1 & 1 & | & 1 \\
0 & 1 & 1 & | & 2 \\
0 & 0 & 1 & | & 1
\end{pmatrix}.
\]

Here the decomposition has been completed without difficulty.
Partial pivoting

- It is rare to hit precisely a zero pivot, but common to hit a very small one.
- Example:

\[
\begin{pmatrix}
1 & 1 & 1 \\
1 & 1 + 10^{-12} & 2 \\
1 & 2 & 2
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
1 & 1 & 1 \\
0 & 10^{-12} & 1 \\
0 & 1 & 1
\end{pmatrix}.
\]

- Now we get a multiplier \(l_{3,2} = 1/10^{-12} = 10^{12} \), so roundoff error in elimination step is magnified by this factor \(10^{12} \).

- Employ Gaussian elimination with partial pivoting (GEPP) not just to avoid zero pivots but more generally to obtain a stable algorithm.
GEPP

- At each stage k choose $q = q(k)$ as the smallest integer for which
 $$|a_{qk}^{(k-1)}| = \max_{k \leq i \leq n} |a_{ik}^{(k-1)}|,$$

 and interchange rows k and q.
- This ensures that pivots are not too small (unless matrix is close to singular) and $|l_{i,k}| \leq 1$, all $i \geq k$.
- $PA = LU$ where P is permutation matrix, e.g.,

$$P = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}.$$
Simple GEPP algorithm

for $k = 1 : n - 1$
 for $i = k + 1 : n$
 $q = \arg \max_{k \leq i \leq n} |a_{ik}^{(k-1)}|$
 exchange rows k and q
 $l_{ik} = \frac{a_{ik}}{a_{kk}}$
 for $j = k + 1 : n$
 $a_{ij} = a_{ij} - l_{ik} \cdot a_{kj}$
 end
 $b_i = b_i - l_{ik} \cdot b_k$
 end
end
Forming $PA = LU$

- It’s not so obvious, but it’s true, that with

 $$B = M^{(n-1)}P^{(n-1)} \cdots M^{(2)}P^{(2)}M^{(1)}P^{(1)}, \quad P = P^{(n-1)} \cdots P^{(2)}P^{(1)},$$

 we get L lower triangular and

 $$B = L^{-1}P.$$

- The matrix L is lower triangular, although not the same as it would be without pivoting. It is obtained by a similar sequence of steps as before, with the addition of permutation steps.

- The permutation matrix P is orthogonal, so

 $$A = (P^T L)U.$$

$P^T L$ is “psychologically lower triangular”.

In practice, keep record of permutations in a 1D array.
Example revisited (1/3)

Same matrix we worked on a few slides ago, now with pivoting:

\[
A = \begin{pmatrix}
1 & -4 & 3 \\
1 & 1 & 0 \\
3 & -2 & 1
\end{pmatrix}.
\]

Go through first column and find pivot:

\[
P^{(1)} = \begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{pmatrix} ; \quad P^{(1)}A = \begin{pmatrix}
3 & -2 & 1 \\
1 & 1 & 0 \\
1 & -4 & 3
\end{pmatrix}.
\]

So, we have

\[
M^{(1)} = \begin{pmatrix}
1 & 0 & 0 \\
-\frac{1}{3} & 1 & 0 \\
-\frac{1}{3} & 0 & 1
\end{pmatrix}, \quad A^{(1)} = M^{(1)}P^{(1)}A = \begin{pmatrix}
3 & -2 & 1 \\
0 & \frac{5}{3} & -\frac{1}{3} \\
0 & -\frac{10}{3} & \frac{8}{3}
\end{pmatrix}.
\]

Now, work on $A^{(1)}$:

$$P^{(2)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}; \quad P^{(2)}A^{(1)} = \begin{pmatrix} 3 & -2 & 1 \\ 0 & -\frac{10}{3} & \frac{8}{3} \\ 0 & \frac{5}{3} & -\frac{1}{3} \end{pmatrix},$$

and we have

$$M^{(2)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{2} & 1 \end{pmatrix}, \quad A^{(2)} = M^{(2)}P^{(2)}M^{(1)}P^{(1)}A = \begin{pmatrix} 3 & -2 & 1 \\ 0 & -\frac{10}{3} & \frac{8}{3} \\ 0 & \frac{5}{3} & -\frac{1}{3} \end{pmatrix}.$$

So the upper triangular U is $U = A^{(2)} = M^{(2)}P^{(2)}M^{(1)}P^{(1)}A$.

Example revisited (3/3)

- Let us find L and P. Write

$$U = M^{(2)} P^{(2)} M^{(1)} P^{(1)} A = \underbrace{M^{(2)}}_{\tilde{M}^{(2)}} \underbrace{P^{(2)} M^{(1)} P^{(2)^T}}_{\tilde{M}^{(1)}} \underbrace{P^{(2)} P^{(1)}}_{P} A.$$

- Next, take the elements of L below the diagonal to be those of the $\tilde{M}^{(k)}$ with flipped signs; the permutation matrix P is just the product of the $P^{(k)}$:

$$L = \begin{pmatrix}
1 & 0 & 0 \\
\frac{1}{3} & 1 & 0 \\
\frac{1}{3} & -\frac{1}{2} & 1
\end{pmatrix};
\quad U = \begin{pmatrix}
3 & -2 & 1 \\
0 & -\frac{10}{3} & \frac{8}{3} \\
0 & 0 & 1
\end{pmatrix};
\quad P = \begin{pmatrix}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{pmatrix}.$$

Exercise: confirm that indeed, $PA = LU$.

- In MATLAB obtain these matrices by the commands

```matlab
A=[1 -4 3; 1 1 0; 3 -2 1];
[L,U,P]=lu(A);
```

- For more on the general principle illustrated in this example, see pages 107–108 in the book, as well as Exercises 7 and 8 of Chapter 5.
GEPP stability

- Want to be assured that
 \[g_n(A) = \max_{i,j,k} |a_{i,j}^{(k)}| \]
 does not grow exponentially in \(n \). However, this is easily said than done!
- Bad scaling of rows can fool the GEPP we saw, because multiplying a row of \((A \mid b)\) by an arbitrary nonzero constant can affect which \(q = k \) maximizes \(|a_{ik}^{(k-1)}| \).
- Can occasionally do better by scaled partial pivoting, where pivot dominance is relative to its original row norm.
- However, provably stable is only the more expensive complete pivoting. And yet, in practice partial pivoting is usually sufficient.
- There are special cases where no pivoting is required, including symmetric positive definite and diagonally dominant matrices.
GEPP vectorization

- Memory access and inter-processor communications can be as expensive as floating point operations.
- A simple way to improve efficiency in MATLAB is to avoid if- for- and while-loops where possible.
- Work with array operations rather than on individual elements.

```matlab
for k = 1:n-1
    % find pivot q ...
    % interchange rows k and q and record this in p
    A([k,q],:) = A([q,k],:); p([k,q]) = p([q,k]);
    % compute the corresponding column of L
    J = k+1:n; A(J,k) = A(J,k) / A(k,k);
    % update submatrix by outer product
    A(J,J) = A(J,J) - A(J,k) * A(k,J);
end
```
Linear systems: Direct Methods

Inner and outer products

Example:

\[y = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad z = \begin{pmatrix} 0 \\ 1 \\ 3 \end{pmatrix}. \]

- **Inner product**

\[y^T z = z^T y = 3 \times 0 + 2 \times 1 + 1 \times 3 = 5. \]

- **Outer products**

\[yz^T = \begin{pmatrix} 0 & 3 & 9 \\ 0 & 2 & 6 \\ 0 & 1 & 3 \end{pmatrix}, \quad zy^T = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 2 & 1 \\ 9 & 6 & 3 \end{pmatrix}. \]

- Note that \(y \) and \(z \) do not need to have the same length for an outer product, although they do for an inner product.
Example

Same matrix as before, now with vectorized GEPP:

\[
A = \begin{pmatrix}
1 & -4 & 3 \\
1 & 1 & 0 \\
3 & -2 & 1
\end{pmatrix}.
\]

Obtain for the first column \(k = 1 \) without pivoting

1. \(J = [2, 3], \ A([2, 3], 1) = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \ A(1, [2, 3]) = (-4 \ 3) \), so the update is

2.

\[
A([2, 3], [2, 3]) = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \end{pmatrix} \ast \begin{pmatrix} -4 & 3 \end{pmatrix} \\
= \begin{pmatrix} 5 & -3 \\ 10 & -8 \end{pmatrix}.
\]
Fast memory access and BLAS

- Computer memories are built as *hierarchies*: from faster, smaller and more expensive to slower, larger and cheaper.
 - registers
 - cache
 - memory
 - disk, cloud

- Standardize basic matrix operations into BLAS:
 - BLAS1: $a \times \mathbf{x} + \mathbf{y}$ (SAXPY)
 - BLAS2: matrix-vector operations
 - BLAS3: matrix-matrix operations
Relative error in the solution

• Still consider

\[Ax = b \]

but now assess quality of approximate solution obtained somehow.

• Denote exact solution \(x \), computed (or given) approximate solution \(\hat{x} \). Want to estimate

\[
\frac{\| x - \hat{x} \|}{\| x \|}.
\]

• Can compute the residual \(\hat{r} = b - A\hat{x} \) and so also \(\frac{\| \hat{r} \|}{\| b \|} \).

Does a small relative residual imply small relative error in solution?
Example

For the problem

\[A = \begin{pmatrix} 1.2969 & .8648 \\ .2161 & .1441 \end{pmatrix}, \quad b = \begin{pmatrix} .8642 \\ .1440 \end{pmatrix}, \]

consider the approximate solution

\[\hat{x} = \begin{pmatrix} .9911 \\ -.4870 \end{pmatrix}. \]

Then

\[\hat{r} = b - A\hat{x} = \begin{pmatrix} -10^{-8} \\ 10^{-8} \end{pmatrix}, \]

so \(\|\hat{r}\|_\infty = 10^{-8}. \)

However, the exact solution is

\[x = \begin{pmatrix} 2 \\ -2 \end{pmatrix}, \quad \text{so} \quad \|x - \hat{x}\|_\infty = 1.513. \]
Conditioning of problem

- Since $\hat{r} = Ax - A\hat{x} = A(x - \hat{x})$, get

 $$\|x - \hat{x}\| = \|A^{-1}\hat{r}\| \leq \|A^{-1}\|\|\hat{r}\|.$$

- Since $Ax = b$, get

 $$\frac{1}{\|x\|} \leq \frac{\|A\|}{\|b\|}.$$

- Hence

 $$\frac{\|x - \hat{x}\|}{\|x\|} \leq \kappa(A) \frac{\|\hat{r}\|}{\|b\|},$$

with

$$\kappa(A) = \|A\|\|A^{-1}\|.$$

The scalar $\kappa(A)$ is the **condition number** of A.
Quality of solution

- **Backward error analysis**: associate result of numerical algorithm (GEPP) with the exact solution of a perturbed problem

\[(A + \delta A)\hat{x} = b + \delta b.\]

- The job of GEPP is to make δA and δb small.
- Obtain good quality solution (only) if in addition, $\kappa(A)$ is not too large.
- In our 2×2 example, in fact, $\kappa(A) \approx 10^8$, and indeed we saw $\|x - \hat{x}\| \sim \kappa(A)\|\hat{r}\|$.
The condition number

- Always $\kappa(A) \geq 1$.
- For orthogonal matrices, $\kappa_2(Q) = 1$: ideally conditioned!
- $\kappa(A)$ indicates how close A is to being singular, which $\det(A)$ does not.
- If A is symmetric positive definite with eigenvalues $\lambda_1 \geq \cdots \geq \lambda_n > 0$ then
 \[\kappa_2(A) = \frac{\lambda_1}{\lambda_n}. \]
- If A is noningular with singular values $\sigma_1 \geq \cdots \geq \sigma_n > 0$ then
 \[\kappa_2(A) = \frac{\sigma_1}{\sigma_n}. \]